
2
Ch

ap
te

r

02Yuan.qrk 11/18/04 8:14 PM Page 22

Introducing Nokia
Developer Platforms

23

The Nokia Developer Platforms allow developers to write scalable
applications across a range of Nokia devices.

02Yuan.qrk 11/18/04 8:14 PM Page 23

The mobile handset industry has seen fast-paced innovation in the last several
years. Nokia alone has been announcing more than a dozen new devices every
year. That is great news for consumers, since Nokia offers choices. But for
mobile application developers, it is tough to make sure that applications work
correctly on all handsets. The Nokia Developer Platforms aim to solve this
problem by standardizing developer APIs among Nokia phones. Each
Developer Platform supports a standard set of technologies on a series of Nokia
devices. In 2004, more than 100 million Developer Platform devices will be sold
worldwide.

Key technologies supported on Nokia Developer Platforms are open industry
standards. In particular, Java technology plays a crucial role. Client-side and
server-side Java technologies can be used to develop applications for all
Developer Platform devices. That helps 3 million existing Java developers to
enter this exciting new market. In this chapter, we discuss the big pictures and
architectures behind the Nokia Developer Platforms as well as the technical
specifications of the most popular Series 40 and 60 Developer Platforms. From
a Java developer’s perspective, we cover the four technology pillars on the
Series 40 and 60 Developer Platforms: Wireless Markup Language (WML), and
Extensible Hypertext Markup Language (XHTML) browsers, Multimedia
Message Services (MMS), Java 2 Micro Edition (J2ME), and Symbian C++.
Strengths and weakness of each technology are addressed. Key topics in this
chapter include

• Open Standard Mobile Technologies: explains the synergy between open
standards and mobile technologies.

• Nokia Developer Platform Architecture: covers the basic architecture,
device characteristics, and supported technologies on each Nokia Developer
Platform.

• Pervasive Client Technologies: discusses the thin-client application
paradigm using browser and MMS technologies. They are available on all
Nokia Developer Platforms.

• Managed Smart-Client Technology: introduces Java technology for smart-
client development on Series 40, 60, 80, and 90 devices.

24 Chapter 2 Introducing Nokia Developer Platforms

02Yuan.qrk 11/18/04 8:14 PM Page 24

• Tightly Integrated Smart-Client Technology: introduces the Symbian C++
technology for native smart-client applications on Series 60, 80 and 90
devices.

• Get Connected: gives a brief overview of services from Forum Nokia that
help developers, operators, and business leaders to take advantage of the
Nokia Developer Platforms.

In this chapter, we cover the technologies from a bird’s-eye view. Development
tools, API tutorials, design patterns, and best practices are covered in later
chapters. In a sense, the rest of this book is to elaborate the concepts discussed
in this chapter and put them into practical terms through real-world code
examples.

Open Standard Mobile Technologies

Mobile commerce and mobile entertainment present users and developers with
tremendous opportunities. But in order to realize those promises, the enabling
technologies must keep up with the customer demands. We need continued
innovations in both device hardware and software. The successes of the PC and
the Internet industries have taught us that standardization and open platforms
are the keys to sustainable innovations. In the mobile space, open standards are
crucial to both device manufacturers and software developers.

• For developers, standards-based technologies lower the barrier of entry for
development and reduce the time and effort required to learn new
proprietary APIs and tools. Developers can easily optimize standard-
technology-based applications for several different devices.

• For device manufacturers, standards-based technologies allow them to
reach out to developer communities. A large portfolio of innovative third-
party applications is crucial to the market success of any new device.

However, traditionally, mobile device manufacturers have been slow to
embrace open standards. Closed platforms are often considered more secure
and more efficient for small consumer devices. Proprietary solutions are
developed to take advantage of special hardware optimizations. But that
practice has hindered the independent developer’s ability to write applications
for these smart devices. As the computing power of mobile devices increases
exponentially according to Moore’s law, a smart phone today can easily have
more processing power and memory than a 10-year-old desktop PC. The need
for innovative software outweighs the benefits of proprietary optimizations.
Today, all major mobile device manufacturers have their own open standards
strategies. Nokia is leading the way with the Nokia Developer Platforms.

Open Standard Mobile Technologies 25

02Yuan.qrk 11/18/04 8:14 PM Page 25

The Nokia Developer Platforms allow developers to write applications for
almost all Nokia devices using open standard technologies. Such platform-
enabling technologies include the following.

• Java 2 Micro Edition (J2ME) is a smart-client platform developed by the
Java Community Process (JCP), which includes Nokia and all other major
wireless handset vendors. J2ME specifications define the programming
language, the virtual machine, and programming APIs. It is available on all
Nokia Developer Platform devices.

• WML and XHTML are markup languages for authoring Web pages. They are
standardized by the World Wide Web Consortium (W3C). Dynamic Web
pages can be served by Java-enabled application servers via the HTTP
network. All Nokia Developer Platform phones have WML or XHTML
browsers.

• MMS is the standard way to deliver multimedia content asynchronously to
mobile devices. The Third-Generation Partnership Project (3GPP) defines an
open XML/SOAP API (MM7) to access MMS service-center servers in
wireless carrier networks. We can use Java Web services toolkits to send
and receive MMS messages to handsets from the desktop or server
computers. All Nokia Developer Platforms support sending and receiving
MMS messages.

• Digital Rights Management (DRM) enables content publishers to provision
copyrighted material with special metadata that prevents the receiving
device from copying and forwarding it to third parties. The content is
typically downloaded from the HTTP network or via MMS. Nokia’s DRM
solutions are based on the Open Mobile Alliance (OMA) standard.

• The OMA Client Provisioning solution enables developers and wireless
operators to send device configuration settings to supported Nokia
Developer Platform phones over the air.

• Symbian OS is an open standard mobile operating system developed by a
group of leading mobile handset manufacturers, each owning a stake in
Symbian. It is the operating system for all Nokia high-end smart phones and
enterprise and mobile media devices. The Symbian C++ native
programming API can be used to develop applications for Symbian devices.

The audience of this book is primarily Java developers who are interested in
developing end-to-end applications for Nokia devices. Throughout the book, we
cover, in detail, the use of both client-side and server-side Java technologies to
develop smart-client or server-driven mobile applications. In this chapter, we
introduce Nokia Developer Platforms from a Java developer’s perspective
(Figure 2–1).

26 Chapter 2 Introducing Nokia Developer Platforms

02Yuan.qrk 11/18/04 8:14 PM Page 26

Nokia Developer Platform Architecture

Standardized and open technologies enable developers to develop and
optimize portable applications across different devices using the same APIs and
tools. However, mobile devices are often used in specific application areas with
very different requirements. Not all technologies are available on all devices. As
a result, a monolithic Developer Platform does not work. Nokia divides its
developer platform into several series, each targeting a specific device market
segment. Hence, the Developer Platforms are not just about enabler
technologies. They are about devices and user experiences as well.

