
Part 2

BASIC STRUCTURAL
MODELING

user.book Page 45 Friday, April 8, 2005 10:05 AM

user.book Page 46 Friday, April 8, 2005 10:05 AM

47

Classes are the most important building block of any object-oriented system. A
class is a description of a set of objects that share the same attributes, opera-
tions, relationships, and semantics. A class implements one or more interfaces.

Advanced
features of
classes are
discussed in
Chapter 9.

You use classes to capture the vocabulary of the system you are developing.
These classes may include abstractions that are part of the problem domain,
as well as classes that make up an implementation. You can use classes to
represent software things, hardware things, and even things that are purely
conceptual.

Well-structured classes have crisp boundaries and form a part of a balanced
distribution of responsibilities across the system.

Getting Started

Modeling a system involves identifying the things that are important to your
particular view. These things form the vocabulary of the system you are model-
ing. For example, if you are building a house, things like walls, doors, win-
dows, cabinets, and lights are some of the things that will be important to you
as a home owner. Each of these things can be distinguished from the other.

In this chapter

■ Classes, attributes, operations, and responsibilities
■ Modeling the vocabulary of a system
■ Modeling the distribution of responsibilities in a system
■ Modeling nonsoftware things
■ Modeling primitive types
■ Making quality abstractions

Chapter 4

CLASSES

user.book Page 47 Friday, April 8, 2005 10:05 AM

48 PART 2 BASIC STRUCTURAL MODELING

Each of them also has a set of properties. Walls have a height and a width and
are solid. Doors also have a height and a width and are solid as well, but have
the additional behavior that allows them to open in one direction. Windows are
similar to doors in that both are openings that pass through walls, but windows
and doors have slightly different properties. Windows are usually (but not
always) designed so that you can look out of them instead of pass through
them.

Individual walls, doors, and windows rarely exist in isolation, so you must also
consider how specific instances of these things fit together. The things you
identify and the relationships you choose to establish among them will be
affected by how you expect to use the various rooms of your home, how you
expect traffic to flow from room to room, and the general style and feel you
want this arrangement to create.

Users will be concerned about different things. For example, the plumbers who
help build your house will be interested in things like drains, traps, and vents.
You, as a home owner, won’t necessarily care about these things except insofar
as they interact with the things in your view, such as where a drain might be
placed in a floor or where a vent might intersect with the roof line.

Objects are
discussed in
Chapter 13.

In the UML, all of these things are modeled as classes. A class is an abstraction
of the things that are a part of your vocabulary. A class is not an individual
object, but rather represents a whole set of objects. Thus, you may conceptu-
ally think of “wall” as a class of objects with certain common properties, such
as height, length, thickness, load-bearing or not, and so on. You may also think
of individual instances of wall, such as “the wall in the southwest corner of my
study.”

In software, many programming languages directly support the concept of a
class. That’s excellent, because it means that the abstractions you create can
often be mapped directly to a programming language, even if these are abstrac-
tions of nonsoftware things, such as “customer,” “trade,” or “conversation.”

Figure 4-1: Classes

Shape

origin

move()
resize()
display()

name

attributes

operations

user.book Page 48 Friday, April 8, 2005 10:05 AM

CHAPTER 4 CLASSES 49

The UML provides a graphical representation of class, as well, as Figure 4-1
shows. This notation permits you to visualize an abstraction apart from any
specific programming language and in a way that lets you emphasize the most
important parts of an abstraction: its name, attributes, and operations.

Terms and Concepts

A class is a description of a set of objects that share the same attributes,
operations, relationships, and semantics. Graphically, a class is rendered as a
rectangle.

Names

A class name
must be
unique within
its enclosing
package, as
discussed in
Chapter 12.

Every class must have a name that distinguishes it from other classes. A name
is a textual string. That name alone is known as a simple name; a qualified
name is the class name prefixed by the name of the package in which that class
lives. A class may be drawn showing only its name, as Figure 4-2 shows.

Note: A class name may be text consisting of any number of letters,
numbers, and certain punctuation marks (except for marks such as the
double colon, which is used to separate a class name and the name of its
enclosing package) and may continue over several lines. In practice,
class names are short nouns or noun phrases drawn from the vocabulary
of the system you are modeling. Typically, you capitalize the first letter of
every word in a class name, as in Customer or TemperatureSensor.

