
5
The last chapter provided an overview of volume analysis and why it’s important. Now
we’re going to leave the abstract discussion of volumes and dive into the details of the
partition systems used in personal computers. In this chapter, we will look at DOS parti-
tions, Apple partitions, and removable media. For each system, we review how it works
and look at its data structure. If you are not interested in the data structure details, you
can skip those sections. This chapter also covers special considerations that should be
made when analyzing these systems. The next chapter will examine server-based
partitioning systems.

DOS PARTITIONS

The most commonly encountered partition system is the DOS-style partition. DOS
partitions have been used with Intel IA32 hardware (i.e., i386 / x86) for many years,
yet there is no official specification. There are many Microsoft and non-Microsoft
documents that discuss the partitions, but there is no standard reference.

In addition to there being no standard reference, there is also no standard name.
Microsoft now calls disks using this type of partition system Master Boot Record (MBR)
disks. This is in comparison to a GUID Partition Table (GPT) disk that is used with the
Extensible Firmware Interface (EFI) and the 64-bit Intel Itanium-based systems (IA64),
which are discussed in the next chapter[Microsoft 2004a]. Starting with Windows 2000,
Microsoft also differentiates between basic and dynamic disks. A basic disk refers to

81

PC-based Partitions

Carrier_05.qxd 2/22/05 3:07 PM Page 81

either an MBR or a GPT disk, and the partitions in the disk are independent and stand-
alone. Dynamic disks, which are discussed in Chapter 7, “Multiple Disk Volumes,” also
can be either MBR or GPT disks, and the partitions can be combined and merged to
form a single, large partition. Basic disks have traditionally been associated with DOS
partitions, probably because GPT disks are not yet as common. Therefore, using the cur-
rent terminology, this chapter covers basic MBR disks. However, we will use the simple
term DOS partitions for this book.

DOS partitions are used with Microsoft DOS, Microsoft Windows, Linux, and IA32-
based FreeBSD and OpenBSD systems. DOS partitions are the most common but also
the most complex partitioning system. They were originally designed in the 1980s for
small systems and have been improved (i.e., hacked) to handle large modern systems.
In fact, there are two different partitioning methods that are used in this system. This
section will give an overview of the partitioning system, show the data structures in the
system, show what tools can list the layout, and discuss investigation considerations.

GENERAL OVERVIEW

In this section, we will examine the DOS partition concepts and boot code location. The
data structures are discussed in the following section.

Basic MBR Concepts

A disk that is organized using DOS partitions has an MBR in the first 512-byte sector.
The MBR contains boot code, a partition table, and a signature value. The boot code
contains the instructions that tell the computer how to process the partition table and
locate the operating system. The partition table has four entries, each of which can
describe a DOS partition. Each entry has the following fields:

• Starting CHS address

• Ending CHS address

• Starting LBA address

• Number of sectors in partition

• Type of partition

• Flags

Each table entry describes the layout of a partition in both CHS and LBA addresses.
Recall that the CHS addresses only work for disks less than 8 GB in size, but the LBA
addresses allow disks to be terabytes (TB) in size.

CHAPTER 5 PC-BASED PARTITIONS

82

Carrier_05.qxd 2/22/05 3:07 PM Page 82

The type field in the partition identifies what type of data should exist in the parti-
tion. Common examples include FAT, NTFS, and FreeBSD. The next section has a more
comprehensive list of partition types. The type value is used differently by different
OSes. Linux, for example, does not care about it. You can put a FAT file system inside of a
partition that has a type of NTFS, and it will mount it as FAT. Microsoft Windows, on
the other hand, relies on it. Windows will not try to mount a file system in a partition if
it does not support the partition type. Therefore, if a disk has a FAT file system inside a
partition with a Linux file system type, the user will not see the FAT file system from
within Windows. This behavior can be used to hide partitions from Windows. For exam-
ple, some tools will add a bit to a partition type that Windows supports so that it will not
be shown when Windows boots again.

Each entry also contains a flag field that identifies which partition is the “bootable”
one. This is used to identify where the operating system is located when the computer is
booting. Using the four entries in the MBR, we can describe a simple disk layout with up
to four partitions. Figure 5.1 shows such a simple disk with two partitions and the MBR
in the first sector.

DOS PARTITIONS

83

Partition #1 Partition #2

Figure 5.1 A basic DOS disk with two partitions and the MBR.

Extended Partition Concepts

The MBR is a simple method of describing up to four partitions. However, many systems
require more partitions than that. For example, consider a 12GB disk that the user wants
to divide into six 2GB partitions because he is using multiple operating systems. We can-
not describe the six partitions by using the four partition table entries.

The solution to this design problem is what makes DOS partitions so complex. The
basic theory behind the solution is to use one, two, or three of the entries in the MBR for
normal partitions and then create an “extended partition” that will fill up the remainder
of the disk. Before we move on, some definitions may be helpful. A primary file system
partition is a partition whose entry is in the MBR and the partition contains a file system
or other structured data. A primary extended partition is a partition whose entry is in the

Carrier_05.qxd 2/22/05 3:07 PM Page 83

MBR, and the partition contains additional partitions. We can see this in Figure 5.2,
which has three primary file system partitions and one primary extended partition.

CHAPTER 5 PC-BASED PARTITIONS

84

Primary
File System

#1

Primary
File System

#2

Primary
File System

#3

Primary
Extended Partition

Figure 5.2 A DOS disk with three primary file system partitions and one primary secondary partition.

To consider what goes inside a primary extended partition, you should basically forget
about everything we have discussed so far. In the MBR, we saw a central partition table
that described several partitions. Here we see a linked list of partitions. The basic theory
is that we are going to precede every file system partition with data that describe how big
the file system partition is and where we can find the next partition. All these partitions
should be located inside of the primary extended partition, which is why it must be as
large as possible.

A secondary file system partition, also called a logical partition in Windows, is located
inside the primary extended partition bounds and contains a file system or other struc-
tured data. Secondary file system partitions are equivalent to the partitions that are
described in the MBR except that they are in an extended partition. A secondary extended
partition is a partition that contains a partition table and a secondary file system parti-
tion. The secondary extended partitions wrap around the secondary file system parti-
tions and describe where the secondary file system partition is located and where the
next secondary extended partition is located.

Figure 5.3 shows an example of how secondary partitions work. Secondary Extended
#1 contains a partition table that points to Secondary File System #1 and Secondary
Extended #2. Secondary Extended #2 contains a partition table that points to Secondary
File System #2. It also could point to another secondary extended partition, and this
process could repeat until we are out of disk space.

Carrier_05.qxd 2/22/05 3:07 PM Page 84

Figure 5.3 The basic theory and layout behind the secondary extended and file system partitions.

