
You’ve probably picked up this book because you’ve heard that aspects will
solve difficulties you’re having with writing your object-oriented software.
You’ve heard that aspects offer a new way to modularize your code, but
you’re here because you have questions like, What are aspects? Why do I
need them? Are objects obsolete? Or perhaps you’ve picked up this book
because you’ve tried programming with an aspect-oriented language and
are interested in delving more deeply into the paradigm. You may have
questions like, How do I plan for aspects before design and implementation?
and How do I design aspects so that I can better plan for implementation?
This book answers these questions and also guides you through the process
of identifying and designing your aspects.

Software Development and the Object-Oriented
Paradigm

Few would disagree that the object-oriented paradigm is one of the most
important contributions to software development in its history. Those of us
who remember developing software without objects most keenly appreci-
ate their value. Everything to do with a “thing” is all in one place! When we
want a “thing” we already have in one application to be used in another

1

1

Introduction

01 clarke.qrk 2/28/05 4:16 PM Page 1

application, we can just pick it up and use it! And there are many more ben-
efits besides.

To this day, we both remain big fans of objects. But of all the benefits asso-
ciated with object-oriented development, the two of encapsulation and
reuse that we hinted at above were not selected lightly. Can we really always
put everything to do with a thing all in one place? Have you ever found that
there was some piece of processing that did not seem to fit in any one par-
ticular class, and yet it did not feel as if it belonged in a class in its own right
either? This is probably because it was too tightly coupled to behaviors in
many other classes.

Think about, for example, objects that require some transaction manage-
ment. It is difficult, if not impossible, to modularize all setup, communica-
tion with a transaction manager, and rolling back that may be needed to
handle transactions. This is because all objects (or methods in objects) that
require transaction management need to be aware that their operation is
impacted by a transaction context and must behave accordingly. In other
words, transaction-handling code must be placed in every object that
needs it. Take a look at the code you’ve written in the past, and you will
probably find many examples of similar (if not the same) pieces of code
repeated in different places. The common, though compromised, solution
to a problem like transaction management is to copy the code into the dif-
ferent places that need it. Code copying then results in poor modulariza-
tion for much of your code and leaves you with considerable maintenance
and evolution headaches. This phenomenon is also known as scattering, as
code for a concern is scattered across multiple parts of the system.

In addition, from a reuse perspective, modules that contain code relating to
many concerns are likely to be less generally useful in different situations.
The phenomenon where multiple concerns are intermixed in the code is
known as tangling.

Of course, good use of design patterns will help you encapsulate in many
situations, but you will find the repetition and concern-mixing phenome-
na even where design patterns are well used. Ultimately, you will always
encounter processing that relates to and impacts upon many portions of a
system.

2 CHAPTER 1

01 clarke.qrk 2/28/05 4:16 PM Page 2

INTRODUCTION 3

The Case for Aspects

We know that a program must be correct and we can study it from
that viewpoint only; we also know that it should be efficient and
we can study its efficiency on another day. . . . But nothing is
gained—on the contrary—by tackling these various aspects
simultaneously. It is what I sometimes have called “the separation
of concerns.”

—EDSGER DIJKSTRA1

Aspect-oriented programming (AOP)2 was introduced to provide a solution
to the scattering and tangling described above. It is often described as lib-
erating developers from the hegemony of the dominant decomposition.3

Simply put, this means that whichever modularity you choose (objects,
functions, etc.) will at some point impose unwanted constraints on your
design. In the object-oriented case, the dominant decomposition is the
modularity of classes, and methods. The hegemony refers to the fact that
when pinned to object-orientation, developers are forced to make design
decisions that lead to scattering and tangling. In some cases, developers
must be able to break out of that modularity and design code that crosscuts
an object model.

AOP allows a developer to program those crosscutting portions of a system
separately from any of these structural entities. Even though in its infancy,
AOP has proven to be of great use in modularizing source code and has pro-
vided a wide spectrum of benefits, from performance enhancement to
more evolvable code. Aspect-oriented languages provide support for pro-
gramming such crosscutting concerns, or aspects, in one place and then
automatically propagating the behavior to the many appropriate points of
execution in the code. In this way, aspects allow a developer to specify
behavior that overlays an existing class model.

1 “On the role of scientific thought,” EWD. 477, 30 August 1974, Neuen, The Netherlands.
2 G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. “Aspect-
Oriented Programming.” In ECOOP'97—Object-Oriented Programming, 11th European
Conference, LNCS 1241, pp. 220–242, 1997.
3 P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr., “N Degrees of Separation: Multidimensional
Separation of Concerns,” Proc. ICSE 99, IEEE, Los Angeles, May 1999, ACM press, pp. 107–119.

