
C H A P T E R 10
Performance

When you begin experimenting with Hibernate, one of the first tasks you are like-
ly to perform is the installation of a monitor to see the generated SQL. This is
especially important if you want to understand how Hibernate generates SQL for
such features as collections and lazy loading of data. This chapter describes how to
gather performance metrics for the use of Hibernate in the field.

Finding and Solving Problems
Hibernate affords a basic SQL monitoring capability, but for real development you
are best advised to use a tool with a bit more sophistication. By definition, every
interaction between your application and the database is translated through a
JDBC driver. A pass-through driver is used to analyze the data. The pass-through
driver does not change the data, but records all of the interaction for analysis. In
this section, we will look at the pass-through JDBC driver p6spy and the use of
IronTrack SQL to understand the data it generates.

IronTrack SQL

IronTrack SQL is an open-source Apache-licensed tool that works in conjunction
with the p6spy driver monitor. Using p6spy (included with IronTrack SQL), every
interaction between the application and the database is logged. IronTrack SQL, in
turn, allows you to view these generated logs (either at runtime via TCP/IP or by
opening generated log files).

Configuring IronTrack SQL
IronTrack SQL can be downloaded free from http://www.irongrid.com/. You

will obtain a file with a name such as irontracksql-installer-
1_0_172.jar. Once you have saved this file to your system, you can install it

279

ch10.qxd 11/3/04 8:20 AM Page 279

280 CHAPTER 10 PERFORMANCE

Figure 10.1. Starting IronTrack SQL Installation

with the command java -jar irontracksql-installer-1_0_
172.jar. The installer will launch, presenting a language screen, as shown in
Figure 10.1.

You can accept the defaults throughout the installation, although you may
wish to specify a shorter, alternative destination path for the installation, as shown
in Figure 10.2, because you will be placing libraries present in the installation in
your application path.

If you are using an application server, the precise installation process for Iron-
Track SQL varies (see http://www.irongrid.com/documentation/). To use Iron-
Track with a standalone application, you will need to place the following files on
your class path:

ironeyesql.jar
p6spy.jar

Next, you will need to update your Hibernate.properties to point to the p6spy
driver (or whatever mechanism you are using to specify JDBC connectivity). You
will observe that the line with the default driver has been commented out with a #
character, not deleted. The log files generated by p6spy can become quite large

ch10.qxd 11/3/04 8:20 AM Page 280

(especially with full logging and stack trace tracking turned on). Therefore, you’ll
want to keep your standard driver class close at hand for when you wish to switch
to production use. Listing 10.1 shows the Hibernate properties that should be set to
make use of p6spy.

Listing 10.1 Configuring p6spy Properties

#hibernate.connection.driver_class=com.mysql.jdbc.Driver
hibernate.connection.driver_class=com.p6spy.engine.spy.
P6SpyDriver
hibernate.connection.url=jdbc:mysql://localhost/hibernate
hibernate.connection.username=root
hibernate.connection.password=
hibernate.dialect=net.sf.hibernate.dialect.MySQLDialect
hibernate.show_sql=false

Finally, you will need to place a spy.properties file in your class path
(typically next to your hibernate.properties). This file is used to

281FINDING AND SOLVING PROBLEMS

Figure 10.2. Alternative Installation Directory

ch10.qxd 11/3/04 8:20 AM Page 281

configure the logging produced by p6spy. You should start by copying the
spy.properties file included with the IronTrack SQL distribution. The most
important thing is to set the spy.properties to use the correct driver, as in
realdriver=com.mysql.jdbc.Driver.

After changing these configuration options, simply run your application as
you normally would. The default p6spy options will log every SQL statement to a
log file (spy.log) in the application root directory.

WHERE WAS THAT SQL GENERATED?

p6spy will generate a stack trace pointing to the class that generated a SQL
statement if you set stacktrace=true in the spy.properties file. This
will slow your application down, because generating a stack trace is expen-
sive, but it can be very helpful if you are working with a large, unfamiliar appli-
cation and are having trouble tracking down a particular statement.

Using IronTrack SQL
If you are running your application in a long-lived environment (for example, in
the context of an application server), you can use the IronTrack SQL graphical
user interface to view your data at runtime via TCP/IP. Alternatively, you can sim-
ply load the generated spy.log file. This would be appropriate if your applica-
tion runs and then terminates (as do several of the examples in this book) or, to cite
another example, if you are unable to connect to the server via TCP/IP (perhaps
due to a firewall installed on the server).

You may have a shortcut already created that can launch IronTrack SQL. If
not, you can launch IronTrack SQL from the command line with the command
java –jar irontracksql.jar. Once you’ve launched the IronTrack SQL
interface, you can either connect to a running application via TCP/IP or you can
import a generated log file. Figure 10.3 shows IronTrack SQL launched, with the
Import… command selected.

