
469

Index

#define, and symbolic names, 122
#include

<ctype.h>, 178–179, 455
<fstream>, 198, 201
iostream, 16, 57, 201
math.h (math library), 16, 57–58,

455–456
stdafx.h (Visual Studio), 14
stdlib.h (standard library),

175–177, 278, 457
string (string class), 187, 190
<string.h> (C string library), 170
<time.h>, 108, 457
angle brackets for standard

libraries, 283
function declarations, 82–83
multi-module projects, 231–232
preprocessor directives, 16–17
quotation marks for project files,

283
% (remainder function). See remain-

der (%) function
& address operator. See address

operator (&)
&& (AND Boolean operation), 54
* (indirection / at operator). See

indirection operator (*)
*= (multiplication-assignment oper-

ator), 265. See also assignment
operators

// (comments), 24–25, 49
~ (in class destructors), 364
:: (in scope prefix). See scope prefix (::)
\ (backslash / escape), 172, 200
\0 (null character), 166, 168
\b (backspace), 172
\n (newline), 172. See also newlines
\t (tab), 172
|| (OR Boolean operation), 54
+ (addition operator), and string

concatenation, 188–189
++ (increment operator)

and array pointers, 155, 159
introduced, 51–52
and pointers, 142

+= (addition-assignment operator),
91. See also assignment
operators

<,> (angle brackets) for standard
libraries, 283

<> stream operator. See stream
operators

<= less than or equal to operator, 49
<...> libraries and headers. See

#include
= (assignment). See assignment (=)
== (equality). See equality (==)
-> (dereference operator), 346–347
>> stream operator. See stream

operators

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 469

. (dereference operator), 346–347
" (double quotation mark)

project file includes, 283
and strings vs. characters, 180

! (NOT Boolean operation), 54
; (semicolon). See semicolons
' (single quotation mark), and

strings vs. characters, 180

absolute value function (abs), 275,
278, 456

abstract classes. See interfaces
access levels (class data) table, 406
acos function, 456
addition operator (+), and string

concatenation, 188–189
addition-assignment operator (+=),

91
address expressions, scaling, 155
address operator (&)

and array elements, 149, 152
introduced, 142
and passing variable references,

146–147
and reference variables, 302–304
and swap function, 148

addresses, memory, 140–142
advancing to next print line. See

newlines
aggregates, array initialization, 113
allocation, memory. See new

operator
AND Boolean operation (&&), 54
angle brackets for standard libraries,

283
anonymous variables, 344
ANSI C++ data types, 440
answers to exercises, on CD, 11
applications, defined, 4
argc, 220, 223
arguments

command line, 219–223

empty list, 85
to functions, 85, 86
as local values, 100–101
main function, 220, 223
object initialization, 219–221,

249
argv, 220, 223
arithmetic operations, on pointers,

154–155
array elements examples, 115–116,

117–121
array sorting example, 149–153
arrays

address of, 154–155, 159, 193
and aggregates, 113
declaring, 112
indexing. See indexes, array
initializing, 113, 136–137
introduced, 111–113
passing to functions, 158–159
pointer usage, 156–157
strings, 122–123. See also string

data
of strings, example, 181–185
two-dimensional, 136–137
zeroing via pointers, 156–160

Artificial Intelligence, and
computer decision-making,
37

ASCII code
and binary files, 206–208
and characters, 20
and string data, 163–164, 180
table, 451–452

asin function, 456
assign function, of string class, 193
assignment (=)

and data-casting, 88
and equality (==), 38, 40–41
and expressions, 53

assignment functions, and subclass-
ing, 396

470 Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 470

assignment operator functions
and copy constructors, 329–330
described, 329–330
and this pointers, 374–375

assignment operators. See also
assignment operator functions

addition-assignment operator
(+=), 91

multiplication-assignment
operator (*=), 265

string data, 188–189
table, 91

association
C++ operators, 435–437
and pointer arithmetic, 159–160

at operator (*). See indirection
operator (*)

atan function, 456
atof function, 175–177, 454
atoi function, 175–177, 454
automatic functions. See compiler-

supplied

backslash (\). See escape sequences
backspace (\b), 172
base classes

passing subclass types, 427
and public keyword, 388–389
and subclasses, 385

Basic (computer language), 6
Beatles example, 183
binary data, storing dollars and