Nokia recommends a “develop-and-optimize” approach to building appli-
cations. You first write applications for the key technology enabler (such as
Symbian/C++ or Java MIDP), which you select for the application’s require-
ments, your expertise/preference, and the desired market.

From here, you can target specific Developer Platform versions and devel-
op an application against the Developer Platform specifications. The key to
leveraging the Nokia Developer Platforms and minimizing device-specific
development is to remain as abstract as possible for as long as possible
when developing mobile applications.

Nokia Developer Platform Architecture 27

J2ME
MMS

(J2SE)
WML

(J2EE)
Symbian

C++

Mobile network

PC or server
applications

On device
applications

User interface

Figure 2–1 Nokia Developer Platform technologies from a Java developer’s point of view.

02Yuan.qrk 11/18/04 8:14 PM Page 27

28 Chapter 2 Introducing Nokia Developer Platforms

The next step is to optimize applications for the different user interfaces on
a given Developer Platform (file size, screen size, key mapping, etc.) and
then finally to take any device-specific hardware limitations or issues into
account (such as file size limitations or processor speeds).

Currently, Nokia supports four Developer Platforms. The devices covered under
each platform are the following.

• Series 40 Developer Platform includes mass-market phones with LCD
screens and multimedia capabilities. It is the biggest platform in terms of
both revenue and number of users.

• Series 60 Developer Platform includes smart phones and mobile game
decks based on Symbian OS v6, v7, and beyond.

• Series 80 Developer Platform includes high-end enterprise devices based
on Symbian OS v7 and beyond, with a full stack of enterprise
communication software.

• Series 90 Developer Platform includes high-end mobile media devices with
advanced multimedia (audio and video) features. Those devices are based
on Symbian OS v7 and beyond.

Developer Platforms are not static. They have to evolve to keep up with
innovations in device technologies. The Series 40 and 60 Developer Platforms
1.0 mainly apply to devices released before 2004; the Developer Platforms 2.0
apply to most devices that came out in and after 2004.

In this book, we focus on the Series 40 Developer Platform 2.0 and cover
important aspects of the Series 60, 80, and 90 Developer Platforms. This
approach encourages Series 40 developers to design applications compatible
with higher series devices and provides a path for Series 40 developers to
extend their skills. Now, let’s look at the technical specifications of those
platforms.

Nokia Developer Platforms are independent from the user interface. In fact,
one of the major strengths of Developer Platforms is that they allow Nokia
to implement multiple UI flavors on a common set of device technologies.
However, currently, most devices in a series have very similar UI designs.
Throughout this book, when we discuss UI designs for a particular series,
we refer to the typical and most popular UI design for devices in this series.

Series 40 Developer Platform

The Series 40 Developer Platform targets mass-market consumer devices with
hundreds of millions of users. Series 40 devices are very important to
developers due to their large market penetration. On the other hand, they also

02Yuan.qrk 11/18/04 8:14 PM Page 28

Nokia Developer Platform Architecture 29

present the biggest challenge to developers due to their limited size and
resource constraints. In this section, we first look at the enabler technologies
that make up this platform. Then we check out the device characteristics and
user interfaces of the current Series 40 devices.

Software Stack

The basic technology stack on a Series 40 device is illustrated in Figure 2–2. At
the bottom, there are device hardware and Nokia’s proprietary operating
system (Nokia OS). The Nokia OS is closed to developers outside of Nokia. On
top of the Nokia OS, all Series 40 devices support a common set of native client
applications:

• Telephony applications such as speed dialing, call logs, and mobile
messaging clients.

• Personal information management (PIM) applications, including calendar,
to-do lists, and phonebook.

• Synchronization applications that synchronize the PIM database with
desktop PCs via the Nokia PC suite.

• Application installation and management utilities, including over-the-air
(OTA) download, wallpaper, and ringtone managers.

Hardware

Nokia OS (Closed API)

Base software

Java
MMS

WAP/WML

Common native
apps

Lead

software
Apps

User interface

S
er

ie
s

40
D

ev
el

op
er

 P
la

tfo
rm

Figure 2–2 Software stack on Series 40 devices.

02Yuan.qrk 11/18/04 8:14 PM Page 29

The common native applications are not customizable by third-party
developers and hence not as interesting to the readers of this book. For
developers, the key value proposition of the Nokia Developer Platforms is the
support for technologies that enable third-party applications on the device. The
Series 40 Developer Platform supports the following enabler technologies and
APIs: the J2ME MIDP and its optional packages, WML, XHTML Mobile Profile,
MMS, OMA DRM (forward lock), and OMA client provisioning technologies.
The common native applications and the open API implementations constitute
the base software in the Series 40 Developer Platform.

Nokia and wireless operators can also differentiate device offerings by
installing “lead software,” which are device-specific technologies or native
applications. For example, the Nokia 6800 messaging phone for GSM networks
extends Series 40 Developer Platform 1.0 with a very capable native email
client; the Nokia 6255 imaging phone for Code Division Multiple Access (CDMA)
networks extends Series 40 Developer Platform 2.0 with JSR-184 (Mobile 3D
API).

Device Characteristics

A typical Nokia Series 40 device features a 128 by 128 LCD display with 4,096
colors. Some devices have 96 by 65 or 128 by 160 LCD screens and other color
depths. It typically displays five lines of text plus headers. The keypad has the
traditional alphanumeric keys, a four-way scroll key, the Send/End keys, and
two or three generic soft keys. The device displays images in common file
formats, receives AM/FM radio station signals, records voice messages, and
plays Musical Instrument Digital Interface (MIDI) polysynthetic ringtones. Series
40 devices have multiple connectivity protocol support built into their hardware
and OS.

• Series 40 devices support 2G and 2.5G wireless networks compatible with
mobile operators throughout the world. Some work over GSM and GRPS,
while others support CDMA networks.

• Some Series 40 devices support EDGE networks and 3G UMTS networks for
fast wireless data transfer.

• All Series 40 devices support one or several of the following local network
connectivity protocols: Bluetooth, USB, or Infrared Data Association (IrDA).

Device extensions such as cameras, full alphabetic keyboards, and MP3 players
are available on selected Series 40 device models that target specific market
segments. Figure 2–3 also shows the Nokia 7210 and 6230 devices, which are
the first devices for the Series 40 Developer Platforms 1.0 and 2.0 respectively.
The Nokia 6230 device supports a VGA camera, MP3 playback, and add-on
MultiMedia Card (MMC) memory cards. The figure also shows a Nokia 6800
messaging phone (full keyboard) and a Nokia 3300 music phone (deck key
layout and MP3 support).

