
Overview

I start the study of design patterns with a pattern that you have prob-

ably implemented in the past but may not have had a name for: the

Facade pattern.

This chapter

• Explains what the Facade pattern is and where it is used.

• Presents the key features of the pattern.

• Presents some variations on the Facade pattern.

• Relates the Facade pattern to the CAD/CAM problem.

Introducing the Facade Pattern

According to the Gang of Four, the intent of the Facade pattern is to

Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsys-

tem easier to use.1

Basically, this is saying that we need to interact with a system that

is easier than the current method, or we need to use the system in

a particular way (such as using a 3D drawing program in a 2D way).

We can build such a method of interaction because we only need to

use a subset of the system in question.

93

In this chapter

CHAPTER 6

The Facade Pattern

Intent: A unified,

high-level interface

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Boston: Addison-Wesley, 1995, p. 185.

06 Shalloway.qrk 9/1/04 2:09 PM Page 93

Learning the Facade Pattern

Once, I worked as a contractor for a large engineering and manu-

facturing company. My first day on the job, the technical lead of the

project was not in. Now, this client did not want to pay me by the

hour and not have anything for me to do. They wanted me to be

doing something, even if it was not useful! Haven’t you had days

like this?

So, one of the project members found something for me to do. She said,

“You are going to have to learn the CAD/CAM system we use some

time, so you might as well start now. Start with these manuals over

here.” Then she took me to the set of documentation. I am not mak-

ing this up: There were 8 feet of manuals for me to read—each page 8.5

× 11 inches and in small print! This was one complex system!

94 Part III • Design Patterns

A motivating

example: Learn how

to use our complex

system!

Figure 6-1 Eight feet of manuals = one complex system!

Now, if you and I and say another four or five people were on a proj-

ect that needed to use this system, what approach would we take?

Would we all learn the system? Or would we draw straws and the

loser would have to write routines that the rest of us would use to in-

terface with the system?

I want to be

insulated from this

06 Shalloway.qrk 9/1/04 2:09 PM Page 94

This person would determine how I and others on our team were

going to use the system and what application programming interface (API)

would be best for our particular needs. She would then create a new

class or classes that had the interface we required. Then I and the rest

of the programming community could use this new interface without

having to learn the entire complicated system (see Figure 6-2).

Chapter 6 • The Facade Pattern 95

Works with subsets

This is the Facade

pattern

Figure 6-2 Insulating clients from the subsystem.

This approach works only when using a subset of the system’s capa-

bilities or when interacting with it in a particular way. If everything

in the system needs to be used, the only way to improve the design

would be if it were poor in the first place.

This is the Facade pattern. It enables us to use a complex system more

easily, either to use just a subset of the system or use the system in a

particular way. We have a complicated system of which we need to

use only a part. We end up with a simpler, easier-to-use system or one

that is customized to our needs.

Most of the work still needs to be done by the underlying system.

The Facade provides a collection of easier-to-understand methods.

These methods use the underlying system to implement the newly

defined functions.

06 Shalloway.qrk 9/1/04 2:09 PM Page 95

96 Part III • Design Patterns

The Facade Pattern: Key Features

Intent You want to simplify how to use an existing system. You need to define
your own interface.

Problem You need to use only a subset of a complex system. Or you need to in-
teract with the system in a particular way.

Solution The Facade presents a new interface for the client of the existing sys-
tem to use.

Participants and It presents a simplified interface to the client that makes it easier to
collaborators use.

Consequences The Facade simplifies the use of the required subsystem. However, be-
cause the Facade is not complete, certain functionality may be unavail-
able to the client.

Implementation Define a new class (or classes) that has the required interface.

Have this new class use the existing system.

Figure 6-3 Generic structure of the Facade pattern.

06 Shalloway.qrk 9/1/04 2:09 PM Page 96

Field Notes: The Facade Pattern

Facades can be used not only to create a simpler interface in terms

of method calls, but also to reduce the number of objects that a client

object must deal with. For example, suppose I have a Client object

that must deal with Databases, Models, and Elements. The Client

must first open the Database and get a Model. Then it queries the

Model to get an Element. Finally, it asks the Element for infor-

mation. It might be a lot easier to create a DatabaseFacade that

could be queried by the Client (see Figure 6-4).

Chapter 6 • The Facade Pattern 97

Variations on

Facade: Reduce the

number of objects a

client must work

with

Figure 6-4 Facade reduces the number of objects for the client.