To view the generated log files, you’ll need to change the Files of Type option
to spy.log files, as shown in Figure 10.4.

IronTrack allows you to sort and filter the loaded SQL statements. For exam-
ple, Figure 10.5 shows the results of a run of the sample application shown in
Chapter 3. As can be seen, the ALTER TABLE statements are relatively expen-
sive, but so are our INSERT statements.

Clicking the Graphing tab on the IronTrack SQL main interface allows us to
see a graph of the generated SQL statements. As shown in Figure 10.6, the load on
the server can be viewed at different points in time (useful for identifying certain
operations that may be highly performance intensive).

282 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 282

283FINDING AND SOLVING PROBLEMS

Figure 10.3. IronTrack SQL Import

Figure 10.4. Selecting a spy.log File

ch10.qxd 11/3/04 8:20 AM Page 283

Queries
You may wish to use Hibern8 IDE and IronTrack SQL in conjunction to test the
SQL generated by your HQL queries. Simply launch the Hibern8 IDE as
described in Chapter 8, specifying hibernate.properties with the p6spy
configuration, as shown in Listing 10.1.

After loading the first *.hbm.xml file, you can connect to the Hibern8 IDE
instance with the IronTrack SQL monitor via TCP/IP. Assuming that you are using
the default configuration values and are running your application on your local
system, you will then be able to connect to the Hibern8 IDE instance and see real-
time results of your HQL—both the generated SQL and the resulting timing
information.

284 CHAPTER 10 PERFORMANCE

Figure 10.5. Viewing SQL Statements

ch10.qxd 11/3/04 8:20 AM Page 284

When using Hibern8 IDE and IronTrack SQL in conjunction, you may obtain
better results if you disable your cache and connection pool settings.

Two areas are of special interest in regard to query performance—lazy objects
and collections.

Lazy Objects

When designing your application, you should generally default to lazy="true"
whenever possible, and then tune your application to ensure that your queries return
the object set as needed (see the class tag in Chapter 5 for more information).

As shown in Chapter 8, it’s easy to write a query that uses the fetch outer
join command to have Hibernate automatically load the child objects of a collec-
tion that has been marked lazy="true". Thus the rule of thumb should be: only

285QUERIES

Figure 10.6. IronTrack SQL Import

ch10.qxd 11/3/04 8:20 AM Page 285

use lazy="false" if you expect to actually need access to the collection on
every possible read.

This is likely to be an area of some confusion when you start working with
Hibernate. For example, given a teacher -> student relationship, if
lazy="false", loading the teacher will load the entire class. Similarly, if
lazy="true" and the students aren’t pre-fetched by a fetch statement (or the
Criteria.setFetchMode()), iterating through the teacher’s student list
will generate a new SQL SELECT statement for each student.

Collections

Many of the performance issues pertaining to collections derive from the semantic
collision between what most developers think of as a collection and the actual con-
tracts of a collection. For example, duplicates are not allowed when you are insert-

286 CHAPTER 10 PERFORMANCE

Figure 10.7. Real-Time HQL Testing

ch10.qxd 11/3/04 8:20 AM Page 286

ing a value into a set, so when adding a new element, Hibernate needs to at least
know the primary-key identifier(s). Similarly, for a map, the keys need to be
loaded to ensure the proper ordering. The index values must be known for a list
(and other indexed collections). The only collection that doesn’t have any of these
rules is bag, but it offers poor performance when loading data.

After reading the rules regarding collections, you may find that it would be
better (or even required) to model your data with a class declared for the collec-
tion table, an example of which is shown in Chapter 4. In this case, instead of let-
ting Hibernate to manage the collection for you behind the scenes using the
collections contracts, you are free to implement your own queries and retrieval
policies.

An area of special interest when working with collections is the extent to
which outer joins (as described in Chapter 8) and lazy fetching are used to opti-
mize performance. You can use the lazy="true" attribute (as described above
and in Chapter 5) to reduce the amount of collection data returned and various
outer joins to control the results more carefully, as described in Chapter 8.

Inserts
Bulk inserts of data are a type of operation best not performed by Hibernate. For
example, a user may have 100,000 records that have to be imported into a single
table. Don’t use Hibernate for this sort of operation—use your database’s built-in
import tools instead. The built-in import will be faster than Hibernate (or, for that
matter, handwritten JDBC).

If, for some reason, you do need to do a bulk import via Hibernate, take
account of the following tips:

• Make sure the hibernate.jdbc.batch_size option (specified in
your hibernate.properties, as described in Chapter 6) is turned on
and set to a reasonably large value.

• Consider Session.commit() on to break up the transactional over-
head. Presumably you will do this only if you are very confident that it will
succeed.

• Make sure that you call Session.close() it or Session.clear()
after each call to Session.commit(). Otherwise, Hibernate will
attempt to maintain the inserted object in the session-level cache.