Figure 4-2: Simple and Qualified Names

Customer

Wall

Temperature
Sensor simple names

Business Rules::FraudAgent

qualified names

java::awt::Rectangle

user.book Page 49 Friday, April 8, 2005 10:05 AM

50 PART 2 BASIC STRUCTURAL MODELING

Attributes

Attributes are
related to the
semantics of
aggregation,
as discussed
in Chapter 10.

An attribute is a named property of a class that describes a range of values that
instances of the property may hold. A class may have any number of attributes
or no attributes at all. An attribute represents some property of the thing you
are modeling that is shared by all objects of that class. For example, every wall
has a height, width, and thickness; you might model your customers in such a
way that each has a name, address, phone number, and date of birth. An
attribute is therefore an abstraction of the kind of data or state an object of the
class might encompass. At a given moment, an object of a class will have spe-
cific values for every one of its class’s attributes. Graphically, attributes are
listed in a compartment just below the class name. Attributes may be drawn
showing only their names, as shown in Figure 4-3.

You can
specify other
features of an
attribute, such
as marking it
read-only or
shared by all
objects of the
class, as dis-
cussed in
Chapter 9.

You can further specify an attribute by stating its class and possibly a default
initial value, as shown Figure 4-4.

Figure 4-3: Attributes

Note: An attribute name may be text, just like a class name. In practice,
an attribute name is a short noun or noun phrase that represents some
property of its enclosing class. Typically, you capitalize the first letter of
every word in an attribute name except the first letter, as in name or
loadBearing.

Customer

name
address
phone
birthDate

attributes

Figure 4-4: Attributes and Their Class

Wall

height : Float
width : Float
thickness : Float
isLoadBearing : Boolean = false

attributes

user.book Page 50 Friday, April 8, 2005 10:05 AM

CHAPTER 4 CLASSES 51

Operations

You can fur-
ther specify the
implementa-
tion of an
operation by
using a note,
as described in
Chapter 6, or
by using an
activity dia-
gram, as dis-
cussed in
Chapter 20.

An operation is the implementation of a service that can be requested from any
object of the class to affect behavior. In other words, an operation is an abstrac-
tion of something you can do to an object that is shared by all objects of that
class. A class may have any number of operations or no operations at all. For
example, in a windowing library such as the one found in Java’s awt package,
all objects of the class Rectangle can be moved, resized, or queried for their
properties. Often (but not always), invoking an operation on an object changes
the object’s data or state. Graphically, operations are listed in a compartment
just below the class attributes. Operations may be drawn showing only their
names, as in Figure 4-5.

You can spec-
ify other
features of an
operation,
such as mark-
ing it polymor-
phic or
constant, or
specifying its
visibility, as
discussed in
Chapter 9.

You can specify an operation by stating its signature, which includes the name,
type, and default value of all parameters and (in the case of functions) a return
type, as shown in Figure 4-6.

Figure 4-5: Operations

Note: An operation name may be text, just like a class name. In prac-
tice, an operation name is a short verb or verb phrase that represents
some behavior of its enclosing class. Typically, you capitalize the first let-
ter of every word in an operation name except the first letter, as in move
or isEmpty.

Rectangle

add()
grow()
move()
isEmpty()

operations

Figure 4-6: Operations and Their Signatures

TemperatureSensor

reset()
setAlarm(t : Temperature)
value() : Temperature

operations

user.book Page 51 Friday, April 8, 2005 10:05 AM

52 PART 2 BASIC STRUCTURAL MODELING

Organizing Attributes and Operations

When drawing a class, you don’t have to show every attribute and every opera-
tion at once. In fact, in most cases, you can’t (there are too many of them to put
in one figure) and you probably shouldn’t (only a subset of these attributes and
operations are likely to be relevant to a specific view). For these reasons, you
can elide a class, meaning that you can choose to show only some or none of a
class’s attributes and operations. You can indicate that there are more
attributes or properties than shown by ending each list with an ellipsis
(“...”). You can also suppress the compartment entirely, in which case you
can’t tell if there are any attributes or operations or how many there are.