01 clarke.qrk 2/28/05 4:16 PM Page 3

However, aspects certainly should not be used as the hammer for every
nail. Just as considering when to use inheritance, it is important to consid-
er when an aspect is an appropriate choice for some functionality.
Nonetheless, aspect-orientation has been shown, when used properly and
appropriately, to transform necessarily hairy code into something manage-
able and reasonable.

What Is an Aspect?

Simply put, an aspect is a particular kind of concern. A concern is any code
related to a goal, feature, concept, or “kind” of functionality. An aspect is a
concern whose functionality is triggered by other concerns, and in multi-
ple situations. If the concern was not separated into an aspect, its function-
ality would have to be triggered explicitly within the code related to the
other concern and so would tangle the two concerns together. Additionally,
because the triggering is in multiple places, the triggers would be scattered
throughout the system.

There are many examples of behavior like this—indeed, any functionality
that has policies that need to be carried out in different modules of an
object-oriented code base are likely candidates.

We’ve already described transaction management as an example of such
code. Another typical example is logging or tracing code, since to add trac-
ing code to a system, many locations must be modified, and every time the
tracing scheme is changed, all those locations have to be altered. Another
example is synchronization code, which is painful to implement, since it
requires a developer to visit each method to be synchronized and add the
necessary locking and unlocking functionality. Any code that may be need-
ed in multiple places has the potential to be problematic. Having a pro-
gramming model that means such code only needs to be written once and
is in only one place when it requires change or deletion provides an obvi-
ous gain for the developer.

Aspects are not just a neat trick for adding logging or synchronization or
other simple functionality. Such an assumption would be analogous to
thinking of object-orientation as simply a means of organizing source code
files. Aspects are a programmatic construct in and of themselves. Aspects

4 CHAPTER 1

01 clarke.qrk 2/28/05 4:16 PM Page 4

INTRODUCTION 5

provide active support, not just textual code manipulation, for separating
concerns in source code. Aspects have been applied to far more complex
crosscutting concerns than synchronization, logging, and tracing. For
example, they have been applied in operating systems as a way to encapsu-
late and improve their performance.4

Let’s look at a small example. In any banking system, almost all changes to
the balance of an account affect more than one place—for example, trans-
ferring funds requires debiting one account and crediting another; interest
to be credited to a customer account implies a liability to the bank’s ledger
(its own account); charges on a customer account imply a corresponding
bonanza to the bank’s ledger. These are classic examples of transactions
that must complete in entirety to be valid. Figure 1–1 illustrates simplified
code for these examples.

Figure 1–1 Transaction handling occurring in multiple places.

4 “Back to the Future: A Retroactive Study of Aspect Evolution in Operating System Code.” Yvonne
Coady and Gregor Kiczales. In Proceedings of the International Conference on Aspect-Oriented
Software Development 2003.

01 clarke.qrk 3/7/05 10:23 AM Page 5

In Figure 1–1, each of the places where transaction handling occurs in each
sequence of actions is circled. As you can see, transaction functionality is
present in multiple places in the code. Because transaction handling is trig-
gered in different situations by other concerns (such as money transfer,
account updating, interest charging), transaction handling should, for this
system, be implemented as an aspect.

Aspects can also be evident at earlier phases of the development lifecycle.
Aspects manifest in requirements as behavior that is described as being
triggered by many other behaviors. Requirements that described the
banking system, for instance, would have mentioned that transaction
handling was required for a range of activities, including managing inter-
est, transferring money, and so on. Aspects manifest in UML designs as
behavioral design elements that are triggered by other behavioral design
elements in the UML models. Designs that describe the banking system
would have transaction behavior tangled in the behavioral models for the
banking activities.

Why Consider Aspects in Analysis and Design?

As with systems in any programming paradigm, aspect-oriented systems
need to be designed with good software engineering practices in mind. The
analysis and design of a system are at least as important as the implemen-
tation itself, and many professionals consider these phases to be more sig-
nificant in their contribution to the success of a project as a whole.

In any development effort, it is helpful for a developer to be able to consid-
er the structure of the final implementation at all stages of the software life-
cycle. Otherwise, the developer would have to make a mental leap to get
from a particular way of encoding design to another way of coding the soft-
ware. In other words, developers must be able to easily map their designs
to the code in order for the design to continue to make sense during the
development lifecycle.