• Consider the seqhilo or assigned generator to optimize key
generation.

287INSERTS

ch10.qxd 11/3/04 8:20 AM Page 287

Connection Pooling
Opening a connection to a database is generally much more expensive than exe-
cuting an SQL statement. A connection pool is used to minimize the number of
connections opened between application and database. It serves as a librarian,
checking out connections to application code as needed. Much like a library, your
application code needs to be strict about returning connections to the pool when
complete, for if it does not do so, your application will run out of available
connections.

STARVING A POOL

When using connection pooling, it is important to remember that a chunk of
bad code that neglects to return connections can starve the rest of the appli-
cation, causing it to eventually run out of connections and hang (potentially
failing nowhere near the actual problem). To test for this, set the maximum
connections in your pool to a small number (as low as 1), and use tools like
p6spy and IronTrack SQL (described above) to look for statements that fail to
close.

This problem can be avoided by always using a finally block to close
your connection, as shown throughout this book.

Hibernate supports a variety of connection pooling mechanisms. If you are
using an application server, you may wish to use the built-in pool (typically a con-
nection is obtaining using JNDI). If you can’t or don’t wish to use your application
server’s built-in connection pool, Hibernate supports several other connection
pools, as shown in Table 10.1.

STATEMENT CACHE

Certain connection pools, drivers, databases, and other portions of the sys-
tem may provide an additional cache system, known as a statement cache.
This cache stores a partially compiled version of a statement in order to
increase performance. By reusing the parsed or precompiled statement, the
application is able to trade an increase in memory usage for a boost in per-
formance.

You should consider using a statement cache if one is available, but keep
in mind that a statement cache is not the same thing as the other forms of
caching described later in this chapter.

288 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 288

The choice of a connection pool is up to you, but be sure to remember that a
connection pool is necessary for every production use.

If you wish to use c3p0, the version distributed with Hibernate 2.1.2 (0.8.3) is
out of date (and GPL is a problem if you wish to distribute a non-GPL applica-
tion). If you wish to distribute an application that makes use of c3p0, make sure to
download the latest (LGPL) release, c3p0-0.8.4-test1 or later.

Because Hibernate ships with c3p0, configuration is a simple matter of adding
a few Hibernate configuration properties to your hibernate.properties (or
hibernate.cfg.xml) file. Listing 10.2 shows an example of the configura-
tion of c3p0.

Listing 10.2 Sample Hibernate c3p0 Configuration

hibernate.connection.driver_class=com.mysql.jdbc.Driver
hibernate.connection.url=jdbc:mysql://localhost/hibernate
hibernate.connection.username=root
hibernate.connection.password=
hibernate.dialect=net.sf.hibernate.dialect.MySQLDialect
hibernate.show_sql=false

hibernate.c3p0.max_size=1
hibernate.c3p0.min_size=0
hibernate.c3p0.timeout=5000
hibernate.c3p0.max_statements=100
hibernate.c3p0.idle_test_period=300
hibernate.c3p0.acquire_increment=2
hibernate.c3p0.validate=false

The properties shown in Listing 10.2 are as described in Table 10.2.
If you prefer to use Apache DBCP, make sure that the Apache DBCP library is

on your class path, and add the properties to your hibernate.properties file, as
shown in Table 10.3.

Finally, if you wish to use Proxool as your connection pool provider, you will
need to specify hibernate.properties values as shown in Table 10.4.

289CONNECTION POOLING

Table 10.1. Hibernate-Supported Connection Pools

c3p0 http://sourceforge.net/projects/c3p0 Distributed with
Hibernate

Apache DBCP http://jakarta.apache.org/commons/dbcp/ Apache Pool

Proxool http://proxool.sourceforge.net/ JDBC Pooling Wrapper

ch10.qxd 11/3/04 8:20 AM Page 289

Unlike c3p0 and DBCP, you will need to include additional configuration options
as described at http://proxool.sourceforge.net/configure.html.

Caching
So you’ve got a performance problem, and you’re pretty sure that it lies in a bot-
tleneck between your database and your application server. You’ve used IronTrack
SQL or some other tool to analyze the SQL sent between your application and the
database, and you’re pretty sure that there isn’t much advantage to be squeezed
from refining your queries. Instead, you feel certain that the problems are due to
the amount of traffic between your application and the database. The solution in
this case may be a cache. By storing the data in a cache instead of relying solely on
the database, you may be able to significantly reduce the load on the database, and
possibly to increase overall performance as well.

Understanding Caches

Generally speaking, anything you can do to minimize traffic between a database
and an application server is probably a good thing. In theory, an application ought
to be able to maintain a cache containing data already loaded from the database,
and only hit the database when information has to be updated. When the database
is hit, the changes may invalidate the cache.