Putting the Concepts Together

Now let’s put these two partitioning methods together. If we need one to four partitions,
we can create them using only the MBR, and we do not need to worry about extended
partitions. If we want more than four partitions, we must create up to three primary file
system partitions in the MBR and then allocate the rest of the disk to a primary
extended partition.

Inside the primary extended partition, we use the linked-list partitioning method. We
can optimize the linked-list design that I described in the last section by not making the
initial secondary extended partition. Instead, put a partition table at the beginning of the
primary extended partition. It can describe one secondary file system and one secondary
extended partition.

Consider an example. We have a 12GB disk and we want to break it up into six 2GB
partitions. We create the first three 2GB partitions using the first three entries in the
MBR, and the remaining 6GB is allocated to a primary extended partition, which spans
from 6GB to 12GB.

We need to allocate three more partitions using the linked-list method. We use the
partition table in the first sector of the primary extended partition, make a secondary file
system partition that spans from 6GB to 8GB, and make a secondary extended partition
that spans from 8GB to 10GB. A partition table is inside the secondary extended parti-
tion, and it has entries for a secondary file system partition that spans from 8GB to 10GB
and an entry for another secondary extended partition that spans from 10GB to 12GB.

DOS PARTITIONS

85

Secondary
File System

#1

Secondary
Extended

#2

Secondary
File System

#2

Secondary
Extended

#1

Carrier_05.qxd 2/22/05 3:07 PM Page 85

A partition table is inside the last secondary extended partition, and it has an entry
for the final file system partition, which spans from 10GB to 12GB. We see this in
Figure 5.4.

CHAPTER 5 PC-BASED PARTITIONS

86

Primary
File System

#1

Primary
File System

#2

Primary
File System

#3

Primary
Extended Partition

Secondary
File System

#1

Secondary
Extended

#1

Secondary
File System

#2

Secondary
File System

#3

Secondary
Extended

#2

2GB 4GB 6GB 8GB 10GB 12GB

Figure 5.4 The layout required for a disk with six file system partitions.

As I have described it and as most documents claim, an extended partition table
should have, at most, one entry for a secondary file system partition and one entry for a
secondary extended partition. In practice, most operating systems will not generate an
error if more than two entries are being used. In fact, in July 2003, I released a 160 MB
disk image [Carrier 2003] with six 25 MB DOS partitions to the CFTT Yahoo! Groups
list (http://groups.yahoo.com/group/cftt/). The image had a primary extended parti-
tion table with two secondary file system partition entries and one secondary extended
partition entry. Some forensic tools properly handled the third partition entry, while

Carrier_05.qxd 2/22/05 3:07 PM Page 86

others ignored it or claimed that the 25 MB partition was a 1 TB partition. This
example shows how something as common as DOS partitions can cause problems
with analysis tools.

Extended partitions have special types that are used in their partition table entries. To
make this confusing partition scheme even more confusing, there is more than one type
of extended partition, and they do not differentiate between primary and secondary
extended partitions. The common types of extended partitions are “DOS Extended,”
“Windows 95 Extended,” and “Linux Extended.”

Boot Code

The boot code in a DOS disk exists in the first 446 bytes of the first 512-byte sector,
which is the MBR. The end of the sector contains the partition table. The standard
Microsoft boot code processes the partition table in the MBR and identifies which parti-
tion has the bootable flag set. When it finds such a partition, it looks in the first sector of
the partition and executes the code found there. The code in the start of the partition
will be operating system-specific. Boot sector viruses insert themselves into the first 446
bytes of the MBR so that they are executed every time the computer is booted.

It is becoming much more common to have multiple operating systems on a com-
puter. There are two ways to handle this. Windows handles this by having code in the
bootable partition that allows a user to select which OS to load. In other words, the boot
code in the MBR executes first and loads the Windows bootable code. The Windows
bootable code allows a user to choose a different partition from which to boot.

The other method is to change the code in the MBR. The new MBR code presents the
user with a list of options, and the user chooses which partition to boot from. This typi-
cally requires more code and uses some of the unused sectors that exist before the first
partition starts.

Summary

The DOS partition system is complex because each partition table has only four entries
in it. Other partition systems discussed later in this chapter and the next have larger par-
tition tables and are, therefore, less complex. The following high-level steps are necessary
to list the layout information of a disk with DOS partitions:

1. The Master Boot Record is read from the first sector of the disk, and the four parti-
tion table entries are identified and processed.

2. When an entry for an extended partition is processed, the first sector of the extended
partition is read and its partition table entries are processed in the same manner as
the MBR.

DOS PARTITIONS

87

Carrier_05.qxd 2/22/05 3:07 PM Page 87

3. When an entry for a non-extended partition is processed, its starting sector and size
are displayed. The ending sector address can be determined by adding the starting
sector address and the size together and subtracting one.

DATA STRUCTURES

The previous section reviewed the DOS partition system. This section provides a
detailed discussion of the structures that make the system work. If you are not interested
in data structures, you can skip this; however, there is an interesting example of extended
partitions. This section is organized into three subsections describing the MBR, extended
partitions, and show tool output from an example image.

MBR Data Structure

DOS Partition tables exist in the MBR and in the first sector of each extended partition.
Conveniently, they all use the same 512-byte structure. The first 446 bytes are reserved
for assembly boot code. Code needs to exist in the MBR because it is used when the
computer is started, but the extended partitions do not need it and could contain hidden
data. The MBR layout in tabular form can be found in Table 5.1.

Table 5.1 Data structures for the DOS partition table.

Byte Range Description Essential

0–445 Boot Code No

446–461 Partition Table Entry #1 (see Table 5.2) Yes

462–477 Partition Table Entry #2 (see Table 5.2) Yes

478–493 Partition Table Entry #3 (see Table 5.2) Yes

494–509 Partition Table Entry #4 (see Table 5.2) Yes

510–511 Signature value (0xAA55) No

The partition table has four 16-byte entries. The entries’ structures are given in Table
5.2. Note that the CHS addresses are essential for older systems that rely on them, but are
not essential on newer systems.

CHAPTER 5 PC-BASED PARTITIONS

88

Carrier_05.qxd 2/22/05 3:07 PM Page 88

Table 5.2 Data structure for DOS partition entries.