In addition to seamless traceability between the design and code, we also
consider the benefits of separating aspects in the design for the design’s
own sake. The same benefits derived at the code level through applying
aspect orientation can be derived at the design level. In the infancy of

6 CHAPTER 1

01 clarke.qrk 2/28/05 4:16 PM Page 6

aspect orientation, developers simply used object-oriented methods and
languages (such as standard UML) for designing their aspects. This proved
difficult, as standard UML was not designed to provide constructs to
describe aspects: Trying to design aspects using object-oriented modeling
techniques proved as problematic as trying to implement aspects using
objects. Without the design constructs to separate crosscutting functional-
ity, similar difficulties in modularizing the designs occur, with similar
maintenance and evolution headaches. We need special support for
designing aspects, as we can then improve the design process and provide
better traceability to aspect-oriented code.

A similar set of problems arises when analyzing requirements documenta-
tion to determine how to design a system. Approaches for decomposing
requirements from an object-oriented perspective simply don’t go far
enough when trying to plan for aspect orientation. Heuristics and tools to
support such an examination are helpful to the developer.

Aspects and Other Concerns

In the world of aspect-oriented language development, aspects have taken
on different forms. Two are most prominent: the asymmetric and the sym-
metric approaches.

Asymmetric Separation

In the asymmetric school of thought, aspects are separate from the core
functionality of a program. Aspects are encoded as events that are triggered
before, after, or as a replacement for certain other events, or in certain sit-
uations are located in the core. They describe additional dynamic behavior
of a system that will have an effect on the core functionality. In a distributed
system, for instance, there may be a collection of domain-specific objects
that need to be managed in terms of distribution, synchronization, and
transaction management.

The core contains the structure and behavior relevant to the domain
functionality of the system. Separate from that core are aspects like the
distribution of the objects in the system, the synchronization scheme

INTRODUCTION 7

01 clarke.qrk 2/28/05 4:16 PM Page 7

8 CHAPTER 1

associated with the methods belonging to those objects, and the wrap-
ping of a set of operations into a single transaction. These are described
in a separate module (each in its own aspect) and are invoked at certain
strategic points in the execution of the core of the program. For instance,
before certain methods are executed, the synchronization aspect may be
used. Or, transaction-handling processing is initiated before and after the
set of operations that make up a single transaction. In our banking
example, as illustrated in Figure 1–2, the core is the set of banking-specif-
ic classes, and the aspect is a separate transaction handling entity.

BankLedger

debitInterest()
creditLoanInterest()
creditCharges()

ChargesManager

applyCharges()

InterestManager

applyInterest()

Account

transfer(int, Account)
deductCharges()
creditInterest()
credit(int)
debit(int)

Checking

Savings

Loan

Customer

void applyInterest
 (Account acct,
 BankLedger ledger)
{

 acct.creditInterest()
 ledger.debitInterest()

}

Core

Aspect

before()
{
 transaction = new Transaction()
 transaction.begin()
}

after()
{
 transaction.commit()
}

TransactionManagement
Transaction transaction
before()
after()

woven into
woven into

Transaction

begin()
commit()

Figure 1–2 Aspects and core in the asymmetric paradigm.

01 clarke.qrk 2/28/05 4:16 PM Page 8

At a conceptual level, aspects have two important properties in this
scheme. First, the aspect will only be triggered because of some execution
in the core—for example, transaction handling is required only when
changes are made to the balances of accounts. Second, the aspect is highly
likely to be triggered in many parts of the system—it really is not generally
all that useful to separate design/code into an aspect if it is executed in only
one part of a system.

Table 1–1 provides definitions of the terms as typically used in this paradigm.

INTRODUCTION 9

Table 1–1 Definition of Terms in the Asymmetric Separation Paradigm

Term Description

Crosscutting Concern behavior that is triggered in multiple situations.

Advice The triggered behavior.

Aspect The encapsulation of the advice and the specification of where the advice is
triggered.

Core The traditional object-oriented part of the system to which aspects are applied.

Joinpoint A possible execution point that triggers advice.

Pointcut A predicate that can determine, for a given joinpoint, whether it is matched by
the predicate

Weaving Applying the advice to the core at the joinpoints that match the pointcut state-
ments in the aspects.

Symmetric Separation

In the symmetric separation model, in addition to the modularization of
aspects, the core as described above is also analyzed for further modular-
ization. Consider the core banking system from Figure 1–1. This example
illustrates a small amount of real banking functionality with three basic
features or concerns: transferring funds between two accounts, applying
charges to an account, and applying interest to an account. In a real bank-
ing system, not only are there many other features, but these three features

01 clarke.qrk 2/28/05 4:16 PM Page 9

10 CHAPTER 1

are subject to a significant number of banking rules. These rules depend on
many different properties, such as the type of account, type of customer,
legal and tax concerns (national/EU or state/federal, etc.), and so on.
Figure 1–3 illustrates how it is possible that each feature is likely to result in
many other methods that are likely to have an impact across the core set of
banking classes.