290 CHAPTER 10 PERFORMANCE

Table 10.2. c3p0 Configuration Options

Property Meaning Property Example

Maximum number of database hibernate.c3p0.max_size 15
connections to open

Initial number of database connections hibernate.c3p0.min_size 3

Maximum idle time for a connection hibernate.c3p0.timeout 5000
(in seconds)

Maximum size of c3p0 statement cache hibernate.c3p0.max_ 0
(0 to turn off) statements

Number of connections in a clump hibernate.c3p0.acquire_ 3
acquired when pool is exhausted increment

Idle time before a c3p0 pooled hibernate.c3p0.idle_test_ 300
connection is validated (in seconds) period

Validate the connection on checkout. hibernate.c3p0.validate true |
Recommend setting the hibernate false
.c3p0.idle_test_period
property instead. Defaults to false

ch10.qxd 11/3/04 8:20 AM Page 290

291CACHING

Table 10.3. Apache DBCP Configuration Options

Property Meaning Property Example

Maximum number of checked-out hibernate.dbcp 8
database connections .maxActive

Maximum number of idle database hibernate.dbcp 8
connections for connection pool .maxIdle

Maximum idle time for connections in hibernate.dbcp.max -1
connection pool (expressed in ms). Wait

Set to -1 to turn off

Action to take in case of an exhausted hibernate.dbcp 1
DBCP connection pool. Set to 0 to fail, .whenExhaustedAction
1 to block until a connection is made
available, or 2 to grow)

Validate connection when borrowing hibernate.dbcp.test true |
connection from pool (defaults to true) OnBorrow false

Validate connection when returning hibernate.dbcp.test true |
connection to pool (optional, true, OnReturn false
or false)

Query to execute for connection hibernate.dbcp Valid SQL
validation (optional, requires either .validationQuery SELECT
hibernate.dbcp.testOn statement
Borrow or hibernate.dbcp (e.g.,
.testOnReturn) SELECT

1+1)

Maximum number of checked-out hibernate.dbcp.ps 8
statements .maxActive

Maximum number of idle statements hibernate.dbcp.ps 8
.maxIdle

Maximum idle time for statements (in ms) hibernate.dbcp.ps 1000 *
.maxWait 60 * 30

Action to take in case of an exhausted hibernate.dbcp.ps 1
statement pool. Set to 0 to fail, 1 to .whenExhaustedAction
block until a statement is made available,
or 2 to grow)

FIRST-LEVEL AND SECOND-LEVEL CACHES

Hibernate actually implements a simple session-level cache, useful on a per-
transaction basis. This cache is primarily used to optimize the SQL generat-
ed by Hibernate. It is sometimes referred to as a first-level Hibernate cache.
For more information on the relationship between a session and the underly-
ing SQL, see Chapter 9.

(continues)

ch10.qxd 11/3/04 8:20 AM Page 291

The JVM and distributed cache discussed in this section is referred to as
a second-level cache in other sources. Since you will never need to configure
the first-level cache, the discussion in the rest of this chapter will refer to the
second-level cache simply as “the cache.”

Let’s start by looking at Hibernate without a cache, as shown in Figure 10.8.
Data is transferred between Hibernate and the database, and transactions are man-
aged by the database. Hibernate assumes that the data in memory should be
refreshed on every access (a reasonable assumption, especially if Hibernate does
not have exclusive access to the database).

Figure 10.9 shows Hibernate operating with a single JVM cache used to mini-
mize traffic between Hibernate and the database. This will increase the perfor-

292 CHAPTER 10 PERFORMANCE

Application Database

Single JVM

H
ib

er
na

te

Figure 10.8. Hibernate without a Cache

Table 10.4. Proxool Configuration Options

Property Meaning Property Example

Configure Proxool provider using hibernate.proxool.xml /path/to/
an XML file file.xml

Configure the Proxool provider using hibernate.proxool /path/
a properties file .properties to/proxool
.properties

Configure the Proxool provider from hibernate.proxool true | false
an existing pool .existing_pool

Proxool pool alias to use (required for hibernate.proxool As set by Proxool
hibernate.proxool .pool_alias configuration
.existing_pool,
hibernate.proxool
.properties, hibernate
.proxool.xml)

ch10.qxd 11/3/04 8:20 AM Page 292

mance of the application and minimize the load on the database, but at the cost of
a bit more configuration complexity (described later in this chapter) and memory
usage.

You may wonder how to use Hibernate to perform multithreaded object access
and begin pondering strategies for sharing persistent objects across threads. The
short answer is: don’t! Instead, if you are interested in sharing object data across
threads, simply use a cache, as shown in Figure 10.9. If you try to implement your
own, the odds are good that you’ll have to implement a complex, difficult-to-manage
set of thread management, only to end up with cache and concurrency problems.