Byte Range Description Essential

0–0 Bootable Flag No

1–3 Starting CHS Address Yes

4–4 Partition Type (see Table 5.3) No

5–7 Ending CHS Address Yes

8–11 Starting LBA Address Yes

12–15 Size in Sectors Yes

The bootable flag is not always necessary. The standard boot code for a system with
only one OS looks for an entry whose flag is set to 0x80. For example, if a system has
Microsoft Windows on it and the disk is partitioned into two partitions, the partition
with the operating system on it (C:\windows, for example) will have the bootable flag set.
On the other hand, if the boot code prompts the user to choose which partition to boot
from, the bootable flag is not necessary. Although, some boot programs will set the
bootable flag after the user chooses to boot that partition.

The starting and ending CHS addresses have an 8-bit head value, a 6-bit sector value,
and a 10-bit cylinder value. In theory, either the CHS addresses or the LBA addresses
need to be set for each partition, but not both. It is up to the OS and the code that is
used to boot the system to determine which values need to be set. For example, Windows
98 and ME use the CHS addresses for partitions in the first 7.8GB of the disk, but
Windows 2000 and beyond always ignore the CHS addresses [Microsoft 2003]. Some
partitioning tools set both when possible for backward compatibility. The usage of these
fields is application-dependent.

The partition type field identifies the file system type that should be in the partition. A
list of common partition types is given in Table 5.3. A more detailed list of partition types
can be found in Partition types [Brouwer 2004].

Table 5.3 Some of the type values for DOS partitions.

Type Description

0x00 Empty

0x01 FAT12, CHS

0x04 FAT16, 16–32 MB, CHS

DOS PARTITIONS

89

continues

Carrier_05.qxd 2/22/05 3:07 PM Page 89

Table 5.3 Some of the type values for DOS partitions (continued).

Type Description

0x05 Microsoft Extended, CHS

0x06 FAT16, 32 MB–2GB, CHS

0x07 NTFS

0x0b FAT32, CHS

0x0c FAT32, LBA

0x0e FAT16, 32 MB–2GB, LBA

0x0f Microsoft Extended, LBA

0x11 Hidden FAT12, CHS

0x14 Hidden FAT16, 16–32 MB, CHS

0x16 Hidden FAT16, 32 MB–2GB, CHS

0x1b Hidden FAT32, CHS

0x1c Hidden FAT32, LBA

0x1e Hidden FAT16, 32 MB–2GB, LBA

0x42 Microsoft MBR. Dynamic Disk

0x82 Solaris x86

0x82 Linux Swap

0x83 Linux

0x84 Hibernation

0x85 Linux Extended

0x86 NTFS Volume Set

0x87 NTFS Volume Set

0xa0 Hibernation

0xa1 Hibernation

0xa5 FreeBSD

0xa6 OpenBSD

CHAPTER 5 PC-BASED PARTITIONS

90

Carrier_05.qxd 2/22/05 3:07 PM Page 90

Type Description

0xa8 Mac OSX

0xa9 NetBSD

0xab Mac OSX Boot

0xb7 BSDI

0xb8 BSDI swap

0xee EFI GPT Disk

0xef EFI System Partition

0xfb Vmware File System

0xfc Vmware swap

Notice how many partition types exist for Microsoft file systems in the 0x01 to 0x0f
range. The reason is that Microsoft operating systems use the partition type to determine
how to read and write data from the partition. Recall from Chapter 2, “Computer
Foundations,” that Windows can use either INT 13h or the extended INT 13h BIOS
routines. The extended INT 13h routines are needed for accessing disks larger than
8.1GB and use LBA addressing instead of CHS. Therefore, the FAT16 0x04 and 0x0E
types are the same except that the OS should use the extended routines for the latter
type. Similarly, 0x0B and 0x0C types are the normal and extended versions of FAT32
and 0x05, and 0x0F types are the normal and extended for extended partitions
[Microsoft 2004b]. The “hidden” versions of these partition types have a 1 instead of
a 0 in the upper nibble, and various tools create them.

To illustrate the MBR and the partition tables, we will extract the sectors from an
actual system and parse the structures by hand. The system is a dual boot Microsoft
Windows and Linux system, and it has eight file system partitions.

The first example is from the first sector of the disk. This output is from the xxd tool
in Linux, but similar data can be found using a hex editor in Windows or UNIX. The
following command was used in Linux:

dd if=disk3.dd bs=512 skip=0 count=1 | xxd

The left column is the byte offset in decimal, the middle eight columns are the data in
hexadecimal format, and the final column is the data translated into ASCII. The data are
from an IA32-based system, which is little-endian and stores numbers with the least

DOS PARTITIONS

91

Carrier_05.qxd 2/22/05 3:07 PM Page 91

significant byte at the lowest address. Therefore, the order of the bytes in the middle
columns may need to be reversed. The MBR of the disk is as follows:

dd if=disk3.dd bs=512 skip=0 count=1 | xxd
0000000: eb48 9010 8ed0 bc00 b0b8 0000 8ed8 8ec0 .H..............
[REMOVED]
0000384: 0048 6172 6420 4469 736b 0052 6561 6400 .Hard Disk.Read.
0000400: 2045 7272 6f72 00bb 0100 b40e cd10 ac3c Error.........<
0000416: 0075 f4c3 0000 0000 0000 0000 0000 0000 .u..............
0000432: 0000 0000 0000 0000 0000 0000 0000 0001
0000448: 0100 07fe 3f7f 3f00 0000 4160 1f00 8000?.?...A`....
0000464: 0180 83fe 3f8c 8060 1f00 cd2f 0300 0000 ?..`.../....
0000480: 018d 83fe 3fcc 4d90 2200 40b0 0f00 0000 ?.M.”.@.....
0000496: 01cd 05fe ffff 8d40 3200 79eb 9604 55aa @2.y...U.

The first 446 bytes contain boot code. The 0xAA55 signature value can be seen in
the last two bytes of the sector (although they are reversed in the output because of the
endian ordering). The partition table is in bold and starts with the 0x0001 at offset 446.
Each line in the output has 16 bytes, and each table entry is 16 bytes. Therefore, the sec-
ond entry begins one line below the first entry with 0x8000. Using the structure previ-
ously outlined, the four partition table entries are shown in Table 5.4. The values are
shown in hexadecimal format with the decimal value in parenthesis of important values.

Table 5.4 The contents of the primary partition table in the example disk image.

Flag Type Starting Sector Size

1 0x00 0x07 0x0000003f (63) 0x001f6041 (2,056,257)

2 0x80 0x83 0x001f6080 (2,056,320) 0x00032fcd (208,845)

3 0x00 0x83 0x0022904d (2,265,165) 0x000fb040 (1,028,160)

4 0x00 0x05 0x0032408d (3,293,325) 0x0496eb79 (76,999,545)

Using Table 5.4 and the partition type field in Table 5.3, we can guess what type of
data are in each partition. The first partition should be for an NTFS file system (type
0x07), the second and third partitions should be for Linux file systems (0x83), and the
fourth partition is an extended partition (0x05). The second entry is set to be bootable.
The extended partition should have been expected because it was previously mentioned
that there would be a total of eight partitions. The disk layout from this partition table is
shown in Figure 5.5.