Figure 1–3 necessarily depicts just a small proportion of the possible
impact of each of these three features on the classes. As you can see, there
are multiple methods in the account classes that handle the business rules.
The Checking, Savings, and Loan classes all have many methods related
to checking charges and checking interest. It may appear as if those could
just be swept into the Account superclass. Unfortunately, that’s not the
case. Each of the accounts handles those rules very differently, and so the
functionality has to be present in each of them.

Figure 1–3 Multiple concerns in the asymmetric core.

01 clarke.qrk 2/28/05 4:16 PM Page 10

We hope you can visualize the potential real impact of including the full
behavior not just of these three features, but also of all banking features on
the core system. In the symmetric paradigm, different features of the sys-
tem can be modularized into separate programs, as illustrated at the design
level in Figure 1–4.

An entire system is therefore made up of bits of separate functionality that
could be thought of as features or concerns. These can then be recombined
in various ways to form a functioning whole. With this approach, a set of
distributed objects would be formed by composing bits of basic object
functionality together with bits of distribution functionality and synchro-
nization functionality and transaction functionality.

At first glance, the duplication present in the symmetric approach looks as
if it actually worsens scattering. For instance, all of the concerns except for
the Transaction Management concern in Figure 1–4 have an Account
class as well as a Checking class, a Savings class, and a Loan class. This
duplication is required in the symmetric approach in order to provide a
complete view of the system from the perspective of a particular concern.
The completeness of the view enhances separate understandability of a
particular concern in the system.5 This understandability is achieved
through increases in locality: Only and all relevant functionality for a con-
cern is present within the concern module. Concern maintainability is
also considered enhanced because of this functional locality. It is true that
altering every method belonging to a class would require visiting many
concerns, but since maintenance efforts are often performed to address
particular concerns, the locality of all concern functionality within an
identifiable group of modules is actually a help to system maintainability.

Of course, the symmetric approach can be applied on a continuum. It is
unnecessary to keep minute concerns separate, just as it is unnecessary to
bundle all the core concerns together. This spectrum is one that the devel-
oper is encouraged to explore, as each extreme has its own trade-offs and
advantages.

INTRODUCTION 11

5 Asymmetrically vs. Symmetrically Organized Paradigms for Software Composition. W. H. Harrison,
H. L. Ossher, P. L. Tarr, IBM Research Division, Thomas J. Watson Research Center. RC22685
(W0212-147) December 30, 2002.

01 clarke.qrk 2/28/05 4:16 PM Page 11

12 CHAPTER 1

Apply Charges

BankLedger

creditCharges()

ChargesManager

applyCharges()

Account

deductCharges()

Checking

deductCharges()
calculateCharges()
checkChargesRule1()
checkChargesRule2()
checkChargesRuleN()

Savings

deductCharges()
calculateCharges()
checkChargesRule1()
checkChargesRule2()
checkChargesRuleN()

Loan

deductCharges()
calculateCharges()
checkChargesRule1()
checkChargesRule2()
checkChargesRuleN()

Apply Interest

BankLedger

debitInterest()
creditLoanInterest()

InterestManager

applyInterest()

Account

creditInterest()
deductInterest()

Checking

calculateInterest()
creditInterest()
checkInterestRule1()
checkInterestRule2()
checkInterestRuleN()

Savings

calculateInterest()
creditInterest()
checkInterestRule1()
checkInterestRule2()
checkInterestRuleN()

Loan

calculateInterest()
debitInterest()
checkInterestRule1()
checkInterestRule2()
checkInterestRuleN()

Account

transfer(int, Account)
Customer

Transfer Funds

Checking

credit(int)
debit(int)

Savings

credit(int)
debit(int)

Loan

credit(int)
debit(int)

Aspect

TransactionManagement
Transaction transaction
before()
after()

Transaction

begin()
commit()

woven
into

woven
into

woven
into

Figure 1–4 Separation of different features in the symmetric paradigm.

01 clarke.qrk 2/28/05 4:16 PM Page 12

The terms for the symmetric approach are given in Table 1–2. Notice that the
terminology for this approach is different from the asymmetrical approach
described above. Crosscutting, for instance, takes a wider stance: that it is
widely triggered functionality, but also that structure and behavior (con-
cepts) related to a particular concern are scattered throughout the system.

INTRODUCTION 13

Table 1–2 Definition of Terms in the Symmetric Separation Paradigm

Term Definition

Concern Some “kind” of functionality in your system. This could be a fea-
ture or a type of processing.

Crosscutting A concern triggered in multiple situations or whose structure
and behavior are scattered across the code base and tangled
with code related to other concerns.