cents, 268
binary files

described, 206–208
examples, 211–216
fields, 209
read and write functions, 207,

208–210
records, 213
reinterpret_cast, 210
seekp function, 216

binary numbering system
140–141

bitwise operators, confusion with
Boolean operators, 55

bool data type, 51, 331–332
Boolean algebra, 54
Boolean operators

AND (&&), 54
bool data type, 51, 331–332
confusion with bitwise operators,

55
example, 56–57
NOT (!), 54
OR (||), 54
precedence, 55
short-circuit logic, 54–55
table, 54
and true / false, 50

bounds checking
card shuffling example, 134
dynamic strings, 360, 364
importance, 135–136
strings, 167

break statement
and infinite loops, 77
introduced, 61
in switch-case statements, 231
usage and syntax, 445

buckets (variables), 33
building a C++ program

described, 9–10
example, 12–15
in RHIDE, 12–13
in Visual Studio, 13–14

butterfly effect, 108

C (computer language)
data casting, 36–37
design goals, 6
and object-orientation, 251,

254–257
structures and classes, 263

471Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 471

C# (computer language), 7
C++ language

compared to other languages, 6–8
as high-level language, 6
and object-oriented features, 7–8,

245
operators, 435–437
syntax summary, 441–449

C++ library
and #include, 74
common functions, 453–457
and linking, 9, 31, 234

C++ programs
building, 8–11, 12–14
comments, 24–25, 49
compiling, 9–10
integrated development environ-

ments, 8
linking, 9–10

cards, dealing examples, 123–129,
130–135

case statements, 230–231
case-sensitivity, 12
casting data. See conversions

between data types
catch statements. See exception

handling
CD (included with this book), xxv,

11
ceil function, 456
Celsius conversions, 23–27
cents, binary precision, 268
char data type. See data types, char
char* notation, 123, 186
characters vs. strings, 177–179, 180,

181
cin

and >> stream operator, 173
as data object, 20
default values, 174
getline function, 168–171,

175–177

reading string data, 172–174
string data, 189
and white space, 173–174

class data. See data members
class keyword, compared to struct,

263
classes. See also objects

abstract. See interfaces
accessing private data, 262–263
assignment functions. See assign-

ment (=)
assignment operator functions.

See assignment operator
functions

as C++ language extensions,
268

constructors. See constructors
data members. See data members
declaration, 261–262, 448–449
defined, 248–249
destructors. See destructors
and encapsulation, 246–247
initializing. See constructors
inlining, 271–273, 292–293
interfaces. See interfaces
member functions. See member

functions
namespaces, 250
operator functions. See operator

functions
test of equality (==) function,

330–331
cleanup, at object destruction. See

destructors
closing, file streams, 199
code, 4
comma-delimited input example,

181–185
command line arguments, 219–223
commas, in numbers, 59–60
comments, 24–25, 49
comparisons, string data, 188–189

472 Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 472

compile time, and polymorphism,
426–427

compilers
defined, 4
GNU C++, 11
Japanese translation analogy,

164–165
compiler-supplied

assignment operator function,
329–330

constructors. See default con-
structors

copy constructors, 305,
370–372

subclass constructors, 395
compiling a C++ program, 9–10
composite data types, 364
compound statements

containing single statements, 39,
76

defined, 38
in do-while statements, 229
example, 73–76
and initializing arrays, 137
in for statements, 71–72
in while statements, 69

computers, basic nature, 1–2, 37
concatenation

String class example, 375–377
string data, 167, 188–189

condition
in do-while statements, 229
in if-else statements, 3, 37
in for statements, 66–67, 71
in while statements, 44–45

console input. See cin
console output. See cout
const keyword, 304, 320
constants. See symbolic names, and

#define
constructors

in class declarations, 448

copy constructors. See copy
constructors

default. See default constructors
examples, 296–298, 299–301
inlining, 292–293
introduced, 250, 291–293
multiple, 293
naming, 292
and subclassing, 395–397
as virtual functions, 416

contained classes, example, 406–409
continue statements

and for / while loops, 69, 444
usage and syntax, 446

control structures, syntax summary,
443–445

do-while, 444
if-else, 443
switch, 444
while, 443

conversions between data types
and binary files, 210
in C, 36–37
in FloatFraction subclass

example, 399
loss of data warnings, 34
and operator functions, 328–329,

370, 381
reinterpret_cast, 37
and sqrt function, 210
static_cast, 35, 88
and subclasses, 397