CHAPTER 5 PC-BASED PARTITIONS

92

Carrier_05.qxd 2/22/05 3:07 PM Page 92

DOS PARTITIONS

93

NTFS Linux Linux Primary Extended

0 2,
05

6,
32

0

2,
26

5,
16

5

3,
29

3,
32

5

80
,2

92
,8

69

Figure 5.5 Disk layout after processing the first partition table in example (not to scale).

Extended Partition Data Structures

Recall that the extended partitions use the same structure in the first sector as the MBR
does, but they use it to make a linked list. The partition table entries are slightly different,
though, because the starting sector addresses are relative to other places on the disk
besides the beginning of the disk. Furthermore, the starting sector of a secondary file
system partition is relative to a different place than the starting sector of a secondary
extended partition.

The starting address for a secondary file system entry is relative to the current parti-
tion table. This is intuitive because the secondary extended partitions work as wrappers
around the file system partitions; therefore, they have the starting address relative to
themselves. On the other hand, the starting address for a secondary extended partition
entry is relative to the primary extended partition.

Let’s step through the example shown in Figure 5.6. It has a primary extended parti-
tion that starts in sector 1,000 with a length of 11,000 sectors. Its partition table has two
entries. The first is for a FAT file system with a starting sector of 63, which is added to
the sector of the current partition table to get 1,063. The second entry is for an extended
partition and its starting sector is 4,000. That is added to the start of the primary
extended partition, which is sector 1,000, and we get sector 5,000.

Now let’s jump ahead to that secondary extended partition (in sector 5,000). The first
partition table entry is for an NTFS file system, and its starting value is 63, which is
added to the address of the current partition table and to get sector 5,063. The second
entry is for an extended partition, and its starting value is 6,500, which is added to the
sector of the primary extended partition and to get sector 7,500.

Carrier_05.qxd 2/22/05 3:07 PM Page 93

Figure 5.6 Disk with three secondary extended partitions. Note that the starting location of the
secondary extended partitions is relative to the start of the primary extended partition,
sector 1000.

We’ll do one more round to make sure it is clear. The next extended partition starts
in sector 7,500. The first entry is for an EXT3FS file system with a starting value of 63,
which is added to 7,500 to get sector 7,563. The second entry is for a secondary extended
partition, and its starting value is 9,000, which is added to 1,000 to get sector 10,000.

CHAPTER 5 PC-BASED PARTITIONS

94

FAT NTFS EXT3FS FAT

63 3,937 FAT

4,000 2,500 Extend

1

2

Start Length Type

63 2,437 NTFS

6,500 2,500 Extend

1

2

Start Length Type

63 2,437 EXT3FS

9,000 2,000 Extend

1

2

Start Length Type

63 1,937 FAT

0 0

1

2

Start Length Type

FAT
Secondary
Extended

NTFS
Secondary
Extended

Primary Extended

EXT3FS
Secondary
Extended

FAT

1,
06

3

7,
50

0

7,
56

3

10
,0

00

10
,0

63

12
,0

00

Primary File System
Partitions

1,
00

0

5,
00

0

5,
06

3

Carrier_05.qxd 2/22/05 3:07 PM Page 94

Return to the actual system that we parsed by hand. The following are the contents of
the first sector of the primary extended partition, which is located in sector 3,293,325:

dd if=disk3.dd bs=512 skip=3293325 count=1 | xxd
[REMOVED]
0000432: 0000 0000 0000 0000 0000 0000 0000 0001
0000448: 01cd 83fe 7fcb 3f00 0000 0082 3e00 0000?.....>...
0000464: 41cc 05fe bf0b 3f82 3e00 40b0 0f00 0000 A.....?.>.@.....
0000480: 0000 0000 0000 0000 0000 0000 0000 0000
0000496: 0000 0000 0000 0000 0000 0000 0000 55aa U.

The four partition table entries are highlighted, and we see that the final two entries
are empty. The first two partition table entries are parsed into the contents of Table 5.5
(the partition numbering is continued from Table 5.4):

Table 5.5 The contents of the primary extended partition table in the example disk image.

Flag Type Starting Sector Size

5 0x00 0x83 0x0000003f (63) 0x003e8200 (4,096,572)

6 0x00 0x05 0x003e823f (4,096,575) 0x000fb040 (1,028,160)

Entry #5 has a type for a Linux file system (0x83), so it is a secondary file system parti-
tion, and its starting sector is relative to the start of the current extended partition (sec-
tor 3,293,325).

3,293,325 + 63 = 3,293,388

Entry #6 has a type for a DOS Extended partition, so its starting sector is relative to
the start of the primary extended partition, which is the current partition.

3,293,325 + 4,096,575 = 7,389,900

The disk layout, as we know it, can be found in Figure 5.7. Before we continue, note
the sizes of the two partitions. In the MBR, the primary extended partition had a size
of 76,999,545 sectors. In this table, the size of the next secondary extended partition is
only 1,028,160 sectors. Recall that the primary extended partition has a size of all the
secondary file systems and secondary extended partitions, but the secondary extended

DOS PARTITIONS

95

Carrier_05.qxd 2/22/05 3:07 PM Page 95

partitions have a size that is equal to the size of only the next secondary file system parti-
tion plus the size needed for a partition table.

CHAPTER 5 PC-BASED PARTITIONS

96

NTFS Linux Linux Primary Extended

0 2,
05

6,
32

0

2,
26

5,
16

5

3,
29

3,
32

5

80
,2

92
,8

69

Linux Ext

7,
38

9,
90

0

8,
41

8,
06

0

Figure 5.7 Disk layout after processing the second partition table (not to scale).

We can continue the example by examining the next secondary extended partition,
which is located in sector 7,389,900. Its contents are shown in Table 5.6.

Table 5.6 The contents of the first secondary extended partition table in the example disk image.

Flag Type Starting Sector Size

7 0x00 0x82 0x0000003f (63) 0x000fb001 (1,028,097)

8 0x00 0x05 0x004e327f (5,124,735) 0x000fb040 (1,028,160)

Entry #7 is for a Linux swap partition, so it is a secondary file system, and its starting
sector address is relative to the current extended partition, which is sector 7,389,900.

7,389,900 + 63 = 7,389,963

Carrier_05.qxd 2/22/05 3:07 PM Page 96

Entry #8 is for a DOS Extended file system, so its starting sector address is relative to
the primary extended partition, which is sector 3,293,325.