30 Chapter 2 Introducing Nokia Developer Platforms

02Yuan.qrk 11/18/04 8:14 PM Page 30

Nokia Developer Platform Architecture 31

Nokia 7210 Nokia 6230 Nokia 6800 folded

Nokia 6800 opened

Nokia 3300

Figure 2–3 Important Series 40 Developer Platform devices.

02Yuan.qrk 11/18/04 8:14 PM Page 31

We do not print the detailed physical characteristics and application limita-
tions for each individual device in this book. For the most updated informa-
tion about individual devices, please refer to the device specification docu-
ment from Forum Nokia, available at http://forum.nokia.com/devices.

User Interface

The user interface on Series 40 devices is based on view-switch screens. It is
designed specifically for one-hand operations.

1. An idle Series 40 device displays its home screen. After the user presses the
Menu soft key, the device shows its top-level menu, which consists of a
series of screens, each representing a different native application (e.g., the
Web browser or messaging client) or content folder. The content folder
could contain media files (i.e., pictures in the Gallery folder) or installed
applications (i.e., Java MIDlets in the Applications folder). The user can
navigate through the top-level menu items using the arrow navigation keys.
The menu content and presentation of each menu item screen are
determined by Nokia and the wireless operator. Developers cannot change
them from J2ME applications.

2. When we select a top-level menu item by pressing the Select key, the next
screen is a list menu. Each menu item takes up one line. For a native
application, the list menu consists of available actions. For a content folder,
the list menu shows content files, installed applications, or subfolders.

3. A Series 40 application typically consists of multiple screens. Application
and navigation actions are assigned to each screen for the users to select.
These actions are typically mapped to the soft keys. If there are more than
two options, the left soft key becomes an Options key, which opens a full-
screen selection list when pressed.

The above menu hierarchy is illustrated in Figure 2–4. Figure 2–5 shows the use
of the Options soft key. The user interface on Series 40 devices is very screen-
centric. Attempt to interact with individual UI elements (e.g., menu, selection
list, options, or editable text box) often brings up a separate screen (see Figure
2–6 for examples). In Chapter 4, “MIDP User Interface,” we cover how to
program the UI elements shown in Figure 2–6. This UI design is a proven
success on small phone screens. Hundreds of millions of existing Nokia users
are already familiar with it.

32 Chapter 2 Introducing Nokia Developer Platforms

02Yuan.qrk 11/18/04 8:14 PM Page 32

Nokia Developer Platform Architecture 33

Root screen

Top level

menu... ...

List menu

More menus for

drilled down tasks

Figure 2–4 The UI menu for devices in the Series 40 Developer Platform.

Click the Options soft key

Figure 2–5 The use of the Options soft key in Series 40 devices.

02Yuan.qrk 11/18/04 8:14 PM Page 33

34 Chapter 2 Introducing Nokia Developer Platforms

Series 60 Developer Platform

The Series 60 Developer Platform targets the world’s best-selling smart phones
produced by seven (as of April 2004) different vendors, including Nokia. More
than 10 million Series 60 smart phones will be sold in 2004. There are a lot of
overlaps between the Series 40 and 60 Developer Platforms. In this section, we
focus on the enhancements brought by the Series 60 devices.

Enter text in an editor screen

Select date

Popup menu

Adjust gauge

Figure 2–6 Interact with individual elements on a Series 40 device.

02Yuan.qrk 11/18/04 8:14 PM Page 34

The Series 60 Developer Platform is different from the Series 60 Platform.
The latter is a licensable product from Nokia. It is licensed to seven other
device makers. Fourteen (as of April 2004) Series 60 smart phones have
been launched. Series 60 Developer Platform is the platform for the devel-
opers. This book deals with Developer Platforms.

All Series 40 core native applications and most lead software are available on
Series 60 devices. A significant difference between the Series 40 and 60
Developer Platforms is that Series 60 devices are based on Symbian OS instead
of the proprietary Nokia OS. Developers can access the OS functionalities
directly using Symbian C++ language and APIs. Users can install Symbian C++
applications into the device via OTA downloading or via a flash memory card.
For example, most commercial games for the N-Gage game deck are written in
Symbian C++. We give a brief introduction to Symbian OS later in this chapter.
Figure 2–7 shows the software stack on Series 60 devices.

A Nokia Series 60 device typically has a 176 by 208 LCD screen capable of
displaying 65,536 (16-bit) colors. More devices with other UI configurations will
come in the future. Compared with a standard Series 40 keypad, a Series 60

Nokia Developer Platform Architecture 35

Hardware

Symbian OS (Symbian C++ API)

Base software

Java
MMS

WAP/WML

Common native
apps

Lead

software
Apps

User interface

S
er

ie
s

60
D

ev
el

op
er

 P
la

tfo
rm

Figure 2–7 Software stack on Series 60 devices.

02Yuan.qrk 11/18/04 8:14 PM Page 35

36 Chapter 2 Introducing Nokia Developer Platforms

keypad has several additional keys, including an Application key, a Clear key,
and an Edit key. A Series 60 device plays the Audio/Modem Riser (AMR) voice
tones as well as other Series 40 audio formats. We can expand the data storage
space of Series 60 devices using add-on flash cards. As a result, Series 60
devices can support large downloadable applications up to 4MB. The Nokia
3650 and 6600 smart phones are the first devices for the Series 60 Developer
Platforms 1.0 and 2.0, respectively. A particularly interesting Series 60 device is
the Nokia N-Gage mobile game deck. It is optimized for connected mobile
games. Figure 2–8 shows the important Series 60 devices.

Compared with the typical user interface on a Series 40 device, a Series 60
device looks more like a minicomputer or PDA. The top-level menu and
submenus can be displayed in a grid of icons or in a selection list. It supports
popups (e.g., menus, option lists, and alerts) and directly editable widgets.

Nokia 3650

Nokia 6600

Nokia N-Gage

Figure 2–8 Important Series 60 Developer Platform devices.

02Yuan.qrk 11/18/04 8:14 PM Page 36

Series 80 Developer Platform

The Series 80 Developer Platform is based on Symbian OS v7 and above. It is
designed to support business productivity applications. A significant Series 80
addition to the Developer Platform base software is the support for J2ME
Personal Profile. The J2ME Personal Profile is a more powerful Java environment
than the MIDP, which is also supported on Series 80. The Personal Profile allows
us to run enterprise mobile middleware, including many from IBM, on Series 80
devices. J2ME Personal Profile is not covered in this book. Series 40 and 60 MIDP,
WAP, and MMS applications should work well on Series 80 devices. The Series 80
Developer Platform includes an array of enterprise-oriented lead software,
including email client, messaging client, and VPN software.