convert to uppercase example,
177–179

converting temperatures example,
23–27

copy constructors
and assignment operator

functions, 329–330
default, 370–372
described, 304–306
example, 306–310

473Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 473

copy constructors (continued)
and references, 305–306
and subclassing, 396

copying, deep / shallow, 370–372
cos function, 456
cosh function, 456
cout

and class print function, 332–333
as data object, 8, 15
and file-stream objects, 198–199
and polymorphism, 426–427
string data, 189

creation, of objects. See constructors
current directory, 199–200

data
class. See data members
declaration, 446–447
defined, 4–5
storage of variables, 34, 163–164

data cast. See conversions between
data types

data conversion functions, table,
454

data flow operators (<< and >>).
See stream operators

data hiding, 250
data members

assessing, 262
in Fraction class, 270
private. See private class data
protected. See protected class data
public. See public class data
public / private, 262–263
and struct, 263

data sharing, extern declarations,
232

data types. See also conversions
between data types

bool, 51, 331–332
char, 165
and classes, 249

composite, 364
discussion, 33–36
double, 22
file-stream objects, 198
float, 23
int, 35
introduction, 21–23
string. See string type
struct. See struct types
summary, 439–440
table, 439–440
void, 85, 104, 442

debugging, 10
decision-making, in programs, 37
declaration, data, 446–447
declaring, array of strings

and char* notation, 123
examples, 125, 183

declaring, arrays, 112
declaring, functions

described, 82–86
prototypes in #include files,

231–232
usage and syntax, 447

declaring, pointers, 142–144
decrement operators, table, 52
deep copying, 370–372
default constructors

assignment operator, 329–330
introduced, 294–296
String class example, 368
and subclassing, 396–397

default statements (in switch),
230–231, 445

delete operator
and clean-up, 365
destroying arrays, 348
introduced, 345

delimiters, 181
dereferencing pointers, 346–347
destroying allocated memory. See

delete operator

474 Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 474

destructors
in class declarations, 448
clean-up, 365
introduced, 250, 364–366
in String class example, 365–366
variable scope, 365
as virtual functions, 416

dice rolling, example, 106–109
directives, 16
directory, current, 199–200
disk files, 197–200. See also file-

stream objects
display file from command line

example, 221–223
display text file example, 203–205
dollars and cents, binary precision, 268
DOS shell, and RHIDE, 13
double precision floating point, 22
double-it function example, 145–147
do-while statements, 228–229, 444
dynamic allocation. See new operator
dynamic memory example, 349–350

efficiency
and bounds checking, 136
and inline functions, 320
and pointers, 156, 345
and references, 318–319

empty argument lists, functions, 85
empty function, of string class, 193
encapsulation

introduced, 246–247
and modules, 233–234

end of file (eof) function, 205
end user, defined, 6
endl, described, 17
eof function, 205
equality (==)

class operator function, 330–331
confusion with = (assignment),

38, 40–41
String class example, 368–369

error propagation, 236–237, 241
errors, logic, 9–10
errors, runtime. See exception han-

dling
escape sequences, 172, 200
even or odd example, 41–43
examples

analyzing comma-delimited
input, 181–185

array elements, 115–116, 117–121
array sorter, 149–153
arrays of strings, 181–185
binary files, 211–216
Boolean values, 56–57
building and running programs,

12–15
building strings (with string), 189
card dealer, 123–129, 130–135
cin.getline, 175–177
comma-delimited input, 181–185
command line operations,

221–223
compound statements, 73–76
constructors, 296–298, 299–301
contained members, 406–409
convert to uppercase, 177–179
converting temperatures, 23–27
copy constructors, 306–310
display file from command line,

221–223
display text file, 203–205
double-it function, 145–147
dynamic memory, 349–350
exception handling, 239–241
FloatFraction class, 389–394,

398–399, 418–422
floating point numbers, 23–27
for loops, 70–71
for statements, 68–69
Fraction arithmetic: add and

mult, 283–288
Fraction class, 249–250

475Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 475

examples (continued)
Fraction class, 333–338
Fraction class constructors,

299–301
Fraction class copy constructor,

306–310
Fraction class operators, 323–328
Fraction class support functions,

276–279
FractionUnits class, contained

members, 406–409
function usage, 88–95
get a number with cin.getline,

175–177
greatest common factor, 98–102,

239–241
if-else statements, 41–43
math library, 58–61
new keyword, 349–350
newlines, 18–19
odd or even, 41–43
operator functions, 320–328
overloading functions, 226–227
pass by reference, 144–147
Point class, 296–298, 320–323
pointers, 144–147, 149–153,