Stereotypes
are discussed
in Chapter 6.

To better organize long lists of attributes and operations, you can also prefix
each group with a descriptive category by using stereotypes, as shown in
Figure 4-7.

Responsibilities

Responsibili-
ties are an
example of a
defined
stereotype, as
discussed in
Chapter 6.

A responsibility is a contract or an obligation of a class. When you create a
class, you are making a statement that all objects of that class have the same
kind of state and the same kind of behavior. At a more abstract level, these
corresponding attributes and operations are just the features by which the
class’s responsibilities are carried out. A Wall class is responsible for know-
ing about height, width, and thickness; a FraudAgent class, as you might
find in a credit card application, is responsible for processing orders and deter-
mining if they are legitimate, suspect, or fraudulent; a TemperatureSen-
sor class is responsible for measuring temperature and raising an alarm if the
temperature reaches a certain point.

Figure 4-7: Stereotypes for Class Features

FraudAgent

«constructor»
new()
new(p : Policy)
«process»
process(o : Order)
. . .
«query»
isSuspect(o : Order)
isFraudulent(o : Order)
«helper»
validateOrder(o : Order)

stereotype

user.book Page 52 Friday, April 8, 2005 10:05 AM

CHAPTER 4 CLASSES 53

Modeling the
semantics of a
class is dis-
cussed in
Chapter 9.

When you model classes, a good starting point is to specify the responsibilities
of the things in your vocabulary. Techniques like CRC cards and use case-
based analysis are especially helpful here. A class may have any number of
responsibilities, although, in practice, every well-structured class has at least
one responsibility and at most just a handful. As you refine your models, you
will translate these responsibilities into a set of attributes and operations that
best fulfill the class’s responsibilities.

You can also
draw the
responsibili-
ties of a class
in a note, as
discussed in
Chapter 6.

Graphically, responsibilities can be drawn in a separate compartment at the
bottom of the class icon, as shown in Figure 4-8.

Other Characteristics

Advanced
class con-
cepts are
discussed in
Chapter 9.

Attributes, operations, and responsibilities are the most common features
you’ll need when you create abstractions. In fact, for most models you build,
the basic form of these three features will be all you need to convey the most
important semantics of your classes. Sometimes, however, you’ll need to visu-
alize or specify other characteristics, such as the visibility of individual
attributes and operations; language-specific features of an operation, such as
whether it is polymorphic or constant; or even the exceptions that objects of
the class might produce or handle. These and many other features can be
expressed in the UML, but they are treated as advanced concepts.

Interfaces are
discussed in
Chapter 11.

When you build models, you will soon discover that almost every abstraction
you create is some kind of class. Sometimes you will want to separate the
implementation of a class from its specification, and this can be expressed in
the UML by using interfaces.

Figure 4-8: Responsibilities

Note: Responsibilities are just free-form text. In practice, a single
responsibility is written as a phrase, a sentence, or (at most) a short
paragraph.

FraudAgent

responsibilities

-- determine the risk of a
 customer order
-- handle customer-specific
 criteria for fraud

Responsibilities

user.book Page 53 Friday, April 8, 2005 10:05 AM

54 PART 2 BASIC STRUCTURAL MODELING

Internal struc-
ture is dis-
cussed in
Chapter 15.

When you start designing the implementation of a class, you need to model its
internal structure as a set of connected parts. You can expand a top-level class
through several layers of internal structure to get the eventual design.

Active classes,
components,
and nodes are
discussed in
Chapters 23,
25, and 27,
and artifacts
are discussed
in Chapter 26.

When you start building more complex models, you will also find yourself
encountering the same kinds of entities over and over again, such as classes
that represent concurrent processes and threads, or classifiers that represent
physical things, such as applets, Java Beans, files, Web pages, and hardware.
Because these kinds of entities are so common and because they represent
important architectural abstractions, the UML provides active classes (repre-
senting processes and threads) and classifiers, such as artifacts (representing
physical software components) and nodes (representing hardware devices).

Class dia-
grams are
discussed in
Chapter 8.

Finally, classes rarely stand alone. Rather, when you build models, you will
typically focus on groups of classes that interact with one another. In the UML,
these societies of classes form collaborations and are usually visualized in
class diagrams.