Figure 10.10 illustrates a problem that may arise when you use a cache. If your
application does not have exclusive access to the database (a common situation in

293CACHING

Application DatabaseCache

Single JVM

H
ib

er
na

te

Figure 10.9. Hibernate with a Cache

Application

Database

Cache

Single JVM

Legacy
Application

?

H
ib

er
na

te

Figure 10.10. Hibernate and a Legacy System

ch10.qxd 11/3/04 8:20 AM Page 293

Unfortunately, there is no ideal solution to the problem of distributed object
cache in conjunction with a legacy system. If your Hibernate application has a
read-only view of the database, you may be able to configure some cache system
to periodically expire data.

If you are able to control all the access to a particular database instance, you
may be able to use a distributed cache to ensure that the data traffic is properly
synchronized. An example of this is shown in Figure 10.11. Take care when choos-
ing a distributed cache to ensure that the overhead of the cache traffic does not
overwhelm the advantages of the cached data.

As a final note, keep in mind that a distributed cache is only one of several
possible solutions to a performance problem. Some databases, for example, sup-
port an internal distribution mechanism, allowing for the distribution complexity
to be entirely subsumed by the database infrastructure (thereby letting the applica-
tion continue to treat a multisystem database as a single data source).

Configuring a Cache

Applications that perform a large number of read operations in relation to the num-
ber of write operations generally benefit the most from the addition of a cache.

The type of cache that would be best depends on such factors as the use of
JTA, transaction isolation-level requirements, and the use of clusters. Because of
their broad possible needs and uses, Hibernate does not implement caches, but
instead relies on a configurable third-party library.

an enterprise environment), your cache can easily become out of sync with the
database. If a legacy application updates a record stored in the cache, there is no
notification that the data is stale, and therefore the data in the cache will be
incorrect.

MULTIPLE SESSIONFACTORY OBJECTS

A JVM cache, as described here, is actually a SessionFactory-level
cache (see Chapter 9 for more information on the scope of a Session
Factory). There is normally no reason not to share a SessionFactory
instance throughout your JVM instance, but if for some reason your applica-
tion uses more than one SessionFactory, you’re effectively building a
multiple JVM system, and therefore will need to use a distributed cache.

Similarly, if you have multiple JVMs running on a single physical system,
that still counts as a distributed system.

294 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 294

295CACHING

Application Database

Single JVM

Application Cache

Single JVM

Application Cache

Single JVM

Cache

H
ib

er
na

te
H

ib
er

na
te

H
ib

er
na

te

Figure 10.11. Hibernate and a Distributed Cache

Table 10.5. Supported Cache Environments

Cache Type URL

EHCache In Process http://ehcache.sourceforge.net/
(Easy Hibernate Cache)

OSCache In Process OR http://www.opensymphony.com/oscache/
(Open Symphony) Cluster

SwarmCache Cluster http://swarmcache.sourceforge.net/

JBoss TreeCache Cluster http://jboss.org/wiki/Wiki.jsp?page=
JBossCache

Standard Caches

In addition to the open-source caches described above, you may wish to investi-
gate Tangosol Coherence, a commercial cache. For more information, see
http://hibernate.org/132.html and http://tangosol.com/.

ch10.qxd 11/3/04 8:20 AM Page 295

Table 10.6 shows the proper setting for the hibernate.cache
.provider_class property to be passed via the hibernate.proper-
ties file to enable the use of a cache.

Each cache offers different capabilities in terms of memory and disk-based
cache storage and a wide variety of possible configuration options.

Regardless of which cache you choose, you will need to tell Hibernate what
sort of cache rules should be applied to your data. This is defined using the cache
tag (as described in Chapter 5). You can place the cache tag in your *.hbm.xml
files or in the hibernate.cfg.xml file. Alternatively, you can configure
cache settings programmatically using the Configuration object. Table 10.7
shows the values allowed for the usage attribute of the cache tag.

Conceptually, you are using the options in Table 10.7 to set the per-table read-
write options for your data.

Some providers do not support every cache option. Table 10.8 shows which
options the various providers support.

JAVA TRANSACTION API (JTA)

According to Sun’s documentation, JTA “specifies standard Java inter-
faces between a transaction manager and the parties involved in a distrib-
uted transaction system: the resource manager, the application server, and
the transactional applications.” In other words, JTA provides for transactions
that span multiple application servers—a powerful capability for scaling. Cov-
ering JTA is beyond the scope of this text (see http://java.sun.com/
products/jta/), but you may wish to consult Chapter 9 for more information on
transactions.