157–160
polymorphism, 418–422,

427–431
prime factorization, 102–106
prime number function, 92–95
prime number test, 58–61, 73–76
print 1 to N, 48–50, 70–71
Printable class, 427–431
printing a message, 12–15
printing array elements, 115–116
printing different type arrays,

226–227
printing multiple lines, 18–19
ProperFraction class, 399–403
random number generator,

106–109

random-access, 211–216
reading file-stream data, 203–205
reading from console, 175–177
recursive functions, 98–106
reference passing, 144–147
sorting arrays, 149–153
string building, 168–171
String class, 366–370, 377–381
string data, 189
StringParser class, 355–360,

427–431
strings, accessing individual char-

acters, 177–179
strings and arrays, 123–129,

130–135, 181–185
swap function, 147–148, 152,

224–226, 303–304
temperature conversion, 23–27
testing a person’s age, 56–57
testing randomness, 117–121
testing the Fraction class,

280–283
testing the Point class, 266–268
text file display, 203–205
triangle-number function, 88–92
virtual functions, 418–422
while loops, 48–50
writing to text file, 200–202
zeroing an array, 157–160

exception handling
centralized, 237
error propagation, 236–237
examples, 235, 239–241
exception types, 237–239
multiple try-catch blocks, 241
throw statements, 238
try-catch, 236–239
what function, 239
within functions, 235–236

exp function, 456
exponent field, in floating-point

data, 34

476 Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 476

expressions
compared to statements, 53–54
function calls as, 87
syntax, 441–442

extern declarations, 232–233
ExtString subclass example,

386–387

fabs function, 456
Fahrenheit conversions, 23–27
false and true, 50–51, 55–56
fields, in binary files, 209
file handles. See file-stream objects,

naming
file names, 200
files. See disk files; file-stream objects
file-stream objects. See also binary

files
closing, 199
creating (opening), 198
eof function, 205
failure to open, 202
fstream type, 198, 213
ifstream type, 198
input, output, generic, 198
introduced, 197–199
naming, 198
ofstream type, 198
opening, 198
read and write functions, 207,

208–210
sizeof function, 209
text / binary mode, 198
types, 198
writing, 198–199

find function, of string class, 193
float data type, 23
FloatFraction subclass example

adding constructors, 396–397
completed code, 398–399
declaration, 386
initial code, 389–394

and polymorphism, 413–415,
418–422

floating-point data
example, 23–27
introduced, 22
storage, 34

floor function, 456
folder, current, 199–200
for statements

compared to while statements, 69
examples, 68–69, 70–71
introduced, 66–67
local variables, 72–73, 134
usage and syntax, 444

Fraction class example
adding and multiplying, 283–288
completed example, 333–338
constructors, 299–301
conversion from integers, 328–329
copy constructor, 306–310
design, 249–250
inline functions, 271–273
introduced, 268–271
operators, 323–328
subclassing. See FloatFraction

subclass example; Fraction
Units subclass example;
ProperFraction subclass
example

support functions example,
276–279

virtual functions, 415–416
FractionUnits subclass example, 388,

406–409
friend functions

and operator functions, 317–318
ostream objects, 333
Point class example, 317–318
Printable class example, 430

fstream objects, 198, 213
function members. See member

functions

477Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 477

function overloading
array printing example, 226–227
constructors, 293
declarations, 225
described, 224–226
and object-oriented program-

ming, 225–226
operator functions, 315
as polymorphism, 255

function usage examples, 88–95
functions. See also member func-

tions
arguments, 85, 86, 100–101
behavior dictated by data type,

226
calling, 83–84, 87–88
calling themselves. See recursive

functions
categories, 82
and complex software, 83
concepts, 81–83
declaring. See declaring, functions
declaring vs. defining, 85
defining, 84, 86
execution flow (chart), 84
friend. See friend functions
inline, 271–273
overloading. See function over-

loading
parentheses required, 82
pass by reference. See pass by ref-

erence
prototypes. See functions, declar-

ing
recursive. See recursive functions
using, 84–88
virtual. See virtual functions