Common Modeling Techniques

You’ll use classes most commonly to model abstractions that are drawn from
the problem you are trying to solve or from the technology you are using to
implement a solution to that problem. Each of these abstractions is a part of the
vocabulary of your system, meaning that, together, they represent the things
that are important to users and to implementers.

Use cases are
discussed in
Chapter 17.

For users, most abstractions are not that hard to identify because, typically,
they are drawn from the things that users already use to describe their system.
Techniques such as CRC cards and use case-based analysis are excellent ways
to help users find these abstractions. For implementers, these abstractions are
typically just the things in the technology that are parts of the solution.

To model the vocabulary of a system,

■ Identify those things that users or implementers use to describe the
problem or solution. Use CRC cards and use case-based analysis to
help find these abstractions.

Modeling the Vocabulary of a System

user.book Page 54 Friday, April 8, 2005 10:05 AM

CHAPTER 4 CLASSES 55

■ For each abstraction, identify a set of responsibilities. Make sure that
each class is crisply defined and that there is a good balance of respon-
sibilities among all your classes.

■ Provide the attributes and operations that are needed to carry out these
responsibilities for each class.

Figure 4-9 shows a set of classes drawn from a retail system, including
Customer, Order, and Product. This figure includes a few other related
abstractions drawn from the vocabulary of the problem, such as Shipment
(used to track orders), Invoice (used to bill orders), and Warehouse
(where products are located prior to shipment). There is also one solution-
related abstraction, Transaction, which applies to orders and shipments.

Packages are
discussed in
Chapter 12.

Modeling
behavior is
discussed in
Parts 4 and 5.

As your models get larger, many of the classes you find will tend to cluster
together in groups that are conceptually and semantically related. In the UML,
you can use packages to model these clusters of classes.

Your models will rarely be completely static. Instead, most abstractions in your
system’s vocabulary will interact with one another in dynamic ways. In the
UML, there are a number of ways to model this dynamic behavior.

Figure 4-9: Modeling the Vocabulary of a System

name
address
phone
birthData

Customer

Invoice

Transaction

actions

commit()
rollBack()
wasSuccessful()

Warehouse

Order

item
quantity

Product

id
name
price
location

Shipment

Responsibilities

-- maintain the information
 regarding products shipped
 against an order
-- track the status and location
 of the shipped products

user.book Page 55 Friday, April 8, 2005 10:05 AM

56 PART 2 BASIC STRUCTURAL MODELING

Once you start modeling more than just a handful of classes, you will want to
be sure that your abstractions provide a balanced set of responsibilities. What
this means is that you don’t want any one class to be too big or too small. Each
class should do one thing well. If you abstract classes that are too big, you’ll
find that your models are hard to change and are not very reusable. If you
abstract classes that are too small, you’ll end up with many more abstractions
than you can reasonably manage or understand. You can use the UML to help
you visualize and specify this balance of responsibilities.

To model the distribution of responsibilities in a system,

■ Identify a set of classes that work together closely to carry out some
behavior.

■ Identify a set of responsibilities for each of these classes.
■ Look at this set of classes as a whole, split classes that have too many

responsibilities into smaller abstractions, collapse tiny classes that have
trivial responsibilities into larger ones, and reallocate responsibilities so
that each abstraction reasonably stands on its own.

Collaborations
are discussed
in Chapter 28.

■ Consider the ways in which those classes collaborate with one another,
and redistribute their responsibilities accordingly so that no class within
a collaboration does too much or too little.

Modeling the Distribution of Responsibilities in a
System

Figure 4-10: Modeling the Distribution of Responsibilities in a System

Model

-- manage the state of
 the model

View

-- render the model
 on the screen
-- manage movement
 and resizing of the
 view
-- intercept user events

Controller

-- synchronize changes
 in the model and its
 views

Responsibilities

Responsibilities

Responsibilities

user.book Page 56 Friday, April 8, 2005 10:05 AM

CHAPTER 4 CLASSES 57

This set of
classes forms
a pattern, as
discussed in
Chapter 29.