Composition Combining the separately implemented concerns to form a
functioning system.

The Theme Approach

In this book, we cover how to identify aspects in a set of requirements and
how to model them in UML style designs. The methodology we introduce
here is the Theme approach to analysis and design. The terminology we use
is a hybrid of the symmetrical and asymmetrical paradigms. The terminol-
ogy is described in Table 1–3. Grayed-out cells in the table indicate that the
term is not used in the particular paradigm.

What Is a Theme?

The word theme should not be considered a synonym for aspect. Themes
are more general than aspects and more closely encompass concerns as
described above for the symmetric approach. We view each piece of func-
tionality or aspect or concern a developer might have as a separate theme
to be catered to in the system. You can see in Table 1–3 that a concern is
described as “Some ‘kind’ of functionality in your system. This could be a
feature or a type of processing,” and a theme is described as “An encapsu-
lation of a concern.”

01 clarke.qrk 2/28/05 4:16 PM Page 13

14 CHAPTER 1

Term
Themee Approach
Definition

Asymmetricc Separation
Definition

Symmetric
Separation
Definition

Concern Some “kind” of functionality in your system. This could be a feature or a type of
processing.

Theme An encapsulation of a
concern.

Crosscutting Triggered in multiple situations. Triggered or located
in multiple places.

Concern Scattering When the behavior
related to a concern is
found in more than one
class

One kind of
crosscutting.

Crosscutting theme A theme that has some
behavior triggered by
other themes in multiple
situations.

Concept sharing
theme

A theme that describes
domain concepts also
described in another
theme, though from its
own perspective. Solves
difficulties associated
with concern scattering.

One kind of concern.

Aspect A crosscutting theme parameterized to handle the
triggers for its behavior. Solves crosscutting.

A concern, whether
triggered or not.

Base Base theme: the theme
that triggers any aspect’s
behavior

The base: themes that
trigger a particular
aspect’s behavior and
themes that are not
aspects.

The core: traditional OO
design into which aspects
are woven.

Composition Combining themes
based on a composition
relationship.

Weaving an aspect into the
core.

Combining concerns
based on a
composition
relationship

Merging Merging themes that
share concepts and
composing base and
aspect themes.

One kind of
composition.

Binding Specifying the triggers of
the aspect from the base.

Weaving an aspect into the
core.

Table 1–3 Definition of Terms as Used in This Book

01 clarke.qrk 2/28/05 4:16 PM Page 14

For example, the three banking-related features and the transaction-
handling component in Figure 1–4 are four separate themes. Themes can
encapsulate aspect behavior (behavior that is triggered in multiple situa-
tions), but can also encapsulate non-aspect concern functionality.

At the requirements level, a theme is a subset of the responsibilities
described in a set of requirements. At the design level, themes include the
structure and behavior needed to carry out their requirements-level
responsibilities.

Relationships Between Themes

Themes may be related to each other in the same way as requirements or
features or aspects are related to other parts of the system. Such relation-
ships may cause overlaps in the themes. There are two ways in which
themes can relate: by sharing concepts and by crosscutting.

Concept Sharing

The first category of relationship is concept sharing, where different themes
have design elements that represent the same core concepts in the domain
(see Figure 1–5). Take, for example, the transfer funds, apply charges, and
apply interest features in Figure 1–4. Each of these three features works with
Account—all three work with Checking and Savings accounts, while two

INTRODUCTION 15

Figure 1–5 Themes related by concept sharing.

01 clarke.qrk 2/28/05 4:16 PM Page 15

16 CHAPTER 1

of them also work with Loan accounts. Each theme contains specifications
for those same concepts designed from the perspective of the theme.
Another way of looking at concept sharing is to think of it, at some level, as
“structure” sharing. Strictly speaking, though, we don’t consider that themes
actually “share” structure because each theme will have its own version as
appropriate to the feature under design. Encapsulation in this manner has
the benefit of locality, where only and all relevant functionality for a concern
is present in a theme.

Concept sharing is one category of crosscutting in the symmetric separa-
tion paradigm, as is shown in Table 1–3. Concept sharing is not discussed
in the asymmetric separation paradigm. Encapsulation in this manner has
the benefit of locality, where only and all relevant functionality for a con-
cern is present in a theme.

Crosscutting

The second category of relationship is the asymmetrical crosscutting,
where behavior in one theme is triggered by behavior in other themes.
Transaction handling from Figure 1–4 is an example of such a theme. Table
1–3 shows that this definition is shared with the asymmetrical separation
approach and is considered “one kind of crosscutting” in the symmetrical
separation approach.