garbage collection, 348
GCF. See greatest common factor
generic file streams. See fstream

objects

getline function
in building strings example,

168–171
interaction with >> stream

operator, 174
reading string data, 172–174
string data, 189
and text files, 207

global functions, and operator
functions, 316–318

global variables. See also local
variables

anarchy in large programs,
246

arrays initialized, 113, 165–166
described, 95–96

GNU C++ compiler, 11
goto statements, 446
greatest common factor

concepts, 273–275
examples, 98–102, 239–241
Fraction class example, 278
introduced, 98–99
zero divisor, 235

hexadecimal numbering system,
140–141

hierarchy, contained classes, 406
hierarchy, subclasses, 387
high-level languages, 6

IDE. See integrated development
environments

if and if-else statements
example, 41–43
introduced, 37–39
usage and syntax, 443

ifstream objects, 198
include files. See #include
includes, virtual, 16, 58
increment, in for statements,

66–67, 71

478 Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 478

increment operators, 52. See also ++
(increment operator)

indexes, array
introduced, 112
nonexisting elements, 135–136
zero-based, 114–115

indexing nonexisting array elements.
See bounds checking

indirection operator (*)
introduced, 142–144
and passing variable references,

146–147
and swap function, 148

inheritance. See subclassing
initializer, in for statements, 66–67,

71
initializing

arrays, 113, 165–166
functions. See constructors
objects, 219–221
string data, 187–188
variables, 61

inline functions
and efficiency, 320
introduced, 271–273
virtual, 416

input / output files. See file-stream
objects

insert function, of string class, 193
instantiation, abstract classes,

424–425
insufficient memory, 348
integer data

introduced, 22
range, 35
storage, 34

integrated development environments
entering C++ programs, 8
RHIDE, 11
Visual Studio, 8

interfaces
and abstract classes, 424–426

introduced, 252–253
and reusability, 258

ios mode flags, 213

Japanese translation analogy,
164–165

Java (computer language), 7

keywords
in syntax diagrams, 3
and variable names, 29–30

late binding, 256, 415
LCM. See lowest common multiple
leaks, memory, 348, 366
legal names, rules, 29–30
less than or equal to (=) operator, 49
lexical analyzer. See StringParser

example
liberation, 433
linking a C++ program, 9–10
literals, syntax, 441
local variables, 134. See also global

variables
arrays uninitialized, 113, 165–166
described, 95–96
and function arguments, 100–101
in function definitions, 86, 90
in for statements, 72–73, 134

log, log10 functions, 456
logic errors, 9–10
looping, in programs

break statement, 77
continue statement, 69
and counting, 65–66
do-while loops, 228–229
for loops, 66–67
infinite loops, 48
introduced, 44–47
while loops, 44–47, 65–66

lower/upper-case letters. See case-
sensitivity

479Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 479

lowest common denominator,
275–276, 284

lowest common multiple
and adding fractions, 284
concepts, 275–276
Fraction class example, 278

machine code, defined, 5
magic boxes (variables), 20
main function

command line arguments, 220,
223

introduced, 14–15
returning a value, 19

math library
#include, 16
example, 58–61
functions, 455–457
introduction, 57–58

member functions. See also con-
structors; functions

accessing private data, 263–266
calling, 173
class declaration, 264
Fraction class example, 270
operator functions, 314

memory
addresses, 140–142
allocating. See new operator
dynamic memory example,

349–350
insufficient, 348
leaks, 348, 366
releasing. See delete operator
segments, 142

Microsoft Visual Studio, 8, 13–14
mode flags, fstream, 213
models, real-world, 433
modules (program), 231–234
modulus function. See remainder

(%) function
multiple modules, 231–234

multiplication-assignment operator
(*=), 265. See also assignment
operators

names, legal (in C++), 29–30
namespaces

class, 250
std, 17, 187, 190

new operator
allocating arrays, 347–348
allocating data, 343–345
bounds checking, 364
creating objects, 345–347
dynamic memory example,