For example, Figure 4-10 shows a set of classes drawn from Smalltalk, show-
ing the distribution of responsibilities among Model, View, and Control-
ler classes. Notice how all these classes work together such that no one class
does too much or too little.

Sometimes, the things you model may never have an analog in software. For
example, the people who send invoices and the robots that automatically pack-
age orders for shipping from a warehouse might be a part of the workflow you
model in a retail system. Your application might not have any software that
represents them (unlike customers in the example above, since your system
will probably want to maintain information about them).

To model nonsoftware things,

■ Model the thing you are abstracting as a class.
Stereotypes
are discussed
in Chapter 6.

■ If you want to distinguish these things from the UML’s defined build-
ing blocks, create a new building block by using stereotypes to specify
these new semantics and to give a distinctive visual cue.

Nodes are
discussed in
Chapter 27.

■ If the thing you are modeling is some kind of hardware that itself con-
tains software, consider modeling it as a kind of node as well, so that
you can further expand on its structure.

External things
are often mod-
eled as actors,
as discussed
in Chapter 17.

As Figure 4-11 shows, it’s perfectly normal to abstract humans (like
AccountsReceivableAgent) and hardware (like Robot) as classes,
because each represents a set of objects with a common structure and a com-
mon behavior.

Modeling Nonsoftware Things

Note: The UML is mainly intended for modeling software-intensive
systems, although, in conjunction with textual hardware modeling lan-
guages, such as VHDL, the UML can be quite expressive for modeling
hardware systems. The OMG has also produced a UML extension
called SysML intended for systems modeling.

Figure 4-11: Modeling Nonsoftware Things

AccountsReceivableAgent

Robot

processOrder()
changeOrder()
status()

user.book Page 57 Friday, April 8, 2005 10:05 AM

58 PART 2 BASIC STRUCTURAL MODELING

Types are
discussed in
Chapter 11.

At the other extreme, the things you model may be drawn directly from the
programming language you are using to implement a solution. Typically, these
abstractions involve primitive types, such as integers, characters, strings, and
even enumeration types, that you might create yourself.

To model primitive types,

■ Model the thing you are abstracting as a class or an enumeration, which
is rendered using class notation with the appropriate stereotype.

Constraints are
described in
Chapter 6.

■ If you need to specify the range of values associated with this type, use
constraints.

Types are
discussed in
Chapter 11.

As Figure 4-12 shows, these things can be modeled in the UML as types or
enumerations, which are rendered just like classes but are explicitly marked
via stereotypes. Primitive types such as integers (represented by the class Int)
are modeled as types, and you can explicitly indicate the range of values these
things can take on by using a constraint; the semantics of primitive types must
be defined externally to UML. Enumeration types, such as Boolean and
Status, can be modeled as enumerations, with their individual literals listed
within the attribute compartment (note that they are not attributes). Enumera-
tion types may also define operations.

Modeling Primitive Types

Figure 4-12: Modeling Primitive Types

«datatype»
Int

{values range from
-2**31-1 to +2**31} «enumeration»

Boolean

false
true

«enumeration»
Status

idle
working
error

user.book Page 58 Friday, April 8, 2005 10:05 AM

CHAPTER 4 CLASSES 59

Note: Some languages, such as C and C++, let you set an integer value
for an enumeration literal. You can model this in the UML by attaching a
note to an enumeration literal as implementation guidance. Integer values
are not needed for logical modeling.

Hints and Tips

When you model classes in the UML, remember that every class should map to
some tangible or conceptual abstraction in the domain of the end user or the
implementer. A well-structured class

■ Provides a crisp abstraction of something drawn from the vocabulary of
the problem domain or the solution domain.

■ Embodies a small, well-defined set of responsibilities and carries them
all out very well.

■ Provides a clear separation of the abstraction’s specification and its
implementation.

■ Is understandable and simple, yet extensible and adaptable.

When you draw a class in the UML,

■ Show only those properties of the class that are important to under-
standing the abstraction in its context.

■ Organize long lists of attributes and operations by grouping them
according to their category.

■ Show related classes in the same class diagrams.

user.book Page 59 Friday, April 8, 2005 10:05 AM

user.book Page 60 Friday, April 8, 2005 10:05 AM