Throughout the book, we use the terms base theme, crosscutting theme, and
aspect theme. Aspect and crosscutting themes are used synonymously and
are always themes that have behavior triggered in tandem with behavior in
other themes. Aspects in the Theme approach are the same as aspects in
the asymmetric separation approach.

Base themes are the themes that trigger aspect themes. They might be
themes that share concepts with other themes, and they might be aspects
themselves and have their own base. We also sometimes talk about a base
that is the result of a composition of other themes to which we then apply
an aspect (see Figure 1–6).

As seen in Table 1–3, we don’t use the term core in relation to themes, since
we consider a core, in the sense of the asymmetric separation paradigm, to
be made up of multiple bases. In this we adhere to the symmetrical
approach.

01 clarke.qrk 2/28/05 4:16 PM Page 16

Applying the Theme Approach

The Theme approach is made up of two portions: Theme/Doc, which is a set
of heuristics for analysis of software requirements documentation, and
Theme/UML, which is a way to write themes (both aspects and base) as UML.
In this section, we present a high-level overview of the activities involved in
applying the Theme approach. These activities are depicted in Figure 1–7.

Analyzing Requirements with Theme/Doc

At the requirements level, themes are “responsible” for certain functionali-
ty described in the requirements document. Themes at this point are,
essentially, named subsets of requirements.6

Theme/Doc (which stands for Themes in Documentation) is the part of the
Theme approach that assists in identifying themes in requirements docu-
ments. It also provides heuristics for identifying which of those themes are
crosscutting, or aspects.

INTRODUCTION 17

Figure 1–6 Themes related by crosscutting: The base theme triggers the aspect theme.

6 Requirements can take any form as long as they contain text. For instance, they can be entire use

cases or sentences within use cases. In this book, we talk about them as though they’re individual

sentences in an informally written document.

01 clarke.qrk 2/28/05 4:16 PM Page 17

18 CHAPTER 1

The Theme/Doc analysis process has two main activities: (1) identifying the
main themes in your system, and (2) determining whether the responsibili-
ties of a certain theme mean that it should be modeled as an aspect. You
interleave these two activities (theme identification and aspect identifica-
tion) to plan for design or accommodate changes as your system evolves.

Starting Out

The process begins with determining an initial set of themes. These might
be just a set of concerns you think seem important at first glance. Or, if
you’ve already applied a requirements analysis approach and have a set of
features or concerns readily in mind, then using those might make sense.

The Theme/Doc tool provides graphical depictions of relationships
between requirements and themes. Figure 1–8 shows a stylized
Theme/Doc view. You can see in the figure that diamonds represent themes
and rounded boxes show the text of a requirement. If a requirement’s text

Analyze Requirements

(Theme/Doc)

Design Themes

(Theme/UML)

Identify

Themes
Identify

Aspects

Design

Themes
Specify

Relationships

Figure 1–7 High-level view of the Theme approach activities.

01 clarke.qrk 2/28/05 4:16 PM Page 18

INTRODUCTION 19

mentions a theme’s name (or any term considered its synonym), it is linked
to that theme. Unless at some point later in the process you sever the link,
the theme is responsible for that requirement. For instance, both require-
ments attached to the transfer theme in Figure 1–8 mention transfer, so
they are linked to it in the view.

Theme Identification

The theme identification activity involves iterating over the themes until
you have a set you think makes sense. This process involves looking at the
responsibilities of each theme to see whether, together, they represent a
coherent set of behavior.

Aspect Identification

To identify aspects using the Theme approach, you look for tangling in the
requirements. Two themes are tangled if they share a requirement. You can
see an example of a shared requirement in Figure 1–8. The shared require-
ment mentions both transaction handling and transfers.

If two concerns are described together in a requirement, their responsibil-
ities may be tangled. However, identifying tangling alone is not enough to

Theme:
Transfer

Theme:
Transaction

Handling

"transaction
handling is
needed for
transfers"

Requirement
mentions

Transaction
Handling

Requirement
mentions

Transaction
Handling

Requirement
mentions
Transfer

shared

Figure 1–8 Stylized Theme/Doc relationship view.

01 clarke.qrk 2/28/05 4:16 PM Page 19

identify an aspect. To locate an aspect, you ask several aspect identification
questions about the shared requirement:

1. Can the requirement be split up to isolate themes? If it can, you could
rewrite the requirement to better divide responsibilities between
themes. The shared requirement in Figure 1–8 could not be split up
and still remain an actual sentence.

2. Is one theme dominant in the requirement? If so, then the dominant
theme should likely be responsible for that requirement rather than
the requirement being shared between themes. Transaction han-
dling dominates the shared requirement in Figure 1–8, since the
requirement mainly talks about when transaction handling is needed.