The Series 80 Developer Platform was introduced in February 2004 with the
Nokia 9500 Communicator device. It is a platform for enterprise devices. The
Nokia 9500 Communicator features two user interfaces. An external 128 by 128
LCD screen and alphanumeric keypad are very similar to the UI design on
Series 40 devices. But when opened, the device reveals a 640 by 200 large LCD
screen and a full alphabetic keyboard. There are four soft keys along with the
large LCD (see Figure 2–9). The Nokia Communicator 9500 user interface is
clearly designed for two-hand operations. More UI designs will be available for
Series 80 devices in the future.

Nokia Developer Platform Architecture 37

Figure 2–9 The Nokia Communicator 9500 is the first Series 80 Developer Platform device.

02Yuan.qrk 11/18/04 8:14 PM Page 37

Series 90 Developer Platform

The Series 90 and 80 Developer Platforms are similar. The Series 90 is based on
Symbian OS v7.0 and is primarily designed to support multimedia applications.
For MIDP, WAP, and MMS applications, the multimedia enhancements and pen-
based input methods are transparently available to developers. But for
Symbian C++ developers, the Series 90 exposes more APIs to manipulate
multimedia contents and UI events. Most Series 40 and 60 applications should
run correctly on Series 90 devices with little or no change.

The Series 90 Developer Platform was introduced in late 2003. A typical Series
90 device features a 320 by 240 color display with 16-bit colors. It supports many
audio and video playback formats and could allow users to watch TV programs
or movies on the device. Series 90 devices feature a major UI upgrade from the
Series 60: they support pen-based input methods (see Figure 2–10).

Other Nokia Device Series

In addition to Developer Platform devices, Nokia makes other devices. These
devices are either legacy devices being phased out or devices that do not offer
a significant opportunity for third-party developers. These are not the focus of
this book.

38 Chapter 2 Introducing Nokia Developer Platforms

Figure 2–10 An example Series 90 Developer Platform device with pen-based user interface.

02Yuan.qrk 11/18/04 8:14 PM Page 38

Pervasive Client Technologies: WAP and MMS

WAP browser and MMS messaging client are two technology pillars supported
by all Nokia Developer Platforms. We cover the basics of those two
technologies in this section.

Introducing WAP

A WAP browser works pretty much the same way as the HTML Web browser on
a desktop PC. The user interacts with the remote application server by following
dynamic links and submitting forms. The handset renders the content provided
by the server. All the application logic is processed on the server side.

Although mobile and desktop browser applications share the same application
model, the actual network architecture and markup languages are different. We
check out those differences in the next several sections.

Network Architecture

While an HTML Web browser can make direct HTTP connections to the server,
the WAP browser must go through a gateway server to connect to the general
TCP/IP Internet. The WAP infrastructure is illustrated in Figure 2–11. The
gateway converts data packets from the wireless network to TCP/IP format and
then forwards them onto the wired Internet, and vice versa.

Pervasive Client Technologies: WAP and MMS 39

WAP
gateway

Phone
browser

Phone
browser

Phone
browser

WML
pages

WML
pages

wireless
operator

Wireless network
WAP protocol

IP-based Internet
HTTP protocol

Figure 2–11 The WAP network infrastructure.

02Yuan.qrk 11/18/04 8:14 PM Page 39

From the Web application developer’s point of view, however, the gateway is
almost completely transparent. All the developer needs to do is set up a normal
HTTP server to serve the markup pages and other media objects. HTTP headers,
including cookies and authentication credentials, pass through the gateway
transparently. The gateway also handles encrypted HTTPS connections
automatically.

WML

For developers, the biggest difference between an HTML Web application and
a WAP wireless application is the different markup languages. Most mobile
browsers support the Wireless Markup Language (WML), and all Nokia Series
40 and 60 devices support the WML specification. A core element in WML is
<card>. Unlike HTML, where one page corresponds to one screen, one WML
download page can contain a deck of cards denoted by the <card> tag. Each
card corresponds to one screen and mobile device, and the user can navigate
between cards using internal reference links. The cards help to break long
content into several screens without requiring multiple round trips to fetch
them one by one from the server. For example, the WML snippet below shows
a deck of WML cards in one page, and Figure 2–12 shows how it looks on a
device. The <do> tag maps a text label to a soft key. When the user presses on
the soft key, the browser navigates to the page or card URL specified in the
enclosed <go> tag.

<?xml version='1.0'?>

<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.2//EN”

"http://www.wapforum.org/DTD/wml_1.2.xml">

<wml>

<card id="Name" title="Enter Name">

<do type="accept" label="SayHello">

<go href="#Hello"/>

</do>

<p>Please enter your name:

<input type="text" name="name"/>

</p>

</card>

<card id="Hello" title="Say Hello">

<p>Hello, $(name)</p>

</card>

</wml>

XHTML MP

The XHTML markup language is developed by the W3C to replace HTML. It is
HTML-defined as an XML document with cleaner and stricter syntax. Series 60

40 Chapter 2 Introducing Nokia Developer Platforms

02Yuan.qrk 11/18/04 8:14 PM Page 40

Pervasive Client Technologies: WAP and MMS 41

devices and some Series 40 devices feature dual-mode WAP browsers that
support both WML and XHTML. The browser conforms to the XHTML Mobile
Profile (MP) specification, which contains a subset of most widely used XHTML
tags. A key benefit of the dual-mode browser is that it allows users to access
the vast amount of Web content out there on the wired Internet. The XHTML
browser also supports WAP cascading style sheets (CSS) for styling.

Details about the WAP infrastructure, applications, markup languages, and
Nokia device browsers can be found in Chapter 15, “Browser Applications.”

Introducing MMS

An MMS message is analogous to an email message on the wired Internet. It
contains a text body and any number of multimedia file attachments. The MMS
client in Nokia Series 40 and 60 devices supports all popular attachment types,
including JPEG, GIF, PNG, and MIDI. Some devices support advanced formats
such as AMR TrueTone audio and 3GPP mobile video clips. You can send an
MMS message to any MMS-enabled phone or ordinary email address. The
message is delivered as follows:

1. The sender composes a message and sends it to the carrier’s Multimedia
Messaging Service Center (MMSC).

2. The MMSC forwards the message to the recipient carrier’s MMSC or email
server via the wired Internet.

3. The message is delivered to the recipient’s phone or email inbox.

As we can see, the MMSC is central to the MMS architecture. We can write
applications that connect to the MMSC directly over the wired Internet and send
automated messages to a large number of users (see Figure 2–13).

An interactive MMS application functions like an automated email information
service. It works as follows:

Figure 2–12 A deck of WML cards displayed on a cell phone screen.

02Yuan.qrk 11/18/04 8:14 PM Page 41

42 Chapter 2 Introducing Nokia Developer Platforms

1. The user requests an application action by sending messages to the server.

2. The server returns the results via messages delivered to the phone.

3. The user then makes a further request by replying to that message.

This process goes on until the user stops replying to the message, thereby
ending the session (see Figure 2–14).