3,293,325 + 5,124,735 = 8,418,060

The disk layout with the information from this partition table can be found in Figure
5.8. The full contents of the example partition table are given in the next section when
we look at tools that print the partition table contents.

DOS PARTITIONS

97

NTFS Linux Linux Primary Extended

0 2,
05

6,
32

0

2,
26

5,
16

5

3,
29

3,
32

5

80
,2

92
,8

69

Linux Ext

7,
38

9,
90

0

8,
41

8,
06

0

Swap Ext

9,
44

6,
22

0

Figure 5.8 Disk layout after processing the third partition table (not to scale).

Example Image Tool Output

Now that the internal structure of the partition system is known, we will show how some
of the analysis tools process them. For those who actually enjoy parsing the structure by
hand and never use a tool, you can skip this section. Two Linux tools will be shown here.
Other Windows tools, such as full forensic analysis tools and hex editors, also perform
this function.

Carrier_05.qxd 2/22/05 3:07 PM Page 97

The fdisk command comes with Linux and is different from the tool with the same
name that comes with Windows. fdisk can be run on a Linux device or a disk image file
generated by dd. The -l flag forces it to list the partitions instead of going into interactive
mode where the partitions could also be edited. The -u flag forces the output to be in
sectors instead of cylinders. The output of the DOS Partitioned disk that we parsed by
hand is as follows:

fdisk –lu disk3.dd
Disk disk3.dd: 255 heads, 63 sectors, 0 cylinders
Units = sectors of 1 * 512 bytes

Device Boot Start End Blocks Id System
disk3.dd1 63 2056319 1028128+ 7 HPFS/NTFS
disk3.dd2 * 2056320 2265164 104422+ 83 Linux
disk3.dd3 2265165 3293324 514080 83 Linux
disk3.dd4 3293325 80292869 38499772+ 5 Extended
disk3.dd5 3293388 7389899 2048256 83 Linux
disk3.dd6 7389963 8418059 514048+ 82 Linux swap
disk3.dd7 8418123 9446219 514048+ 83 Linux
disk3.dd8 9446283 17639369 4096543+ 7 HPFS/NTFS
disk3.dd9 17639433 48371714 15366141 83 Linux

We can observe several things from this output. The output lists only the primary
extended partition (disk3.dd4). The secondary extended partition in which the Linux
swap partition is located is not displayed. This is acceptable for most circumstances
because only the primary and secondary file system partitions are needed for an
investigation, but it should be noted that you are not seeing all partition table entries.

The mmls tool in The Sleuth Kit provides slightly different information. Sectors that
are unused by a partition are marked as such, the location of the partition tables is
marked, and the extended partition locations are noted. Using the same disk as we used
for the first fdisk example, the following is seen:

mmls –t dos disk3.dd
Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 0000000000 0000000000 0000000001 Table #0
01: ----- 0000000001 0000000062 0000000062 Unallocated
02: 00:00 0000000063 0002056319 0002056257 NTFS (0x07)
03: 00:01 0002056320 0002265164 0000208845 Linux (0x83)
04: 00:02 0002265165 0003293324 0001028160 Linux (0x83)
05: 00:03 0003293325 0080292869 0076999545 DOS Extended (0x05)
06: ----- 0003293325 0003293325 0000000001 Table #1

CHAPTER 5 PC-BASED PARTITIONS

98

Carrier_05.qxd 2/22/05 3:07 PM Page 98

07: ----- 0003293326 0003293387 0000000062 Unallocated
08: 01:00 0003293388 0007389899 0004096512 Linux (0x83)
09: 01:01 0007389900 0008418059 0001028160 DOS Extended (0x05)
10: ----- 0007389900 0007389900 0000000001 Table #2
11: ----- 0007389901 0007389962 0000000062 Unallocated
12: 02:00 0007389963 0008418059 0001028097 Linux Swap (0x82)
13: 02:01 0008418060 0009446219 0001028160 DOS Extended (0x05)
14: ----- 0008418060 0008418060 0000000001 Table #3
15: ----- 0008418061 0008418122 0000000062 Unallocated
16: 03:00 0008418123 0009446219 0001028097 Linux (0x83)
17: 03:01 0009446220 0017639369 0008193150 DOS Extended (0x05)
18: ----- 0009446220 0009446220 0000000001 Table #4
19: ----- 0009446221 0009446282 0000000062 Unallocated
20: 04:00 0009446283 0017639369 0008193087 NTFS (0x07)
21: 04:01 0017639370 0048371714 0030732345 DOS Extended (0x05)
22: ----- 0017639370 0017639370 0000000001 Table #5
23: ----- 0017639371 0017639432 0000000062 Unallocated
24: 05:00 0017639433 0048371714 0030732282 Linux (0x83)

The ‘Unallocated’ entries are for the space in between partitions and for the space
between the end of the partition table and the beginning of the first partition. The
output of mmls gives both the ending address and the size, so it can be easily used to
extract the partitions with dd.

The output of mmls is sorted by the starting sector of the partition, so the first column
is only a counter for each entry and has no correlation to the partition table entry. The
second column shows what partition table the partition was found in and which entry in
the table. The first number shows which table, 0 being the primary table and 1 being the
primary extended table, and the second number shows which entry in the table. The
sorted output helps to identify sectors that are not partitioned. For example, consider
this image:

mmls –t dos disk1.dd
Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 0000000000 0000000000 0000000001 Table #0
01: ----- 0000000001 0000000062 0000000062 Unallocated
02: 00:00 0000000063 0001028159 0001028097 Win95 FAT32 (0x0B)
03: ----- 0001028160 0002570399 0001542240 Unallocated
04: 00:03 0002570400 0004209029 0001638630 OpenBSD (0xA6)
05: 00:01 0004209030 0006265349 0002056320 NTFS (0x07)

DOS PARTITIONS

99

Carrier_05.qxd 2/22/05 3:07 PM Page 99

In this output, we see that the NTFS partition is in a slot that is before the OpenBSD
partition, but the NTFS partition starts after the OpenBSD partition. We can also see
that there is no entry ‘00:02,’ and the 1,542,240 sectors in between the FAT and OpenBSD
partitions are also marked as unallocated.

ANALYSIS CONSIDERATIONS

This section includes a few characteristics that can be taken into consideration when
analyzing a DOS-based disk. The partition table and boot code require only one sector,
yet 63 are typically allocated for both the MBR and extended partitions because the par-
titions start on a cylinder boundary. Therefore, sector 0 of the extended partition or
MBR is used for code and the partition table, but sectors 1-62 may not be used. The
unused area can be used by additional boot code, but it also may contain data from a
previous installation, zeros, or hidden data. Windows XP does not wipe the data in the
unused sectors when it partitions a disk.