349–350
example, 349–350
insufficient memory, 348
introduced, 343–345
objects, 345–347

newlines
and binary files, 206–207
creating, 17
example, 18–19
\n (newline), 172

nonzero values, as true, 50
NOT Boolean operation (!), 54
null character (\0), 166, 168
null pointer, returning, 186
null value, 108, 201

object files (.o file), 334
object-oriented programming

as C++ feature, 7–8
communication by messages,

431–432
introduced, 245–248
overloading, 225–226
real-world models, 433
reusability, 257–258
systems, 431–432

objects. See also classes
argument list, 219–221, 249

480 Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 480

cleanup, at object destruction,
250

constructors, 250
cout, 8
creation / destruction, 250. See

also constructors; destructors
defined, 248–249
new operator, 345–347
pointers to, 345–347
resident knowledge, 254, 427, 432

odd or even example, 41–43
ofstream objects, 198
OOPS. See object-oriented pro-

gramming
opening, files. See file-stream objects
operands, and operator functions,

314–315, 316
operator functions

<< stream operators, 332–333
efficiency and references, 318–320
examples, 320–328
as global functions, 316–318
introduced, 313–315
as member functions, 314–315
ostream objects, 332–333

operator overloading, 225–226, 255
operators (C++), 435–437
OR Boolean operation (||), 54
output files. See file-stream objects;

ofstream objects
overloading. See function overload-

ing; operator overloading
overriding

base class members, 386
in ProperFraction class, 402–403

parser. See StringParser example
Pascal (computer language), 6
pass by reference

example, 144–147
photocopy analogy, 146
and pointers, 139–140, 144

persistence, 414
placeholders, in syntax diagrams, 3
playing cards. See cards, dealing

examples
Point class example

constructors, 296–298
efficiency and references,

318–319
friend functions, 317–318
introduced, 261–262
member functions, 264–265
operator functions, 314–315
operators, 318–319, 320–323
private data, 263–266
testing, 266–268

pointers
arithmetic operations, 154–155
and array processing, 156–157
comparing in String example,

368–369
concepts, 139–140
declaring, 142–144
dereferencing. See dereferencing

pointers
examples, 144–147, 149–153,

157–160
and references, 302–304, 306
and string manipulation func-

tions, 166
to unnamed variables, 344–345
using, 142–144

polymorphism
and cout, 426–427
defined, 413
examples, 413–415, 418–422,

427–431
introduced, 253–255
and reusable code, 432
and traditional languages,

256–257
and virtual functions, 255–257
void pointers, 426–427

481Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 481

pow function, 456
precedence

of Boolean operators, 55
C++ operators, 435–437
and pointer arithmetic, 159–160

precision, storing dollars and cents
in binary, 268

preprocessor directives, 16
prime factorization example,

102–106
prime number function example,

92–95
prime number test examples, 58–61,

73–76
Printable class example, 427–431
printing examples

array elements, 115–116
different type arrays, 226–227
messages, 12–15
multiple lines, 18–19
1 to N, 48–50, 70–71

private class data. See also protected
class data

and class declarations, 448
example, 263–266
and struct, 263
and subclasses, 393–394

private function members. See
member functions

private keyword
in class declarations, 448
introduced, 263–264. See also

private class data
program, defined, 1
programming, introduction, 1–6
programs, defined, 5
programs, logic errors. See logic

errors
projects, in Visual Studio, 13
ProperFraction subclass example,

387, 399–403

protected class data
and class declarations, 448
introduced, 404–406
and virtual functions, 414

protected keyword, 405, 448. See also
protected class data

prototypes, function. See functions,
declaring

pseudocode, described, 2–3
public class data

base classes, 388–389
and class declarations, 448–449
public functions, 263–266
and struct, 263

public keyword. See also public class
data

and C language, 296
in class declarations, 448–449
and struct, 289

pure virtual functions, 423–424

quotation marks, characters vs.
strings, 180

rand function
dice roll example, 107, 109
usage and syntax, 457

random access, 211–216. See also
binary files

random number generator example,
106–109

randomization functions, 457
rational number class. See examples,

fraction class
read and write functions, 207,

208–210
reading file-stream data example,

203–205
reading from console example,

175–177
records, in binary files, 213

482 Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 482

recursive functions
described, 97–98
examples, 98–106
and inlining, 273

reference passing example, 144–147
references

and assignment operator func-
tions, 330

and copy constructors, 305–306
described, 302–304
and indirection, 146–147
and operator function efficiency,