296 CHAPTER 10 PERFORMANCE

Table 10.6. Specifying a Cache

Cache Property Value

EHCache net.sf.ehcache.hibernate.Provider (default)
(Easy Hibernate Cache)

OSCache net.sf.hibernate.cache.OSCacheProvider
(Open Symphony)

SwarmCache net.sf.hibernate.cache.Swarm
CacheProvider

JBoss TreeCache net.sf.hibernate.cache.TreeCache
Provider

Custom (User-Defined) Fully qualified class name pointing to a net.sf
.hibernate.cache.CacheProvider implementation

ch10.qxd 11/3/04 8:20 AM Page 296

Using a Custom Cache

Understanding the interaction between a cache and your application can be very
difficult. To help make it clearer, we have included below an example cache imple-
mentation that generates logging and statistics about your application’s use of the
cache (as generated by Hibernate).

Needless to say, don’t use this custom cache in a production system.

Configuring the Custom Cache
For this test application, set the property hibernate.cache
.provider_class=com.cascadetg.ch10.DebugHashtableCache
Provider in your hibernate.properties file.

297CACHING

Table 10.7. Cache Options

Option Comment

read-only Only useful if your application reads (but does not update)
data in the database. Especially useful if your cache
provider supports automatic, regular cache expiration. You
should also set mutable=false for the parent
class/collection tag (see Chapter 5).

read-write If JTA is not used, ensure that Session.close() or
Session.disconnect() is used to complete all
transactions.

nonstrict-read-write Does not verify that two transactions will not affect the
same data; this is left to the application.

If JTA is not used, ensure that Session.close() or
Session.disconnect() is used to complete all
transactions.

transactional Distributed transaction cache.

Table 10.8. Cache Options Supported by Provider

Cache read-only nonstrict-read-write read-write transactional

EHCache Yes Yes Yes

OSCache Yes Yes Yes

SwarmCache Yes Yes

JBoss TreeCache Yes Yes

ch10.qxd 11/3/04 8:20 AM Page 297

Custom Cache Provider
Listing 10.3 shows the options for our simple cache provider. Note that the statis-
tical details are tracked for the allocated caches.

Listing 10.3 Custom Cache Provider

package com.cascadetg.ch10;

import java.util.Hashtable;

public class DebugHashtableCacheProvider implements
net.sf.hibernate.cache.CacheProvider

{

private static Hashtable caches = new Hashtable();

public static Hashtable getCaches()
{

return caches;
}

public static String getCacheDetails()
{

StringBuffer newResult = new StringBuffer();
java.util.Enumeration myCaches = caches.keys();
while (myCaches.hasMoreElements())
{

String myCacheName = myCaches.nextElement()
.toString();

newResult.append(myCacheName);
newResult.append("\n");

DebugHashtableCache myCache = (DebugHashtableCache)
caches.get(myCacheName);

newResult.append(myCache.getStats());
newResult.append("\n\n");

}

return newResult.toString();
}

/** Creates a new instance of DebugHashtable */
public DebugHashtableCacheProvider()
{
}

298 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 298

Listing 10.3 Custom cache provider (continued)

public net.sf.hibernate.cache.Cache buildCache(String str,
java.util.Properties properties)

{
System.out.println("New Cache Created");
DebugHashtableCache newCache = new

DebugHashtableCache();
caches.put(str, newCache);
return newCache;

}

public long nextTimestamp()
{

return net.sf.hibernate.cache.Timestamper.next();
}

}

Custom Cache Implementation
Listing 10.4 shows the implementation of our simple cache. It’s a pretty dumb
cache—it just uses a java.util.Hashtable as the backing store. Of more
interest is the use of long values to keep track of the number of accesses to the
various cache methods. This can be useful for understanding the kind of access a
section of code is generating. For example, you may wish to consider a different
approach if your code generates a tremendous number of reads relative to writes.

Listing 10.4 Custom Cache Implementation

package com.cascadetg.ch10;

import net.sf.hibernate.cache.CacheException;
import net.sf.hibernate.cache.Timestamper;
import java.util.Hashtable;
import java.util.Map;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class DebugHashtableCache implements
net.sf.hibernate.cache.Cache

{

private static Log log = LogFactory
.getLog(DebugHashtableCache.class);

299CACHING

(continues)

ch10.qxd 11/3/04 8:20 AM Page 299

Listing 10.4 Custom Cache Implementation (continued)

private Map hashtable = new Hashtable(5000);

public void addStat(StringBuffer in, String label, long
value)
{

in.append("\t");
in.append(label);
in.append(" : ");
in.append(value);
in.append("\n");

}

public String getStats()
{

StringBuffer result = new StringBuffer();

addStat(result, "get hits", get_hits);
addStat(result, "get misses", get_misses);
addStat(result, "put replacements", put_hits);
addStat(result, "put new objects", put_misses);
addStat(result, "locks", locks);
addStat(result, "unlocks", unlocks);
addStat(result, "remove existing", remove_hits);
addStat(result, "remove unknown", remove_misses);
addStat(result, "clears", clears);
addStat(result, "destroys", destroys);

return result.toString();
}

long get_hits = 0;

long get_misses = 0;

long put_hits = 0;

long put_misses = 0;

long locks = 0;

long unlocks = 0;

long remove_hits = 0;

long remove_misses = 0;