MMSC

Phone
MMS

Phone
MMS

Phone
MMS

Phone
MMS

Email
address

SOAP (MM7)
terminal

HTTP

SMTP

Wireless network

Address to phone numbers

IP-based Internet

Address to IP

Figure 2–13 The MMS network architecture.

Phone MMSC
Application

server

1. Send request 2. Forward request

3. Return response4. Deliver response

Figure 2–14 The MMS application interaction diagram.

02Yuan.qrk 11/18/04 8:14 PM Page 42

A major difference between WAP and MMS applications is that MMS appli-
cations are not “instantaneous.” The message can be queued at the MMSC
and scheduled for delivery later. The asynchronous messaging model
trades the real-time performance for reliability. Temporary network prob-
lems do not cause the application to fail, since the message can be auto-
matically scheduled for a later delivery time when the network recovers. If
the delivery fails after a certain amount of time, the user can get a notifica-
tion message.

SMIL

In addition to the text and multimedia components, the MMS message can also
include a presentation component written in a special XML format called
Synchronized Multimedia Integration Language (SMIL), which is also a W3C
standard. A SMIL document contains time sequence instructions on how to
display the attached multimedia components. The following SMIL example
code instructs the MMS client to display image demo.gif and text demo.txt
simultaneously on different parts of the screen for four seconds. At the same
time, the client should play the demo.midi audio file.

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0//EN"

"http://www.w3.org/2001/SMIL20/SMIL20.dtd">

<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<head>

<layout>

<root-layout width="320" height="240"

title="Demo"/>

<region id="Image" width="150" height="60"

left="0" top="0"/>

<region id="Text" width="150" height="35"

left="0" top="70"/>

</layout>

</head>

<body>

<par dur="4s">

<text src="demo.txt" region="Text"/>

<audio src="demo.midi"/>

</par>

</body>

</smil>

Not all devices support the SMIL component in MMS messages. Some earlier
Series 40 devices ignore the SMIL attachment altogether but still allow the user
to access other attachments in the MMS message. More details of the MMS

Pervasive Client Technologies: WAP and MMS 43

02Yuan.qrk 11/18/04 8:14 PM Page 43

infrastructure, applications, and SMIL are available in Chapter 14, “Multimedia
Messaging Service.”

The Thin-Client Application Paradigm

The WAP and MMS applications both run on servers. The handsets merely
render the content and capture user interaction. This is commonly known as the
thin-client application paradigm. It is a proven success in the Internet-based
applications. Key advantages of this thin-client application model include the
following:

• The clients are pervasively available. WAP browsers are almost universally
supported by all device manufacturers and network carriers. The SMS and
MMS messaging services are also widely available throughout the world.
Several factors contribute to the pervasiveness of those technologies:

• Since the device only handles presentation, it does not require much
processing power. WAP browsers and messaging clients can be
implemented on small, low-end devices with high sales volumes and long
battery lives.

• Since WAP has been around for a long time, most wireless data networks
are well equipped to handle WAP traffic reliably. That makes thin-client
applications available all over the world.

• WML, XHTML, SMIL, and MIME attachments are standard technologies
with a huge installed base worldwide. Most compatibility problems have
been worked out over the years.

• Thin-client applications and developers are readily available.

• The Web application and email application models are well known to
today’s Internet developers. They can easily migrate their skills to the new
wireless arena.

• A large number of Web applications are available today. It is relatively
easy to make changes to their presentation layer so that they generate
WML pages instead of HTML pages.

• Thin-client applications are installed and deployed on the server end. There
are no complex and costly provisioning process, license management,
security update, and so forth.

However, a crucial disadvantage of the thin-client paradigm is that it requires
the mobile device to be always connected. Today’s wireless data networks are
slow, unreliable, and expensive. They cover only limited areas. Those
limitations have severely hindered the adoption of thin-client applications. To
get around the network problem, we have to rely on the other two pillars in the
Nokia Developer Platforms: J2ME and Symbian C++.

44 Chapter 2 Introducing Nokia Developer Platforms

02Yuan.qrk 11/18/04 8:14 PM Page 44

Managed Smart-Client Technology: J2ME 45

Managed Smart-Client Technology: J2ME

J2ME brings rich and high-availability applications to occasionally connected
mobile devices. It is universally supported by all versions of Nokia Developer
Platforms as well as all other major mobile handset manufacturers. In this
introductory chapter, we have a high-level overview of J2ME.

A Brief History of Java

The Java technology is emerging as one of the most important enablers for
mobile applications. In 2007, Java handset shipments will reach more than 450
million, constituting 74 percent of all handset shipments. Java mobile devices
will soon surpass Wintel PCs and become the dominant information access
clients. Nokia is a major player in the Java landscape. The technical benefits of
Java include:

• Crossplatform: This is very important in the diverse mobile device market.
For example, the same J2ME MIDP application runs on all Nokia Developer
Platform devices with relatively small amount of modification, representing
huge cost savings for developers.

• Robust: Since Java applications run in a managed environment, the
bytecode is verified before execution, and unused objects are reclaimed by
garbage collectors (see the tip). Even if a Java application does crash, it is
contained within the virtual machine. It will not affect other applications on
the device.

• Secure: The Java runtime provides advanced security features through a
domain-based security manager and standard security APIs.

• Object oriented: The Java language is a well-designed, object-oriented
language with vast library support. There is a vast pool of existing Java
developers.

• Wide adoption at the backend: It is relatively easy to make Java clients work
with Java application servers and messaging servers. Due to the wide
adoption of Java 2 Enterprise Edition (J2EE) on the server side, J2ME is the
leading candidate for end-to-end mobile applications.

The garbage collector periodically travels the directed graph of allocated
objects and frees up all objects that cannot be reached via a valid reference.
That could create certain conditions for memory leaks. For example, if a
long-lived object holds references to short-lived objects, even after the
short-lived objects are no longer used, their memory cannot be freed
because they are still reachable in the linked graph from the long-lived
object. As a result, we should be extremely careful when adding object ref-
erences to collections held in long-lived objects such as the root UI window,

02Yuan.qrk 11/18/04 8:14 PM Page 45

the MIDlet object itself, or Singleton objects. Since the heap space on
mobile devices is limited and the garbage collector takes time to run, it is
generally considered a best practice to minimize object creation and reuse
objects as much as possible.

For memory-intensive applications, it is sometimes hard for the garbage
collector to keep up. Failures to free stale objects in time could cause out-
of-memory errors. To correct this problem, you can manually invoke the
garbage collector by calling the System.gc() method in your code. It asks
the JVM runtime to make best effort to reclaim memory space before it
returns.

From WORA to Java Everywhere

For early Java, the term crossplatform has a strict meaning: the same bytecode
application should run without modification on any computer that has a Java
runtime. The original vision is that Java-based software agents could roam over
the network automatically. That not only requires bytecode compatibility but
also runtime library compatibility. But as Java evolves, it is used in many
different application scenarios. The single class library approach no longer fits
the needs.