As most partitions start at sector 63 (which you can use to your advantage if you are
desperate to recover the contents of the first partition), the partition table is missing and
the tools discussed in Chapter 4, “Volume Analysis,” do not work. Try extracting data
from sector 63 onward. This method includes other partitions in the image; however,
you may be able to identify the actual size of the partition from file system data. The
partition can be extracted with dd as follows:

dd if=disk.dd bs=512 skip=63 of=part.dd

In theory, extended partitions should have only two entries: one secondary file system
partition and another secondary extended partition. Most partitioning tools follow this
theory, but it is possible to create a third entry by hand. Microsoft Windows XP and Red
Hat 8.0 showed the “extra” partition when there were more than two in an extended par-
tition, although neither OS would allow you to create such a configuration. Test your
analysis tools to ensure that they are showing all of the partitions when this “invalid”
configuration exists.

The value in the partition type field of the partition table is not always enforced.
Windows uses this field to identify which partitions it should try to mount, but users are
given access to all partitions in operating systems, such as Linux. Therefore, a user could
put a FAT file system in a partition whose type is for laptop hibernation. They would not
be able to mount it in Windows, but would in Linux.

CHAPTER 5 PC-BASED PARTITIONS

100

Carrier_05.qxd 2/22/05 3:07 PM Page 100

Some versions of Windows only create one primary partition in the MBR and then
rely on extended partitions for the remaining partitions. In other words, they do not
create three primary partitions before creating an extended partition.

When parts of a partition table have become corrupt, it may be necessary to search for
the extended partition tables. To find the extended partitions, a search for 0xAA55 in the
last two bytes of a sector could be conducted. Note that this signature value exists at the
same location in the first sector of a NTFS and FAT file system, and the remainder of
the sector must be examined to determine if it is a partition table or a file system boot
sector. If a sector is found to be a boot sector of a file system, a partition table may exist
63 sectors prior to it.

SUMMARY

DOS-based partitions are the most common for current computer investigations.
Unfortunately, they are also the most complex to understand because they were not
originally designed for the size of modern systems. Fortunately, tools exist to easily list
the layout of the disk and extract the used and unused space. Many UNIX systems that
run on IA32-compatible platforms use DOS partitions in addition to their own partition
systems. Therefore, every investigator needs a solid understanding of DOS partitions.

APPLE PARTITIONS

Systems running the Apple Macintosh operating system are not as common as those
running Microsoft Windows, but they have been increasing in popularity with the
introduction of Mac OS X, a UNIX-based operating system. The partitions that we will
describe here can be found in the latest Apple laptops and desktops running OS X, older
systems that are running Macintosh 9, and even the portable iPod devices that play MP3
audio. The partition map also can be used in the disk image files that a Macintosh sys-
tem uses to transmit files. The disk image file is similar to a zip file in Windows or a tar
file in Unix. The files in the disk image are stored in a file system, and the file system may
be in a partition.

The design of the partition system in an Apple system is a nice balance between the
complexity of DOS-based partitions and the limited number of partitions that we will
see in the BSD disk labels. The Apple partition can describe any number of partitions,
and the data structures are in consecutive sectors of the disk. This section will give an
overview of the Apple partitions, the details of the data structures, and discuss how to
view the details.

APPLE PARTITIONS

101

Carrier_05.qxd 2/22/05 3:07 PM Page 101

GENERAL OVERVIEW

The Apple partitions are described in the partition map structure, which is located at the
beginning of the disk. The firmware contains the code that processes this structure, so
the map does not contain boot code like we saw in the DOS partition table. Each entry in
the partition map describes the starting sector of the partition, the size, the type, and the
volume name. The data structure also contains values about data inside of the partition,
such as the location of the data area and the location of any boot code.

The first entry in the partition map is typically an entry for itself, and it shows the
maximum size that the partition map can be. Apple creates partitions to store hardware
drivers, so the main disk for an Apple system has many partitions that contain drivers
and other non-file system content. Figure 5.9 shows an example layout of an Apple disk
with three file system partitions and the partition for the partition map.

CHAPTER 5 PC-BASED PARTITIONS

102

Partition
Map

File System
Partition 1

File System
Partition 2

File System
Partition 3

Figure 5.9 An Apple disk with one partition map partition and three file system partitions.

We will later see that BSD systems have a different partition structure called the disk
label. Even though Mac OS X is based on a BSD kernel, it uses an Apple partition map
and not a disk label.

DATA STRUCTURES

Now that we have examined the basic concepts of an Apple partition, we can look at the
data structures. As with other data structures in this book, they can be skipped if you are
not interested. This section also contains the output of some analysis tools using an
example disk image.

Carrier_05.qxd 2/22/05 3:07 PM Page 102

Partition Map Entry

The Apple partition map contains several 512-byte data structures, and each partition
uses one data structure. The partition map starts in the second sector of the disk and
continues until all partitions have been described. The partition data structures are laid
out in consecutive sectors, and each map entry has a value for the total number of parti-
tions. The 512-byte data structure is shown in Table 5.7.

Table 5.7 Data structure for Apple partition entries.

Byte Range Description Essential

0–1 Signature value (0x504D) No

2–3 Reserved No

4–7 Total Number of partitions Yes

8–11 Starting sector of partition Yes

12–15 Size of partition in sectors Yes

16–47 Name of partition in ASCII No

48–79 Type of partition in ASCII No

80–83 Starting sector of data area in partition No

84–87 Size of data area in sectors No

88–91 Status of partition (see table 5-8) No

92–95 Starting sector of boot code No

96–99 Size of boot code in sectors No

100–103 Address of boot loader code No

104–107 Reserved No

108–111 Boot code entry point No

112–115 Reserved No

116–119 Boot code checksum No

120–135 Processor type No

136–511 Reserved No

APPLE PARTITIONS

103

Carrier_05.qxd 2/22/05 3:07 PM Page 103

The type of partition is given in ASCII and not as an integer as other partition
schemes use. The status values for each partition apply to both older A/UX systems and
modern Macintosh systems. A/UX is an older operating system from Apple. The status
value can have one of the values shown in Table 5.8 [Apple 1999].

Table 5.8 Status value for Apple partitions.