3. Is behavior of the dominant theme triggered by the other themes men-
tioned in the requirement? If so, then you have identified a trigger rela-
tionship between two themes. Transaction handling behavior is trig-
gered by the initiation of a transfer: When a transfer occurs, transac-
tion handling is needed and so triggered.

4. Is the dominant theme triggered in multiple situations? If, across the
requirements, the dominant theme is described as triggered in multi-
ple situations, then it is crosscutting. The dominant theme becomes
the aspect, and the triggering themes become the base. Transaction
handling is needed in different situations (for transfers, for adding
interest, etc.). Transaction handling is an aspect.

As mentioned above, theme and aspect identification activities are inter-
leaved, as newly split requirements give way to new themes and as new
themes give rise to newly shared requirements. If, as they often are, the
requirements are live and changing, then new themes and responsibilities
for themes will arise after you’ve moved on to design and implementation.
Design and implementation may also cause you to revisit the choices you
made about theme responsibilities, so you would come back and shift
things around.

20 CHAPTER 1

01 clarke.qrk 2/28/05 4:16 PM Page 20

INTRODUCTION 21

Designing Themes with Theme/UML

Theme/UML allows separate design models for each of the themes identi-
fied in the requirements. It is grounded in some important steps of aspect-
oriented software development: modularize, relate, and compose.

Design the Themes

From a modularization perspective, the themes that were identified using
Theme/Doc can be designed separately regardless of whether one theme
crosscuts another or whether there are other kinds of overlaps in the
themes. Examples of overlaps other than crosscutting might be when some
core domain concept (perhaps associated with particular classes), such as
loan account or savings account, is relevant for multiple themes. When
designing the different themes, you need not be concerned with overlaps.

You can see in Figure 1–9 that each of the banking concerns described ear-
lier is captured in its own theme.

You will use almost entirely standard UML to design each theme from its
own perspective. All the classes and methods pertinent to each of those
concerns would be designed within the themes, essentially as depicted in

Figure 1–9 Stylized Theme/UML composition.

01 clarke.qrk 2/28/05 4:16 PM Page 21

22 CHAPTER 1

Figure 1–4. This is a considerable strength of the Theme approach. When
you want to work with a single feature or concern, you have just one place
to go—the theme. Within the theme, not only is every design element rele-
vant for the concern, you can also be sure that you don’t have to go any-
where else to find other relevant design elements. Aspect themes use a lit-
tle nonstandard UML to capture parameterization of the behavior that is
triggered by a base theme (shown as “triggered” in Figure 1–9).

Specify the Relationships

Where you will primarily notice some differences with the standard UML is
in the area of specifying the relationships between the themes and in the
composition capabilities that Theme/UML defines. In all aspect-oriented
approaches, there must be a way to designate how the modularized con-
cerns relate to the rest of the system. To provide this capability,
Theme/UML has defined a new kind of relationship, called a composition
relationship, that allows you to identify those parts of the theme designs
that relate to each other and therefore should be composed. For themes
that crosscut others, this means identifying when and where in those other
themes the additional dynamic behavior should occur (shown as triggering
in Figure 1–9). For other kinds of overlaps, this means identifying elements
in the theme designs that correspond to each other and saying how they
should be integrated (shown as shared concepts in Figure 1–9).

Theme/UML also provides semantics for model composition based on the
composition-relationship specification. We think of this as a verification
step to allow you to have a look at the overall system design, including the
composition specification, to ensure that it makes sense. Of course, the
composed design will have all the poor modularization that we’ve been try-
ing to avoid! The developer can then take a step back and revisit the sepa-
rate Theme/UML models with a view to implementation.

Theme: Symmetric or Asymmetric?

The Theme approach more closely aligns with the symmetric approach to
system decomposition, since themes are individual concerns regardless of
whether they are aspects or separated concerns that would be located in the
core. However, the terms crosscutting and aspect are defined as in the asym-
metric paradigm: as functionality that is triggered in multiple situations.

01 clarke.qrk 2/28/05 4:16 PM Page 22

INTRODUCTION 23

As we mentioned above, however, the symmetric decomposition described
in this book does not dictate unnecessarily tiny concerns. In this book, we
look at several examples: Some that have many concerns and some (partic-
ularly the final case study of the book) that have a more solid base. The
important thing about the Theme approach is that you should choose the
degree of separation that is right for you and your situation. The heuristics
for aspect identification described above are the same regardless of
whether you intend to implement your system using a symmetrical or an
asymmetrical decomposition approach. Similarly, Theme/UML models
can encompass functionality related to either a fine-grained concern or to
the entire core functionality of your system.