318–320
and pointers, 302–304, 306
and returning new objects, 377
swap function example, 303–304

reinterpret_cast, 37, 210
relational operators, 49, 50
releasing memory. See delete

operator
remainder (%) function

described, 42–43
example for playing cards, 129
using to find greatest common

factor, 98–99
replace function, of string class,

193
reserving space in strings, 183
resource management issues, 363
return statements, 86
return values from functions, 81, 86
returning values from main, 19
reusable code, 257–258, 432
RHIDE development environment,

11, 12–13
runtime library. See C++ library
runtime memory allocation. See new

operator

sample code, on CD, 11
scaling, array pointers, 155

scope, 365. See also global variables;
local variables

scope prefix (::), 264–265, 292, 423
seed, random number, 108, 120, 456
seekp function, 216
segments, memory, 142
semicolons

after aggregates, 113
and class declarations, 262
and compound statements, 38
used to end C++ statements,

15, 53
shallow copying, 370–372
short-circuit logic, 54–55
sign bit, in data storage, 34
sin function, 456
single character functions, table, 455
single quotation mark, and strings

vs. characters, 180
sinh function, 456
16-bit addresses, 141
size function, 192
sizeof function, 209, 210
sorting arrays example, 149–153
source code, defined, 5
sqrt function

and conversions between data
types, 210

usage, 57–58
usage and syntax, 456

srand function, 108, 120, 457
stack, function calls, 97–98
standard interfaces. See interfaces
standard library. See C++ library
statement blocks. See compound

statements
statements

compared to expressions, 53–54
defined, 5
multiple on a line, 53
syntax, 442–443

483Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 483

static_cast, 35–36, 88
strcat function, 167–168, 453
strchr function, 358, 359, 453
strcmp function, 369, 453
strcpy function, 167–168, 453
strcspn function, 454
stream operators

<<, and cout, 15
>>, and cin, 20
and getline function, 173–174
operator functions, 332–333
and text files, 207

streams (data). See also file-stream
objects

defined, 197–198
string building example, 168–171
String class example

assignment operator functions,
374–375

concatenation function, 375–377
cpy function, 374–375
default constructors, 368
destructors, 368
== (equality) function, 368–369
final, 377–381
full implementation, 377–381
introduced, 363
operator+ function, 375–377
simple implementation, 366–370
and string type, 363
subclassing, 386–387

string data. See also string type
accessing individual characters,

177–179, 191–192, 193
as array of type char, 165–166
and arrays, 122–123
concatenation, 167, 188–189
declaring as char, 123
declaring as string, 187
defined, 20
delimited, 181
example, 189

initializing, 187–188
introduced, 22
library functions, 453–455
local / global initialization, 165–166
manipulation functions. See

string manipulation functions
and memory address (string

type), 193
memory layout, 163–164
reading, 172–174
reserving space in arrays, 183
single/double quotation marks,

180
terminator, 166, 168

string manipulation functions
described, 166–168
pointer arguments, 166
string data, 188–189
in string library (<string.h>),

166–168
table, 453–454

string type. See also String class
example

described, 186–189
example, 189–191
member functions (table), 193
and memory address, 193
size function, 192
and String class example, 363

StringParser example
class code, 355–360
constructors, 353
design, 350–355
member functions, 353

strings, accessing individual charac-
ters example, 177–179

strings and arrays examples,
123–129, 130–135, 181–185

strlen function
compared to size, 192
usage, 167
usage and syntax, 454

484 Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 484

strncat function, 167–168, 454
strncmp function, 454
strncpy function, 167–168, 454
strpbrk function, 454
strrchr function, 454
strspn function, 454
strstr function, 454
strtok function, 181, 248, 454
struct types

and default constructors, 295–296
and public keyword, 289
syntax, 449
treated as a class, 263, 296

structured exception handling. See
exception handling

subclassing. See also inheritance
adding more specialized abilities,

399–400
and constructors, 395–397
declaration, 448–449
default constructors, 396–397
hierarchy, 387
introduced, 251–252, 385–388
passing objects to base class, 427
and public base class, 388–389
and reusability, 258
subclasses, 399
type conflicts, 395, 397–398

subscripts, index. See indexes, array
swap function examples, 147–148,

152, 224–226, 303–304
swap function, of string class, 193
switch-case statements, 230–231,