Recognizing that one size does not fit all, the Java 2 Platform is divided into
three editions. The Java 2 Standard Edition contains the basic JVM and core
class libraries; the Java 2 Enterprise Edition provides additional class libraries
and tools for enterprise server applications; the Java 2 Micro Edition consists of
stripped-down virtual machines (called KVMs—Kilobyte Virtual Machines) that
can run on devices with kilobytes of memory. For mobile devices, a subset of
the standard edition class library and new libraries for mobile-specific tasks. It
is clear that a Java bytecode application written for an enterprise server will not
run crossplatform on a PDA device without modification.

In June 2003, during the eighth JavaOne conference in San Francisco, Sun
Microsystems brought up a new slogan for Java: “Java Everywhere.” The
emphasis is no longer on direct portability of bytecode applications. The focus
now is to provide the same language, consistent architectures, and similar APIs
across all computing platforms. Java Everywhere allows developers to port
their skills to new application arenas.

The J2ME Architecture

The separation of J2EE, J2SE, and J2ME is a step in the right direction.
However, a single monolithic J2ME is still too inflexible for mobile devices.
There is a huge variety of mobile devices, designed for different purposes and
with different features. For example, applications on an automobile-mounted
system are much more complex than those on a cell phone. Even among
similar devices, such as high-end and low-end cell phones, portability can

46 Chapter 2 Introducing Nokia Developer Platforms

02Yuan.qrk 11/18/04 8:14 PM Page 46

Managed Smart-Client Technology: J2ME 47

cause underutilization of resources on one device and strain on another. Device
manufacturers and developers need fine-grained API differentiation among
devices, not the “lowest common denominator.”

To balance portability with performance and feasibility in the real world, J2ME
contains several components known as configurations, profiles, and optional
packages (Figure 2–15). Each valid combination of a configuration and a profile
targets a specific kind of device. The configurations provide the most basic and
generic language functionalities. The profiles sit on top of configurations and
support more advanced APIs, such as a graphical user interface (GUI),
persistent storage, security, and network connectivity. The optional packages
can be bundled with standard profiles to support specific application needs.

Even with J2ME, device-specific optimization is still a major challenge in
mobile application development. A single Java code base cannot account
for the different screens, CPUs, memory sizes, Java API libraries and even
JVM implementation bugs, found on different devices. As we discussed,
Nokia reduces the required optimization work by developing relatively con-
sistent handsets within each Developer Platform. The focus of this book is
to help the readers understand the J2ME characteristics of Nokia Series 40
devices and then develop applications optimized for those devices. In
Chapter 12, “Developing Scalable Applications,” we cover how to scale
J2ME applications across different devices within and beyond the Nokia
Series 40 Developer Platform.

Hardware and OS

CLDC CDC

MIDP

Foundation profile

Personal Game

Optional packages

Figure 2–15 The J2ME architecture.

02Yuan.qrk 11/18/04 8:14 PM Page 47

48 Chapter 2 Introducing Nokia Developer Platforms

The two most important J2ME configurations are as follows.

• The Connected Limited Device Configuration (CLDC) is for the smallest
wireless devices with 160KB or more memory and slow 16/32-bit
processors. The CLDC has limited math, string, and I/O functionalities, and
lacks features such as the Java Native Interface (JNI) and custom class
loaders. Only a small subset of J2SE core libraries is supported by the CLDC
virtual machines (KVMs). The most recent version of the CLDC is version
1.1. It was developed by the JSR 139 and released in March 2003.

• The Connected Device Configuration (CDC) is for more capable wireless
devices with at least 2MB of memory and 32-bit processors. Unlike the
CLDC, the CDC supports a fully featured Java 2 virtual machine and
therefore can take advantage of most J2SE libraries. The CDC 1.0 was
developed by the JSR 36, and it became available in March 2001. The new
CDC 1.1 is currently being developed by the JSR 218 and is expected before
the end of year 2004.

Important J2ME profiles include the following. The Mobile Information Device

Profile (MIDP) is built on top of the CLDC to provide support for smart phones;
the Foundation Profile is built on top of CDC to provide support for networked
embedded devices; the Personal Basis Profile (PBP) and Personal Profile (PP)

are built on top of the CDC and the Foundation Profile to provide support for
GUI-based powerful mobile devices such as high-end PDA devices. The
standard UI library in the current PBP and PP editions is the Java AWT (Abstract
Widget Toolkit).

On the CDC and Personal Profile stack, important optional packages include the
following: the RMI (Remote Method Invocation) Optional Package (JSR 66)
supports remote object sharing between Java applications; the JDBC (Java
DataBase Connectivity) Optional Package (JSR 169) provides a uniform
interface to access structured query language (SQL) databases from Java
applications; the Advanced Graphics Optional Package (JSR 209) aims to add
Swing and Java 2D API libraries into the CDC/PP stack.

Although CDC and PP have their places in the mobile market, they are not
nearly as popular as the MIDP. All major mobile device manufacturers,
including Nokia, are committed to support MIDP. In the next section, we take a
deeper look at MIDP and its optional packages.

The concept of open interfaces is core to the Java technology. It works as
follows: For a given computing task, a set of standard APIs is defined by a
standards committee. Individual vendors then provide competing libraries
that implement those APIs. The application code using the API is complete-
ly decoupled from the specific implementation provider. That approach
minimizes the developer’s learning cost and improves code portability. Yet,

02Yuan.qrk 11/18/04 8:14 PM Page 48

it also protects the freedom of choosing vendors. The Java Community
Process (JCP) is an effort to develop standard Java API specifications.

JCP Executive Committees (ECs) consist of industry-leading companies.
Anyone in the general public can submit a new Java Specification Request
(JSR) for a new API. The appropriate EC decides whether to accept this new
JSR. Once approved, the JSR lead can recruit more companies or individu-
als to develop the API specification together. Every specification goes
through multiple stages of community and public reviews before it
becomes an official Java standard.

MIDP and Its Optional Packages

The most important and successful J2ME profile is the CLDC-based MIDP. The
MIDP targets the smallest devices, such as smart phones. It is already deployed
on millions of handsets, including all Nokia Series 40 and 60 devices. Hence, the
MIDP is a key technology that all Nokia developers need to learn.