300 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 300

Listing 10.4 Custom Cache Implementation (continued)

long clears = 0;

long destroys = 0;

public Object get(Object key) throws CacheException
{

if (hashtable.get(key) == null)
{

log.info("get " + key.toString() + " missed");
get_misses++;

} else
{

log.info("get " + key.toString() + " hit");
get_hits++;

}

return hashtable.get(key);
}

public void put(Object key, Object value)
throws CacheException

{
log.info("put " + key.toString());
if (hashtable.containsKey(key))
{

put_hits++;
} else
{

put_misses++;
}
hashtable.put(key, value);

}

public void remove(Object key) throws CacheException
{

log.info("remove " + key.toString());
if (hashtable.containsKey(key))
{

remove_hits++;
} else
{

remove_misses++;
}
hashtable.remove(key);

}

301CACHING

(continues)

ch10.qxd 11/3/04 8:20 AM Page 301

Listing 10.4 Custom Cache Implementation (continued)

public void clear() throws CacheException
{

log.info("clear ");
clears++;
hashtable.clear();

}

public void destroy() throws CacheException
{

log.info("destroy ");
destroys++;

}

public void lock(Object key) throws CacheException
{

log.info("lock " + key.toString());
locks++;

}

public void unlock(Object key) throws CacheException
{

log.info("unlock " + key.toString());
unlocks++;

}

public long nextTimestamp()
{

return Timestamper.next();
}

public int getTimeout()
{

return Timestamper.ONE_MS * 60000; //ie. 60 seconds
}

}

Cache Test Object
Listing 10.5 shows a simple mapping file used to test our object. In particular, note
the use of the cache tag to indicate the type of cache management that should be
performed.

302 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 302

Listing 10.5 Simple Performance Test Object Mapping File

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 2.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-

2.0.dtd">

<hibernate-mapping>
<class name="com.cascadetg.ch10.PerfObject"

dynamic-update="false" dynamic-insert="false">
<cache usage="read-write" />

<id name="id" column="id" type="long" >
<generator class="native" />

</id>

<property name="value" type="java.lang.String"
update="true" insert="true" column="comments" />

</class>
</hibernate-mapping>

Listing 10.6 shows the source generated from the mapping file shown in List-
ing 10.5.

Listing 10.6 Simple Performance Test Object Java Source

package com.cascadetg.ch10;

import java.io.Serializable;
import org.apache.commons.lang.builder.EqualsBuilder;
import org.apache.commons.lang.builder.HashCodeBuilder;
import org.apache.commons.lang.builder.ToStringBuilder;

/** @author Hibernate CodeGenerator */
public class PerfObject implements Serializable {

/** identifier field */
private Long id;

/** nullable persistent field */
private String value;

/** full constructor */

303CACHING

(continues)

ch10.qxd 11/3/04 8:20 AM Page 303

Listing 10.6 Simple Performance Test Object Java Source (continued)

public PerfObject(String value) {
this.value = value;

}

/** default constructor */
public PerfObject() {
}

public Long getId() {
return this.id;

}

public void setId(Long id) {
this.id = id;

}

public String getValue() {
return this.value;

}

public void setValue(String value) {
this.value = value;

}

public String toString() {
return new ToStringBuilder(this)

.append("id", getId())

.toString();
}

public boolean equals(Object other) {
if (!(other instanceof PerfObject)) return false;
PerfObject castOther = (PerfObject) other;
return new EqualsBuilder()

.append(this.getId(), castOther.getId())

.isEquals();
}

public int hashCode() {
return new HashCodeBuilder()

.append(getId())

.toHashCode();
}

}

304 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 304

Testing the Cache
Listing 10.7 shows a simple program that tests the cache. If you wish to test this
using a larger number of objects, simply change objects = 5 to a higher value.

Listing 10.7 Testing Cache Hits

package com.cascadetg.ch10;

/** Various Hibernate-related imports */
import java.io.FileInputStream;
import java.util.logging.LogManager;

import net.sf.hibernate.*;
import net.sf.hibernate.cfg.*;
import net.sf.hibernate.tool.hbm2ddl.SchemaUpdate;
import net.sf.hibernate.tool.hbm2ddl.SchemaExport;

public class CacheTest
{

static long objects = 5;

/** We use this session factory to create our sessions */
public static SessionFactory sessionFactory;

/**
* Loads the Hibernate configuration information, sets up
* the database and the Hibernate session factory.
*/
public static void initialization()
{

System.out.println("initialization");
try
{

Configuration myConfiguration = new
Configuration();

myConfiguration.addClass(PerfObject.class);

new SchemaExport(myConfiguration).drop(true, true);

// This is the code that updates the database to
// the current schema.