444–445
symbolic names, and #define, 122
syntax diagrams

assignment operator function,
330

calling member functions, 173
class, 261
described, 3
destructors, 364

double data type, 22
do-while statement, 229
for statements, 67, 71
function declaration, 85
function definition, 86
if statements, 37
if-else statements, 39
int data type, 35
member function definition, 265
new operator, 344, 346
operator functions, 313
pointer declaration, 142
size function, 192
static_cast, 36
subclass declaration, 385
summary, 441–449
throw statements, 238
try-catch. See exception handling
two-dimensional arrays, 136
while statements, 44

systems, and object-oriented
programming, 433

tab (\t), 172
tan function, 456
tanh function, 456
temperature conversion example,

23–27
terminating null, 166, 168
testing a C++ program, logic errors,

10
testing randomness example,

117–121
text data. See string data
text editors

and binary files, 208
entering C++ programs, 8
viewing text files, 201

text file display example, 203–205
text files, compared to binary.

See binary files
32-bit addresses, 141–142

485Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 485

this keyword
and assignment operator func-

tions, 330
described, 372–373
and operator functions, 314–315

throw statements, 238
time function, and random seeds,

108, 457
tolower function, 179, 455
toupper function, 178, 179, 455
triangle-number function example,

88–92
true and false, 50–51, 55–56
try statements. See exception

handling
try-catch exception handling. See

exception handling
two-dimensional arrays. See arrays,

two-dimensional
type conflicts, subclassing, 395,

397–398
type information, functions. See

functions, declaring
types of variables. See data types

uninitialized variables, local and
global arrays, 113

union keyword, 449
unnamed variables, 344
upper/lower-case letters. See case-

sensitivity
user. See end user, defined
using statements, 16

namespace std, 17, 187, 190

variables. See also global variables;
local variables

as buckets, 33

declaring, 21
external, 232–233
initializing when declared, 61
legal names, rules, 29–30
as magic boxes, 20–21

virtual functions
calling implementation,

416–418
discussion, 415–416
example, 418–422
introduced, 413
performance considerations,

416–418
and polymorphism, 255–257
and protected class data, 414
pure, 423–424
restrictions, 416

virtual includes, 16, 58
virtual keyword. See virtual

functions
Visual Studio, 8, 13–14
void data type, 85, 104, 442
void pointers, and polymorphism,

426–427

warnings, loss of data, 34
what function, 239
while statements

compared to for statements, 69
example, 48–50
introduced, 44–47
usage and syntax, 443

white space, and cin, 173–174
write (and read) functions, binary

files, 207, 208–210

zero-based indexing, 114–115
zeroing an array example, 157–160

486 Index

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 486

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 487

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 488

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 489

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 490

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 491

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 492

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 493

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 494

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 495

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 496

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 497

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 498

www.informit.com

YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-

depth features, interviews, and IT reference recommen-

dations – all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+

fully searchable on line books. For a limited time, you can

get your first 14 days free.

Catalog

Review online sample chapters, author biographies

and customer rankings and choose exactly the right book

from a selection of over 5,000 titles.

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 499

Keep Up to Date with

PH PTR Online
We strive to stay on the cutting edge of what’s happening in
professional computer science and engineering. Here’s a bit of
what you’ll find when you stop by www.phptr.com:

What’s new at PHPTR? We don’t just publish books for the
professional community, we’re a part of it. Check out our convention
schedule, keep up with your favorite authors, and get the latest reviews
and press releases on topics of interest to you.

Special interest areas offering our latest books, book series,
features of the month, related links, and other useful information to help
you get the job done.

User Groups Prentice Hall Professional Technical Reference’s User
Group Program helps volunteer, not-for-profit user groups provide their
members with training and information about cutting-edge technology.

Companion Websites Our Companion Websites provide
valuable solutions beyond the book. Here you can download the source
code, get updates and corrections, chat with other users and the author
about the book, or discover links to other websites on this topic.

Need to find a bookstore? Chances are, there’s a bookseller
near you that carries a broad selection of PTR titles. Locate a Magnet
bookstore near you at www.phptr.com.

Subscribe today! Join PHPTR’s monthly email newsletter!
Want to be kept up-to-date on your area of interest? Choose a targeted
category on our website, and we’ll keep you informed of the latest PHPTR
products, author events, reviews and conferences in your interest area.

Visit our mailroom to subscribe today! http://www.phptr.com/mail_lists

30855 19 pp469-500 r2jm.ps 8/19/04 10:54 AM Page 500