An MIDP application consists of a suite of MIDlets. Each MIDlet can be
independently installed, started, paused, and stopped by the application
management software (AMS) on the device. The AMS can be controlled by the
user, using the phone keypad. The MIDlet API specification provides a set of
abstract life-cycle methods that hook into the AMS. Developers must
implement these methods to specify the runtime behavior of each MIDlet. The
code for a minimal MIDlet that displays a Hello World string on the screen is
as follows. The details of the code are explained in Chapter 3, “Getting
Started.”

package com.buzzphone.hello;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class HelloMidlet extends MIDlet {

Form form;

// Called by the AMS when the MIDlet is instantiated

public HelloMidlet () {

form = new Form ("Hello");

}

// Called by the AMS when it starts the MIDlet

protected void startApp() {

form.append ("Hello World");

}

Managed Smart-Client Technology: J2ME 49

02Yuan.qrk 11/18/04 8:14 PM Page 49

50 Chapter 2 Introducing Nokia Developer Platforms

// Called by the AMS when it stops the MIDlet

protected void destroyApp(boolean unconditional) {

destroyApp(false);

notifyDestroyed();

}

// Called by the AMS when it pauses the MIDlet

protected void pauseApp() {

}

}

As of late 2003, most mobile phones in the market support the MIDP 1.0
specification. However, the MIDP 1.0 lacks some important features, such as
security and advanced UI controls. As a result, device vendors often supply
their own MIDP extensions to provide advanced custom features. Vendor-
specific extensions undermine the portability of J2ME applications. Many
problems with the MIDP 1.0 have been fixed in the MIDP 2.0, which came out
of JCP in August 2002. The Nokia Developer Platforms 2.0 for Series 40 and 60
mandate MIDP 2.0 and optional packages on new Nokia phones.

Table 2–1 lists MIDP-compatible optional packages. Most of the MIDP optional
packages run on CDC profiles as well. Nokia supports the optional packages at
different levels:

• Device available: The optional package is already factory-installed on some
Nokia devices.

• Coming soon: Device implementation of the optional package is currently
being developed by Nokia engineers. It will be available on new devices
soon.

• Specification: The optional package specification is still being developed by
the JCP. Nokia supports that specification by contributing to the expert
group.

• No plan: Nokia currently has no plan to support this optional package on its
devices.

The Java Technology for the Wireless Industry (JTWI) specification is a
guidance and roadmap document for Java handset manufacturers and
developers. It specifies the minimal software and hardware requirements
for Java smart phones that can be marketed with the JTWI logo. A JTWI-
compatible handset must support MIDP, the Wireless Messaging API, and
the Mobile Media API.

02Yuan.qrk 11/18/04 8:14 PM Page 50

Managed Smart-Client Technology: J2ME 51

File I/O and PIM

Mobile Media

Wireless Messaging

Location

Web Services

Bluetooth

Security and Trust

3D Graphics

Content Handler

Scalable 2D Vector
Graphics

75

135

120/205

179

172

82

177

184

211

226

This optional package has two modules:
the file I/O module supports access to file
systems on a PDA device; the PIM module
allows the MIDP application to integrate
with the device’s native PIM clients.

Provides audio and video capture and
playback APIs. The exact supported media
formats vary by devices. It is covered in
detail in Chapter 9.

Provides an API for the MIDP application
to send and receive SMS and MMS
messages. It is covered in detail in
Chapter 8.

Supports location tracking for devices.
The location information can come either
from a GPS device module or from the
network carrier.

Provides XML APIs for generic XML parsing
as well as SOAP Web Services clients.

Supports access to Bluetooth data
channels and protocol libraries from an
MIDP application. It is covered in detail in
Chapter 10.

Allows MIDP applications to interact with
the phone’s embedded security module
such as the SIM card for GSM phones.

Provides an API to display 3D scenes on a
mobile device. A lightweight mobile 3D
data format for the art works is also
defined.

Allows devices to associate MIME types
with MIDlet applications. Media files with
certain MIME types will be automatically
opened by the associated MIDlet.

Provides capability to render 2D vector
images in the SVG (Scalable Vector
Graphics) format.

Device available

Device available

Device available

Coming soon (1H2005)

Coming soon

Device available

Coming soon (1H2005)

Device available

Coming soon (1H2005)

Coming soon (1H2005)

Table 2–1 MIDP Optional Packages

Name JSR Nokia Support Description

02Yuan.qrk 11/18/04 8:14 PM Page 51

The Smart-Client Paradigm

Microbrowser-based thin-client technologies were instrumental in bringing
mobile Internet to masses in the early days of mobile commerce. But WAP-
based mobile commerce has never taken off due to the poor usability on the
client side. The new generation of smart-client and mobile middleware
technology (e.g., J2ME and Microsoft’s .NET Compact Framework) promises to
bring feature-rich clients to mobile applications. The benefits of smart clients
over thin clients include the following:

• Smart clients have richer and more pervasive user interfaces. In particular,
the judicial use of threads can drastically improve user perception of the
application performance.

• Smart clients can be more easily personalized. Extreme personalization is
one of the most touted benefits of the freedom (mobile) economy.

• On-device data storage reduces network traffic, especially unnecessary

round trips. It enables transactions; supports the “offline” mode when the
network is temporarily unavailable; and hence improves overall
performance, reliability, and availability of mobile applications.

• Smart clients can leverage device extensions. For example, a smart-client
program can talk with the device’s built-in (or attached) GPS module and
barcode scanners. A smart client can also integrate with device-specific
software (e.g., email and messaging clients) to improve the user’s workflow.

• Smart clients support more powerful and flexible security schemes. They
enable content-based security and distributed single sign-on.

52 Chapter 2 Introducing Nokia Developer Platforms

SIP (Session Initiation
Protocol)

Presence and IM

Data Sync

180

165/187

230

Provides support for SIP-based
communication. It will allow data to be
pushed to mobile devices.

Supports presence and instant messaging
applications based on the SIP.

Supports synchronizing PIM databases
over the network. This optional package
also provides APIs to process most
common PIM data formats.

Coming soon (1H2005)

No plan

Specification

Table 2–1 MIDP Optional Packages (continued)

Name JSR Nokia Support Description

02Yuan.qrk 11/18/04 8:14 PM Page 52

Tightly Integrated Smart-Client Technology: Symbian C++ 53

• Smart clients support advanced integration technologies. They are easy to
plug into existing corporate infrastructure. Supports for asynchronous
messaging and XML Web Services are crucial for reliable and maintainable
mobile solutions.

Tightly Integrated Smart-Client Technology:
Symbian C++

The Symbian OS is a sophisticated 32-bit operating system designed
specifically for mobile devices. It consumes few resources and yet has a
modular, object-oriented C++ architecture. It is based on preemptive
multitasking and supports threading and asynchronous processing. It was
anticipated that Symbian devices could run for years without being switched
off, so reliability and stability were key design goals for the OS.

The Symbian C++ API provides complete access to services, such as messaging
and multimedia, as well as device and OS functionality that is not available
through the use of J2ME. Symbian OS is an open developer platform available
on Nokia Series 60 and higher devices as well as on devices manufactured by
other Symbian OS licensees.

The Evolution of Symbian OS

Symbian devices are proliferating because of Symbian’s position as an open
operating system for data-enabled mobile phones. Currently, Symbian has the
most partners and licensees of any mobile OS, including Nokia, Sony Ericsson,
Motorola, Siemens, Fujitsu, Samsung, Sanyo, and others.