Fitting Theme into Your Existing Development
Process

The analysis and design activities described in the Theme approach can be
split up and molded to fit into whichever development process you are
happiest using. Later, in Chapter 3, “The Theme Approach,” we briefly out-
line how that might work. Fitting the Theme approach into processes such
as the iterative and waterfall approaches is quite straightforward. Figuring
out how to work them into the family of agile processes7 deserves further
discussion. In Chapter 3, we go into some of the processes in more detail.
Here, however, we discuss analysis and design in the context of agile
processes from a high-level point of view.

The use of Theme/UML in agile processes mirrors the relationship between
standard UML and agile processes, which is a much larger question. After sift-
ing through rhetoric from experts on both sides (UML is crucial versus UML is
useless), we found words of wisdom that struck many chords with us—Martin
Fowler’s paper entitled “Is Design Dead?”8 which we highly recommend.

7 Agile processes attempt to dispense with “heavyweight” development processes and focus on a

lightweight approach that values immediate results over lengthy planning.
8 Available from http//:www.martinfowler.com.

01 clarke.qrk 2/28/05 4:16 PM Page 23

24 CHAPTER 1

What we have taken from the “Is Design Dead?” article is that if you are the
type of developer to find diagrams helpful, then you will continue to do so
with agile processes, and if you are not, then you won’t. In addition, it is
especially important to recognize that diagrams can “actually cause harm”
and therefore should be used judiciously. The use of diagrams has potential
value from a number of perspectives: communication; as a means to
explore a design before you start coding it; and documentation both ongo-
ing and for handover situations. From a Theme approach perspective, we
paraphrase or steal directly from “Is Design Dead?” in the following list of
recommendations for managing both Theme/Doc and Theme/UML dia-
grams in an agile process environment:

• Capture the interesting analysis and design decisions in the
diagrams. Not every class in every theme may be interesting
and not every attribute or method in an interesting class may
be interesting. Do, however, consider capturing all the com-
position relationships and crosscutting behaviors during
your exploration phase.

• Keep the analysis diagrams and designs only as long as they
are useful. Don’t be afraid to throw away diagrams that have
become outdated through refactoring or other reasons—they
were useful for a time, but you can let them go. Since
Theme/Doc views are automatically regenerated, generate
new ones when changes occur.

• When you are coding, if you think diagrams would be useful
for communication outside the immediate team or for cap-
turing a point in time, then re-create them for that purpose.

• Even if you fall into the category of people who don’t really
find diagrams useful, bear in mind that there are others who
do, and so when you are handing over the system to other
people, then diagrams that represent the current state of the
code may be appreciated.

01 clarke.qrk 2/28/05 4:16 PM Page 24

What About Implementation?

The focus of this book is on aspect-oriented analysis of requirements and
aspect-oriented design. Other books may be of better service if you’re look-
ing for detailed information about implementation in aspect-oriented lan-
guages. However, we spend a chapter delving into how you might follow to
code from the analysis and design process described above.

There are two ways in which developers may implement a system designed
using the approach presented here. As a developer, you may choose to
carry through to implementation the separation of the design-level
themes. Of course, you need to use a programming model that supports
theme-based modularization and composition as designed using
Theme/UML. Aspect-oriented languages provide such a model. Taking this
approach yields the traceability benefits that we previously discussed as an
advantage to using the Theme approach.

Alternatively, you may implement the composed design using an object-
oriented language. It is likely that this approach would only be taken where
there is a reluctance to use an aspect-oriented programming language. The
resulting code will display the modularization characteristics, in which the
themes are integrated into the straight object model, that aspect-oriented
programming has been designed to avoid.

In either case, there is language support as well as development environ-
ments that would be helpful in implementation. Later in this book, we
briefly review how to make the translation from the theme models to
implementation languages, covering how to translate theme models into a
selection of aspect-oriented languages.

Summary

In this chapter, we described the basic motivation for considering aspects
early in the software lifecycle. We follow the symmetric approach to modu-
larization, where features or concerns are each separated. We use the term
“aspect” to refer to features or concerns that crosscut other features or con-
cerns. We refer to all of these as themes.

INTRODUCTION 25

01 clarke.qrk 2/28/05 4:16 PM Page 25

In this chapter we also introduced the Theme approach, which consists of
two parts: Theme/Doc, which relates to consideration of themes in
requirements, and Theme/UML, which allows description of themes at
design. Next, we look more closely at the motivation for the use of themes
by applying the best object-oriented practices to solve a design problem
and seeing where those practices fall short.

26 CHAPTER 1

01 clarke.qrk 2/28/05 4:16 PM Page 26