If a Facade can be made to be stateless (that is, no state is stored in

it), one Facade object can be used by several other objects. Later, in

Chapter 21, I show you how to do this, using the Singleton pattern

and the Double-Checked Locking pattern.

Suppose that in addition to using functions that are in the system, I

also need to provide some new functionality—say, record all calls to

specific routines. In this case, I am going beyond a simple subset of

the system.

Having one Facade

work for many

objects

Variations on

Facade: Supplement

existing functions

with new routines

06 Shalloway.qrk 9/1/04 2:09 PM Page 97

In this case, the methods I write for the Facade class may be sup-

plemented by new routines for the new functionality. This is still the

Facade pattern, but expanded with new functionality. I consider the

primary goal one of simplification because I don’t want to have to

force the client routine to know that it needs to call the extra rou-

tines—the Facade does that.

The Facade pattern sets the general approach; it got me started. The

Facade part of the pattern is the fact that I am creating a new inter-

face for the client to use instead of the existing system’s interface. I

can do this because the Client object does not need to use all of the

functions in my original system.

98 Part III • Design Patterns

Variations on

Facade: An

“encapsulating”

layer

Patterns Set a General Approach

A pattern just sets the general approach. Whether or not to add

new functionality depends upon the situation at hand. Patterns

are blueprints to get you started; they are not carved in stone.

The Facade can also be used to hide, or encapsulate, the system. The

Facade could contain the system as private members of the Facade

class. In this case, the original system would be linked in with the

Facade class, but not presented to users of the Facade class.

There are a number of reasons to encapsulate the system, including

the following:

• Track system usage—By forcing all accesses to the system to go

through the Facade, I can easily monitor system usage.

• Swap out systems—I may need to switch systems in the fu-

ture. By making the original system a private member of the

Facade class, I can swap out the system for a new one with min-

imal effort. There may still be a significant amount of effort re-

quired, but at least I will only have to change the code in one

place (the Facade class).

06 Shalloway.qrk 9/1/04 2:09 PM Page 98

Relating the Facade Pattern
to the CAD/CAM Problem

Think of the example above. The Facade pattern could be useful to help

V1Slots, V1Holes, and so on use V1System. I will do just that in the

solution in Chapter 13, “Solving the CAD/CAM Problem with Patterns.”

Summary

The Facade pattern is so named because it puts up a new interface

(a facade) in front of the original system.

The Facade pattern applies when

• You do not need to use all the functionality of a complex system

and can create a new class that contains all the rules for access-

ing that system. If this is a subset of the original system, as it

usually is, the API that you create for the new class should be

much simpler than the original system’s API.

• You want to encapsulate or hide the original system.

• You want to use the functionality of the original system and

want to add some new functionality as well.

• The cost of writing this new class is less than the cost of every-

body learning how to use the original system or is less than you

would spend on maintenance in the future.

Review Questions

Observations

1. Define Facade.

2. What is the intent of the Facade pattern?

3. What are the consequences of the Facade pattern? Give an

example.

Chapter 6 • The Facade Pattern 99

Encapsulate the V1

system

In this chapter

06 Shalloway.qrk 9/1/04 2:09 PM Page 99

4. In the Facade pattern, how do clients work with subsystems?

5. Does the Facade pattern usually give you access to the entire

system?

Interpretations

1. The Gang of Four says that the intent of the Facade pattern is

to “provide a unified interface to a set of interfaces in a sub-

system. Facade defines a higher-level interface that makes

the subsystem easier to use.”

• What does this mean?

• Give an example.

2. Here is an example of a Facade that comes from outside of

software: Pumps at gasoline stations in the United States can

be very complex. There are many options on them: how to

pay, the type of gas to use, watch an advertisement. One way

to get a unified interface to the gas pump is to use a human

gas attendant. Some states even require this.

• What is another example from real life that illustrates a

Facade?

Opinions and Applications

1. If you need to add functionality beyond what the system

provides, can you still use the Facade pattern?

2. What is a reason for encapsulating an entire system using the

Facade pattern?

3. Is there a case for writing a new system rather than encapsu-

lating the old system with Facade? What is it?

4. Why do you think the Gang of Four call this pattern Facade? Is

it an appropriate name for what it is doing? Why or why not?

100 Part III • Design Patterns

06 Shalloway.qrk 9/1/04 2:09 PM Page 100