The operating system began as software for PDAs from a company called
Psion. Symbian was formed in 1998 to evolve this OS primarily for phones.
These high-end phone handsets are now known as smart phones. The Symbian
OS is layered to support different device designs while retaining core
functionality across all products. Three families of product lines emerged:

• Keypad-based: These are designed for one-handed operation and do not
have a touch screen. They are currently the most common type of Symbian
devices, and Series 60 exemplifies this design. Nokia created the Series 60
platform on top of Symbian OS and licenses it to other manufacturers such
as Siemens, Samsung, Panasonic, and Sendo. This gives consumers more
choice while allowing them to exchange data, use compatible software, and
switch smart phones without having to learn a new interface.

• Pen-based: These phones include a stylus for touch-screen operation. There
are now two lines of pen-based Symbian handsets: UIQ phones and the
Series 90 Developer Platform. The Sony Ericsson P800 was the first device

02Yuan.qrk 11/18/04 8:14 PM Page 53

54 Chapter 2 Introducing Nokia Developer Platforms

with a UIQ user interface. Nokia does not make UIQ devices but has
introduced the Series 90 Developer Platform, which represents the latest in
mobile technologies.

• Keyboard-based: These phones, such as the Nokia 9500 Communicator, are
the most similar to handheld personal organizers. They have a full keyboard
as well as a touch screen for pen-based input.

In the future, user input will not be the primary distinction between these
designs. There will be some convergence of product features, and the addition
of new features will add different distinctions between product lines.

Symbian OS Architecture

Symbian OS API (Figure 2–16) contains hundreds of C++ object classes grouped
in subsystems. We can also group these subsystems in layers.

In general, we can think of the Symbian architecture in four layers or groupings:
the application utility layer, the GUI framework and services, communications,
and base system APIs.

Multimedia Security Graphics Base

Application Framework

Serial
Comms

Telephony

Networking
Narrow band

protocols
Infrared Bluetooth

WAP Stack

Java
Application
Services

Application
Engines

Web
Browser

WAP
browser

Messaging

Comms Infrastructure

Figure 2–16 The Symbian OS API architecture.

02Yuan.qrk 11/18/04 8:14 PM Page 54

Get Connected 55

• The application utility layer: This includes a variety of application-oriented
utilities. Application engines give access to the data from built-in PIM
applications, such as contacts and calendar schedules. This allows third-
party applications to integrate with core applications easily. Other
application services include specialized data management and data
exchange.

• The GUI framework and services: The framework APIs give structure to
third-party applications and provide for UI handling. These include UI
controls and lower level APIs for multimedia handling of sounds and
graphics. Symbian platforms such as Series 60 and UIQ extend the UI
frameworks to provide for different UI designs. When developing Symbian
applications, it’s best to separate the UI and application logic. This limits the
amount of code that needs to be ported between platforms.

• Communications: There’s a broad stack of communication-related APIs. At
a high level, there are messaging and browsing utilities. Beneath that is
support for networking interfaces such as Bluetooth, infrared (IrDA), and
USB; protocols such as TCP/IP, HTTP, and WAP; and of course mobile
telephony services.

• Base system APIs: The base APIs encompass class libraries for data
structures, file and memory access, date and time, and other basic system
APIs.

Although it is more effort to develop Symbian C++ applications, there are
compelling reasons to do so. As natively compiled C++ applications, Symbian
applications can run much more quickly than J2ME applications. Depending
upon the requirements of the solution, a Symbian application may be the only
choice available. Symbian provides extensive APIs that give access to almost
all the functionality in a handset now, whereas not all the MIDP 2.0 optional
packages are available yet.

Get Connected

The success of Nokia Developer Platforms will be ultimately tested by developer
adoption. Nokia provides valuable services to wireless operators, developers,
content owners, and business managers who want to leverage the Developer
Platforms to reach hundreds of millions of device users.

Leading Platforms

The core value behind the Nokia Developer Platforms is the large volume of
shipped devices. By March 2004, more than 40 Developer Platform devices had
been launched. More than 100 million Developer Platform device units will be

02Yuan.qrk 11/18/04 8:14 PM Page 55

56 Chapter 2 Introducing Nokia Developer Platforms

shipped in 2004. As the mobile handset market leader, Nokia’s commitment to
Developer Platforms allows developers and content owners to connect to the
volumes via the minimum learning curves. It also eases the decision-making
process for business managers who need to identify which handsets to
support.

Developer Resources

Forum Nokia, the developer arm of Nokia, provides superb support for the
Developer Platforms. Forum Nokia publishes software development tools,
documentations, and white papers. The white papers cover a wide range of
topics from technical tutorials to best practices to business case studies.
Developers can access the latest devices and mobile service servers via the
Forum Nokia loaner device and developer hub services. Forum Nokia also
provides technical support via telephone and Internet discussion forums. It has
more than 1.35 million registered users, more than 460,000 tool and document
downloads every month, and more than 17,000 unique visitors everyday.
Forum Nokia allows developers to connect to Developer Platform–related
answers.

In early 2004, Nokia launched the Forum Nokia PRO service. For a small annual
fee, companies can gain early access to tools, the latest prototype devices,
confidential documents, and proprietary technical support from Nokia.

Business Generation

Nokia helps developers to get applications to the market. For large developers,
Nokia provides opportunities to include custom applications directly on
shipped devices. For example, Developer Platform devices can be shipped with
add-on MMC flash cards that have third-party applications preinstalled. For
smaller developers, the Nokia Tradepoint program is a worldwide online
application and service catalog. In March 2004, there were more than 2,500
applications and 200 buyers in the Tradepoint channels. In addition, Nokia
sponsors co-marketing events with local developers and buyers around the
globe.

Together with Sun Microsystems and other mobile handset vendors, Nokia
provides certification services for Java applications. A certificate guarantees
that the application works correctly with Nokia Developer Platform devices and
hence makes it eligible for software publisher catalogs.

Nokia’s catalog, co-marketing, and certification services help developers
connect with customers.

02Yuan.qrk 11/18/04 8:14 PM Page 56

Summary

The Nokia Developer Platforms enable us to develop portable and scalable
mobile applications for hundreds of millions of Nokia devices. In this chapter,
we covered the Series 40 and 60 Developer Platforms and introduced the four
enabler technology pillars. They are WAP, MMS, J2ME, and Symbian C++. We
reviewed the application paradigms each technology enables and discussed
their strengths and shortcomings. It is crucial for us to understand those
technologies and know how to apply them correctly to suit specific application
needs. Near the end of this chapter, we also covered Nokia’s developer support
programs that connect developers to volumes, answers, and customers.

Summary 57

02Yuan.qrk 11/18/04 8:14 PM Page 57

