
Foreword

A LONG, LONG TIME AGO when I began programming PC GUIs, there were none
of these fancy framework thingies. One wrote a whole lot of C code in a case

statement long enough to cut a giant’s undershirt out of. I’d spent a couple weeks
understanding and implementing DDE (yes, DDE) in the application we were
building (and frankly, it was not the most pleasant experience) when I ran across
an article in a magazine showing how this fancy thing called “Smalltalk” could
do DDE in a couple of lines of code. Wow! I thought. That’s the way I want to pro-
gram! I’ve been working with and on UI frameworks pretty much ever since,
which is how I ended up working on Windows Forms at Microsoft.

For V1 of Windows Forms, our goal was to produce a comprehensive UI
framework that combined the ease of use of VB with the extensibility and flexi-
bility of MFC. Along the way, we picked up additional goals, including rich
design-time extensibility, GDI+ support, and support for partial trust for No
Touch Deployment (NTD). I think we did a reasonable job of meeting these goals.
Despite the focus on the “web stuff” when we first released, there are an enor-
mous number of people using Windows Forms today to build all types of appli-
cations, from photo management software to applications supporting core
business processes. I find seeing the interesting applications people build with
Windows Forms one of the more rewarding parts of my job. However, to be hon-
est, there are areas where we could have done better—for example, NTD had no
Visual Studio support and could be complex to debug when things went wrong—
so overall, I have to give V1 of Windows Forms a “shows promise” rating.

V2 of Windows Forms is about delivering on that promise. This is a major
upgrade to Windows Forms. Almost every area of Windows Forms—design-time
and run-time—has been improved. As Chris and Michael call out in Appendix A:
What’s New in Windows Forms 2.0, we have incorporated completely new fea-
tures and a large number of improvements to our existing features (apparently
we have 329 new types, 139 updated types, and 14,323 new members). Rather

xxvii

60267966_FM_i-xl.qxd 4/20/06 6:50 PM Page xxvii

than repeat Appendix A, I’m going to call out three new features that I think
illustrate how we achieved our goals for this version of Windows Forms: solve
deployment, enable great-looking apps, and enhance productivity.

Deployment

I think the single most significant feature in V2 of the .NET Framework (not just
Windows Forms, but the whole .NET Framework) is ClickOnce. ClickOnce
delivers on the promise of No Touch Deployment to bring easy, reliable, and
manageable web-based deployment to client applications. Deploying your appli-
cation via the web is now simply a matter of stepping through a wizard in Visual
Studio 2005.

Great-Looking Apps

Ever since I joined Microsoft, customers have asked for the ability to build appli-
cations that look like Microsoft Office “out of the box,” and you can do exactly
that with V2 of Windows Forms using the new menu strip, tool strip, and status
strip controls—ToolStrip, MenuStrip, and StatusStrip. Not only do the strip con-
trols support the standard Windows and Office look and feel, but they can also
be customized to look like pretty much anything you fancy.

Productivity

We’ve added a whole set of design-time and run-time improvements that we
believe will help you to be more productive. One of my favorite new designer
features is SnapLines, which allows you to quickly align controls with each other
as you lay out your forms. Once you’ve used a designer with SnapLines, you
never want to go back—it’s the designer equivalent of IntelliSense.

The Future

After shipping V2, our thoughts are naturally turning to the future. Predicting the
future is a dangerous business—most of the predictions from when I was a kid
mean we should be supporting actors in either The Jetsons or 1984 by now—and so
I’m a little nervous about making any long-term predictions. However, I can say
a few things based on where we are and what I would like to see us do. First, the
.NET Framework and managed code is here to stay: It is the programming model
of the present and the future. Learning to use the .NET Framework and Windows