Type Description

0x00000001 Entry is valid (A/UX only)

0x00000002 Entry is allocated (A/UX only)

0x00000004 Entry in use (A/UX only)

0x00000008 Entry contains boot information (A/UX only)

0x00000010 Partition is readable (A/UX only)

0x00000020 Partition is writable (Macintosh & A/UX)

0x00000040 Boot code is position independent (A/UX only)

0x00000100 Partition contains chain-compatible driver (Macintosh only)

0x00000200 Partition contains a real driver (Macintosh only)

0x00000400 Partition contains a chain driver (Macintosh only)

0x40000000 Automatically mount at startup (Macintosh only)

0x80000000 The startup partition (Macintosh only)

The data area fields are used for file systems that have a data area that does not start at
the beginning of the disk. The boot code fields are used to locate the boot code when the
system is starting.

To identify the partitions in an Apple disk, a tool (or person) reads the data structure
from the second sector. It is processed to learn the total number of partitions, and then
the other partition information from it is collected. The first entry is usually the entry for
the partition map itself. The next sector is then read, and the process continues until all
partitions have been read. Here are the contents of the first entry in the partition map:

dd if=mac-disk.dd bs=512 skip=1 | xxd
0000000: 504d 0000 0000 000a 0000 0001 0000 003f PM.............?
0000016: 4170 706c 6500 0000 0000 0000 0000 0000 Apple...........

CHAPTER 5 PC-BASED PARTITIONS

104

Carrier_05.qxd 2/22/05 3:07 PM Page 104

0000032: 0000 0000 0000 0000 0000 0000 0000 0000
0000048: 4170 706c 655f 7061 7274 6974 696f 6e5f Apple_partition_
0000064: 6d61 7000 0000 0000 0000 0000 0000 0000 map.............
0000080: 0000 0000 0000 003f 0000 0000 0000 0000 ?........
0000096: 0000 0000 0000 0000 0000 0000 0000 0000
[REMOVED]

Apple computers use Motorola PowerPC processors and, therefore, store data in big-
endian ordering. As a result, we will not need to reverse the order of numbers like we did
with DOS partitions. We see the signature value of 0x504d in bytes 0 to 1 and the num-
ber of partitions in bytes 4 to 7, which is 10 (0x0000000a). Bytes 8 to 11 show us that the
first sector of the disk is the starting sector for this partition and that its size is 63 sectors
(0x3f). The name of the partition is “Apple,” and the type of partition is “Apple_
partition_map.” Bytes 88 to 91 show that no flags for this partition are set. Other entries
in the partition map that are not for the partition map itself have status values set.

Example Image Tool Output

You can view an Apple partition map with mmls in The Sleuth Kit. The fdisk command
in Linux will not show the contents of a partition map. Here are the results from run-
ning mmls on a 20GB iBook laptop:

mmls -t mac mac-disk.dd
MAC Partition Map
Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 0000000000 0000000000 0000000001 Unallocated
01: 00 0000000001 0000000063 0000000063 Apple_partition_map
02: ----- 0000000001 0000000010 0000000010 Table
03: ----- 0000000011 0000000063 0000000053 Unallocated
04: 01 0000000064 0000000117 0000000054 Apple_Driver43
05: 02 0000000118 0000000191 0000000074 Apple_Driver43
06: 03 0000000192 0000000245 0000000054 Apple_Driver_ATA
07: 04 0000000246 0000000319 0000000074 Apple_Driver_ATA
08: 05 0000000320 0000000519 0000000200 Apple_FWDriver
09: 06 0000000520 0000001031 0000000512 Apple_Driver_IOKit
10: 07 0000001032 0000001543 0000000512 Apple_Patches
11: 08 0000001544 0039070059 0039068516 Apple_HFS
12: 09 0039070060 0039070079 0000000020 Apple_Free

In this output, the entries are sorted by starting sector, and the second column shows
in which entry in the partition map the partition was described. In this case, the entries

APPLE PARTITIONS

105

Carrier_05.qxd 2/22/05 3:07 PM Page 105

were already in sorted order. We can see in entry 12 that Apple reports the sectors that
are not currently allocated. Entries 0, 2, and 3 were added by mmls to show what space the
partition map is using and which sectors are free. The drivers listed here are used by the
system when it is booting.

An alternative tool that can be used on a raw disk image is the pdisk tool with the
-dump flag on OS X:

pdisk mac-disk.dd -dump
mac-disk.dd map block size=512

#: type name length base (size)
1: Apple_partition_map Apple 63 @ 1
2: Apple_Driver43*Macintosh 54 @ 64
3: Apple_Driver43*Macintosh 74 @ 118
4: Apple_Driver_ATA*Macintosh 54 @ 192
5: Apple_Driver_ATA*Macintosh 74 @ 246
6: Apple_FWDriver Macintosh 200 @ 320
7: Apple_Driver_IOKit Macintosh 512 @ 520
8: Apple_Patches Patch Partition 512 @ 1032
9: Apple_HFS untitled 39068516 @ 1544 (18.6G)
10: Apple_Free 0+@ 39070060

Device block size=512, Number of Blocks=10053
DeviceType=0x0, DeviceId=0x0
Drivers-
1: @ 64 for 23, type=0x1
2: @ 118 for 36, type=0xffff
3: @ 192 for 21, type=0x701
4: @ 246 for 34, type=0xf8ff

As was mentioned in the Introduction, Apple disk image files (which are different
from forensic disk image files) also can contain a partition map. A disk image file is an
archive file that can save several individual files. It is similar to a zip file in Windows or a
tar file in Unix. The disk image file can contain a single partition with a file system, or it
can contain only a file system and no partitions. The layout of a test disk image file (files
with an extension of .dmg) has the following layout:

mmls -t mac test.dmg
MAC Partition Map
Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 0000000000 0000000000 0000000001 Unallocated

CHAPTER 5 PC-BASED PARTITIONS

106

Carrier_05.qxd 2/22/05 3:07 PM Page 106

01: 00 0000000001 0000000063 0000000063 Apple_partition_map
02: ----- 0000000001 0000000003 0000000003 Table
03: ----- 0000000004 0000000063 0000000060 Unallocated
04: 01 0000000064 0000020467 0000020404 Apple_HFS
05: 02 0000020468 0000020479 0000000012 Apple_Free

ANALYSIS CONSIDERATIONS

The only unique characteristic of Apple partitions is that there are several unused fields
in the data structure that could be used to hide small amounts of data. Also data could
be hidden in the sectors between the last partition data structure and the end of the
space allocated to the partition map. As with any partitioning scheme, anything could be
in the partitions that have an official looking name or that claim to have a given type.

SUMMARY

The Apple partition map is a fairly simple structure and is easy to understand. The data
structures are all located in one place, and the maximum number of partitions is based
on how the disk was originally partitioned. The mmls tool allows us to easily identify
where the partitions are located if we are using a non-Apple system, and the pdisk tool
can be used on an OS X system.