305CACHING

(continues)

ch10.qxd 11/3/04 8:20 AM Page 305

Listing 10.7 Testing Cache Hits (continued)

new SchemaUpdate(myConfiguration)
.execute(true, true);

// Sets up the session factory (used in the rest
// of the application).
sessionFactory = myConfiguration

.buildSessionFactory();

} catch (Exception e)
{

e.printStackTrace();
}

}

public static void createObjects()
{

System.out.println();
System.out.println("createObjects");

Session hibernateSession = null;
Transaction myTransaction = null;
try
{

hibernateSession = sessionFactory.openSession();

for (int i = 0; i < objects; i++)
{

myTransaction = hibernateSession
.beginTransaction();

PerfObject myPerfObject = new PerfObject();
myPerfObject.setValue("");

hibernateSession.save(myPerfObject);
hibernateSession.flush();

myTransaction.commit();
}

} catch (Exception e)
{

e.printStackTrace();
try
{

myTransaction.rollback();
} catch (Exception e2)
{

// Silent failure of transaction rollback

306 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 306

Listing 10.7 Testing Cache Hits (continued)

}
} finally
{

try
{

hibernateSession.close();
} catch (Exception e2)
{

// Silent failure of session close
}

}

// Explicitly evict the local session cache
hibernateSession.clear();

}

public static void loadAllObjects()
{

System.out.println();
System.out.println("loadAllObjects");

Session hibernateSession = null;
Transaction myTransaction = null;

try
{

hibernateSession = sessionFactory.openSession();
myTransaction =

hibernateSession.beginTransaction();

// In this example, we use the Criteria API. We
// could also have used the HQL, but the
// Criteria API allows us to express this
// query more easily.

// First indicate that we want to grab all of
// the artifacts.
Criteria query = hibernateSession

.createCriteria(PerfObject.class);

// This actually performs the database request,
// based on the query we’ve built.

307CACHING

(continues)

ch10.qxd 11/3/04 8:20 AM Page 307

Listing 10.7 Testing Cache Hits (continued)

java.util.Iterator results = query.list().iterator();

PerfObject myPerfObject;

// Because we are grabbing all of the artifacts and
// artifact owners, we need to store the returned
// artifacts.

java.util.LinkedList retrievedArtifacts = new
java.util.LinkedList();

while (results.hasNext())
{

// Note that the result set is cast to the
// Animal object directly - no manual
// binding required.
myPerfObject = (PerfObject) results.next();
if (!retrievedArtifacts.contains(myPerfObject))

retrievedArtifacts.add(myPerfObject);

}

myTransaction.commit();
hibernateSession.clear();

} catch (Exception e)
{

e.printStackTrace();
try
{

myTransaction.rollback();
} catch (Exception e2)
{

// Silent failure of transaction rollback
}

} finally
{

try
{

if (hibernateSession != null)
hibernateSession.close();

} catch (Exception e)
{

// Silent failure of session close
}

}

308 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 308

Listing 10.7 Testing Cache Hits (continued)

}
public static void main(String[] args)
{

initialization();
createObjects();

long timing = System.currentTimeMillis();
loadAllObjects();
System.out.println("Timing #1 : "

+ (System.currentTimeMillis() - timing));

timing = System.currentTimeMillis();
loadAllObjects();
System.out.println("Timing #2 : "

+ (System.currentTimeMillis() - timing));

timing = System.currentTimeMillis();
loadAllObjects();
System.out.println("Timing #3 : "

+ (System.currentTimeMillis() - timing));

timing = System.currentTimeMillis();
loadAllObjects();
System.out.println("Timing #4 : "

+ (System.currentTimeMillis() - timing));

timing = System.currentTimeMillis();
loadAllObjects();
System.out.println("Timing #5 : "

+ (System.currentTimeMillis() - timing));

System.out.println(DebugHashtableCacheProvider
.getCacheDetails());

}
}

As can be seen from the output of the program shown in Listing 10.7, our sim-
ple application was able to cache the results from the first loadAllObjects()
method, leading to lower timing values for the remaining access. This is reflected
in the statistics for the cache, shown in terms of gets, puts, and so on.

309CACHING

ch10.qxd 11/3/04 8:20 AM Page 309

Listing 10.8 Testing Cache Hits

initialization
New Cache Created

createObjects

loadAllObjects
Timing #1 : 40

loadAllObjects
Timing #2 : 10

loadAllObjects
Timing #3 : 0

loadAllObjects
Timing #4 : 10

loadAllObjects
Timing #5 : 0
com.cascadetg.ch10.PerfObject

get hits : 20
get misses : 5
put replacements : 0
put new objects : 5
locks : 25
unlocks : 25
remove existing : 0
remove unknown : 0
clears : 0
destroys : 0

310 CHAPTER 10 PERFORMANCE

ch10.qxd 11/3/04 8:20 AM Page 310