WINDOWS FORMS 2.0 PROGRAMMINGxxviii

60267966_FM_i-xl.qxd 4/20/06 6:50 PM Page xxviii

Forms is a solid investment for the future. Second, to paraphrase Samuel Clemens
terribly, “Reports of the death of client apps are greatly exaggerated.” Client appli-
cations are here to stay, can now be deployed as easily as web applications, pro-
vide significant business value, and will provide more value as time progresses.
Third, as part of our continued investment in Windows Forms, we will ensure that
Windows Forms works well with new technologies coming down the pipe such
as those in WinFX. This allows you to build applications today with the knowl-
edge that you will be able to enhance those applications in the future using both
Windows Forms and these new technologies as they become available. Finally,
from a Windows Forms perspective, I believe we need to broaden what we pro-
vide into a framework and design experience that addresses the end-to-end
process of building a client application. We have a great designer to help you build
your UI, but you still have to write way too much code to build your whole appli-
cation. I would like to see us provide a great designer-based experience for your
entire application, not just your forms.

So hopefully what I’ve said about Windows Forms has got you at least a lit-
tle curious to find out more—which is where this book comes in. The first edition
of this book was a great overview of and introduction to Windows Forms. The
same is true of this second edition. Whether you are learning Windows Forms for
the first time or if you just want to get a handle on the new stuff we’ve done in
V2, this book will help you. It covers all of the significant feature areas, from the
basics of creating Forms, through ToolStrips and data binding to deployment
with ClickOnce.

The book is a great balancing act: It neither ignores Visual Studio 2005 nor
reduces itself to a simplistic “Click here then click here” walkthrough of Visual
Studio 2005 features. The book not only explains the concepts and shows you
how to use those concepts in code, but it also shows you how the designer helps
you to be more productive by automatically generating the code for you. This
leaves you with a solid understanding of both how things work and how to use
Visual Studio 2005 to get things done as productively as possible. The chapters
on data binding (16 and 17) are a great example of this approach. The source code
examples are another great balancing act: They are neither too short to be useful
nor so long as to be overwhelming. To quote Alan Cooper, they are “Goldilocks
code” examples because they are “just right.”

I would like to particularly highlight the chapters on data binding (Chapters
16 and 17), not just because data binding is very close to my heart, but because
the book does an excellent job of explaining how data binding works and
how to use it effectively. I would also like to highlight the chapters on writing
design-time behavior for your controls and components (Chapters 11 and 12)
because this is a subject that is often neglected. These chapters alone make this
a “must read” book.

FOREWORD xxix

60267966_FM_i-xl.qxd 4/20/06 6:50 PM Page xxix

So, in summary, this book will leave you not only in a position to effectively use
what we provide as part of Windows Forms but also with the understanding you
need to write your own run-time and design-time extensions to what we provide.

I’d like to close with some acknowledgments and thanks. First, thanks to the
entire Windows Forms team, who have worked tirelessly to build and ship what
I believe is a great product. I’m very proud of what we have achieved. Second, my
thanks to Michael and Chris not only for producing a book that does a great job
of explaining our product and will make it easier for our customers to use, but also
for their contributions to the wider Windows Forms community. Thanks to
Michael for his great articles on MSDN and feedback on Windows Forms V2—
particularly his feedback on the ToolStrip controls. Thanks to Chris for his seem-
ingly boundless enthusiasm for Windows Forms, his excellent writing on
Windows Forms, his deep understanding of Windows Forms, MFC, and Win-
dows, and his polite and measured but enthusiastic and copious feedback on
every aspect of the product. Both Mike and Chris have helped enormously both
in promoting understanding of the product and in helping make Windows Forms
as good as it is today. And finally, my thanks to our customers: Every single fea-
ture in Windows Forms V2 is based on your feedback. So to all of you who took
the time to give us feedback and suggestions: Thanks! Please keep it coming!

I hope you have fun using Windows Forms.

Mark Boulter
PM Technical Lead,
Client Development Tools, Microsoft

WINDOWS FORMS 2.0 PROGRAMMINGxxx

60267966_FM_i-xl.qxd 4/20/06 6:50 PM Page xxx