REMOVABLE MEDIA

Most removable media also have partitions, but they use the same structures that hard
disks use. The exception to this rule are floppy disks that are formatted for FAT12 in a
Windows or UNIX system. They do not have partition tables, and each entire disk is
treated like a single partition. If you image a floppy disk, you can directly analyze the
image as a file system. Some of the small USB storage tokens (sometimes called ‘thumb
drives’) do not have partitions and contain one file system, but some of them do have
partitions.

Larger removable media, such as Iomega ZIP disks, do have partition tables. The par-
tition table on a ZIP disk will depend on whether it has been formatted for a Mac or a
PC. A PC-formatted disk will have a DOS-based partition table and by default will only
have one partition in the fourth slot.

APPLE PARTITIONS

107

Carrier_05.qxd 2/22/05 3:07 PM Page 107

Flash cards, which are commonly used in digital cameras, also typically have a parti-
tion table. Many flash cards have a FAT file system and can be analyzed using normal
investigation tools. Here is DOS-based partition table from a 128MB flash card:

mmls -t dos camera.dd
DOS Partition Table
Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000001 0000000031 0000000031 Unallocated
02: 00:00 0000000032 0000251647 0000251616 DOS FAT16 (0x06)

Putting flash cards in a USB or Firewire reader and using dd in Linux can easily
image them.

CD-ROMs are more complex because there exist many possible variations. Most CDs
use the ISO 9660 format so that multiple operating systems can read the contents of the
CD. The ISO 9660 naming requirements are strict, and there are extensions to ISO 9660,
such as Joliet and Rock Ridge, which are more flexible. CDs are complex to describe
because one CD may have data in a basic ISO 9660 format and in a Joliet format. If a CD
is also an Apple hybrid disc, the data could also be in an Apple HFS+ format. The actual
content of the files is only saved once, but the data are pointed to by several locations.

Recordable CDs, or CD-Rs, have a notion of a session. A CD-R can have one or more
sessions on it, and the purpose of the sessions is that you can continue to add data to
CD-R more than once. A new session is made each time data are burned to the CD-R.
Depending on the operating system in which the CD is used, each session may show up
as though it was a partition. For example, I used an Apple OS X application to create a
CD with three sessions. When the CD was used in an OS X system, all three of the ses-
sions were mounted as file systems. When the CD was used in a Linux system, the last
session was the default session to be mounted, but the other two could be mounted by
specifying them in the mount command. The readcd tool (http://freshmeat.net/
projects/cdrecord/) can be used to determine the number of sessions on a CD. When
the CD was used in a Microsoft Windows XP system, the system said it was invalid,
although Smart Project’s ISO Buster program (http://www.isobuster.com) in Windows
could see all three sessions. Different results may occur if the multiple session CD was
created from within Windows. It is important with CD-Rs to use a specialized CD analy-
sis tool to view the contents of all sessions and not rely on the default behavior of your
analysis platform.

Some CDs also contain the partition systems of the native operating system. For
example, a hybrid CD is one that is in an ISO format and an Apple format. Inside the

CHAPTER 5 PC-BASED PARTITIONS

108

Carrier_05.qxd 2/22/05 3:07 PM Page 108

session are an Apple partition map and HFS+ file system. Standard Apple investigation
techniques can be applied to these disks. For example, here is the result of running mmls
on hybrid disk:

mmls -t mac cd-slice.dd
MAC Partition Map
Units are in 512-byte sectors

Slot Start End Length Description
00: ----- 0000000000 0000000000 0000000001 Unallocated
01: 00 0000000001 0000000002 0000000002 Apple_partition_map
02: ----- 0000000001 0000000002 0000000002 Table
03: ----- 0000000003 0000000103 0000000101 Unallocated
04: 01 0000000104 0000762559 0000762456 Apple_HFS

Many bootable CDs also have a native partition system. Sparc Solaris bootable CDs
have a Volume Table of Contents structure in the ISO volume, and Intel bootable CDs
can have a DOS-based partition table at the beginning of the CD. These structures are
used after the operating system has been booted from the CD and the code required to
boot the system is in the ISO format.

BIBLIOGRAPHY

Agile Risk Management. “Linux Forensics—Week 1 (Multiple Session CDRs).” March 19,
2004. http://www.agilerm.net/linux1.html.

Apple. “File Manager Reference.” March 1, 2004. http://developer.apple.com/
documentation/Carbon/Reference/File_Manager/index.html.

Apple. “Inside Macintosh: Devices.” July 3, 1996. http://developer.apple.com/
documentation/mac/Devices/Devices-2.html.

Brouwer, Andries. “Minimal Partition Table Specification.” September 16, 1999.
http://www.win.tue.nl/~aeb/partitions/partition_tables.html.

Brouwer, Andries. “Partition Types.” December 12, 2004. http://www.win.tue.nl/
~aeb/partitions/partition_types.html.

Carrier, Brian. “Extended Partition Test.” Digital Forensic Tool Testing Images, July 2003.
http://dftt.sourceforge.net/test1/index.html.

REMOVABLE MEDIA

109

Carrier_05.qxd 2/22/05 3:07 PM Page 109

Apple. “The Monster Disk Driver Technote.” November 22, 1999. http://developer.
apple.com/technotes/tn/pdf/tn1189.pdf.

CDRoller. Reading Data CD, n.d. http://www.cdroller.com/htm/readdata.html.

ECMA. “Volume and File Structure of CDROM for Information Interchange.” ISO Spec,
September 1998. http://www.ecma-international.org/publications/files/
ECMA-ST/Ecma-119.pdf.

Landis, Hale. “How it Works: Master Boot Record.” May 6, 2002. http://
www.ata-atapi.com/hiwmbr.htm.

Landis, Hale. “How it Works: Partition Types.” December 12, 2004. http://
www.ata-atapi.com/hiwtab.htm.

Microsoft. “Basic Disks and Volumes Technical Reference.” Windows Server 2003
Technical Reference, 2004. http://www.microsoft.com.

Microsoft. “Managing GPT Disks in Itanium-based Computers.” Windows® XP
Professional Resource Kit Documentation, 2004a. http://www.microsoft.com.

Microsoft. “MS-DOS Partitioning Summary.” Microsoft Knowledge Base Article 69912,
December 20, 2004b. http://support.microsoft.com/default.aspx?scid=kb;
EN-US;69912.

Stevens, Curtis, and Stan Merkin. “El Torito: Bootable CD-ROM Format Specification
1.0.” January 25, 1999. http://www.phoenix.com/resources/specs-cdrom.pdf.

CHAPTER 5 PC-BASED PARTITIONS

110

Carrier_05.qxd 2/22/05 3:07 PM Page 110

