
CHAPTER 2

First Steps in AJDT

If you’ve been following along, then at this stage you should have a working
Eclipse environment with AJDT installed. What we need now is an application
we can use to do some AspectJ development. This chapter introduces a simple
insurance application that we can use for this purpose. We show you how to con-
vert the simple insurance Java project into an AspectJ project, discover all the
places in the code to do with informing listeners whenever an insurance policy
object is updated, and refactor all those code fragments into an aspect to give a
modular implementation.

2.1 A Simple Insurance Application

Simple Insurers Inc. are considering going into business as no-frills, bargain-
basement insurers. They have been developing a simple insurance application to
underpin their new business venture and keep track of customers and policies. It
is still early days, and the application is far from complete, but it implements just
enough functionality to cover the first few user stories and get feedback from the
internal customers to help plan the next iterations.

Figure 2.1 shows the Simple Insurance application project in Eclipse. It is just
a regular Eclipse Java project at this stage. Notice in the Package Explorer (the
view on the left side of the Eclipse window) that we have two source folders in
the project, one named src and one named test-src. The src source folder
contains the main application classes, and the test-src source folder contains
the JUnit test cases.

21

ch02.qxd 11/22/04 9:37 AM Page 21

Figure 2.1 The Simple Insurance project in Eclipse.

If you installed the Eclipse AspectJ Examples plug-in following the instruc-
tions in Chapter 1, you can create the Simple Insurance project in your own
workspace by clicking the New icon and selecting the Simple Insurance project
from the Eclipse AspectJ Examples category (see Figure 2.2).

22 First Steps in AJDT

ch02.qxd 11/22/04 9:37 AM Page 22

Figure 2.2 Installing the Simple Insurance project into your workspace.

It is a good idea at this point to run the test suite and make sure that noth-
ing is amiss. We will be working primarily with the insurance.model and
insurance.model.impl packages where the domain classes can be found. As
shown in Figure 2.3, expand the insurance.model package node inside the
test-src source folder and select the file AllTests.java. From the context
menu (right-click) select Run > JUnit Test. If all goes well, you should be able to
click the JUnit tab to bring the JUnit view to the foreground, and see a success-
ful result as shown in Figure 2.4.

2.1 A Simple Insurance Application 23

ch02.qxd 11/22/04 9:37 AM Page 23

Figure 2.3 Launching the test suite.

24 First Steps in AJDT

Figure 2.4 A passing test suite—the JUnit view.

ch02.qxd 11/22/04 9:37 AM Page 24

Figure 2.5 shows an overview of the classes in the Simple Insurers Inc.
domain model (the insurance.model package).

2.1 A Simple Insurance Application 25

Figure 2.5 Simple Insurers Inc. domain model.

Simple Insurers Inc. will be offering three kinds of insurance policies when
they first launch: life insurance, car insurance, and home insurance. Policies are
taken out by customers, who pay for their insurance in accordance with some
payment schedule. The model also has a facility to record claims made against
policies, although worryingly there is no implementation yet to actually pay out
on claims.

Simple Insurers Inc. will initially use telesales to market their insurance prod-
ucts, and agents at their company headquarters will have available to them a

ch02.qxd 11/22/04 9:37 AM Page 25

simple desktop application with which they can create, view, and update infor-
mation on customers and policies. The user interface for this application is imple-
mented in the insurance.ui package. You can launch the application from the
Eclipse workbench by selecting the SimpleInsuranceApp.java file in the
Package Explorer view, and then choosing Run > Java Application from the con-
text menu. Figure 2.6 shows how the application looks when running.

26 First Steps in AJDT

Figure 2.6 The Simple Insurers Inc. application.

2.2 Tracking Policy Updates

The user interface is connected to the model using a simple model-view-
controller design. There is a simple PolicyListener interface that clients can
implement, and after registering themselves with a policy, they will receive a
policyUpdated() notification whenever the policy is updated. Figure 2.7 shows
the PolicyListener interface in the editor. Figures 2.8 and 2.9 show excerpts
from the PolicyImpl class. Notice in Figure 2.8 the calls to notifyListeners
after updating the state of the Policy on lines 86 and 101.

Figure 2.7 PolicyListener.

ch02.qxd 11/22/04 9:37 AM Page 26

Figure 2.8 Change notifications.

Figure 2.9 shows the code that keeps track of registered listeners and
performs the actual notification.

2.2 Tracking Policy Updates 27

Figure 2.9 Managing the listeners.

ch02.qxd 11/22/04 9:37 AM Page 27

The various types of insurance policy all inherit the basic capability of man-
aging a set of listeners from their parent PolicyImpl class, but each subclass has
to be sure to call the notifyListeners method whenever it updates any of its
own state. For example, the AutoPolicyImpl class keeps track of a no-claims
bonus. If we look into the update method for the no-claims bonus, we will see
the code shown in Listing 2.1, with a call to notifyListeners() duly made
after updating the state.

Listing 2.1 Excerpt from AutoPolicyImpl Class

public void setNoClaims(boolean noClaims) {
this.noClaims = noClaims;
notifyListeners();

}

So far this strategy has been working okay, but now the business has asked
us to consider adding support for pet insurance policies, too. Rather than keep
adding more and more calls to notifyListeners() spread throughout the hier-
archy, is there something better we can do? What we’re looking at is a 1-to-n
implementation: We have one simple requirement, to notify all registered listen-
ers whenever a policy is updated, but an implementation that is scattered in n
places throughout the policy hierarchy. To quote from the eXtreme programming
discipline: “Refactor mercilessly to keep the design simple as you go and to avoid
needless clutter and complexity. Keep your code clean and concise so it is easier
to understand, modify, and extend. Make sure everything is expressed once and
only once. In the end it takes less time to produce a system that is well
groomed.”1 We said in the introduction that aspect-oriented programming
offered us a new kind of a module, known as an aspect, that could help solve
problems such as this and turn it back into a one-to-one mapping. In other
words, we should be able to modularize the change notification policy inside an
aspect. Instead of adding yet more scattered calls to notifyListeners in the
new PetPolicyImpl class, perhaps we should consider refactoring.

28 First Steps in AJDT

1. http://www.extremeprogramming.org/rules/refactor.html

ch02.qxd 11/22/04 9:37 AM Page 28

2.3 Creating an AspectJ Project

The first thing we need to do before we can start using AspectJ in the Simple
Insurance application is to convert the Simple Insurance project from a plain Java
project into an AspectJ project. Converting the project to an AspectJ project
enables us to use the AspectJ language to implement the application, and the
AspectJ compiler to build it.

2.3.1 Converting an Existing Java Project

Converting an existing Java project to an AspectJ project is simple. Select the proj-
ect in the Package Explorer, and choose Convert to AspectJ Project from the con-
text menu (see Figure 2.10). The AJDT Preferences Configuration Wizard may pop
up during the conversion process; refer to the next section to learn more about it.

2.3 Creating an AspectJ Project 29

Figure 2.10 Converting from a Java project to an AspectJ project.

After performing the conversion, you will notice a couple of changes in the
Package Explorer, as highlighted in Figure 2.11. First, the project icon has
changed from the Java project icon (a folder with a J decoration, as shown in

ch02.qxd 11/22/04 9:37 AM Page 29

Figure 2.10), to the AspectJ project icon (a folder with an AJ decoration).
Second, a new jar file has been added to the project’s build path, using the Eclipse
path variable ASPECTJRT_LIB. This path variable is defined by the AJDT plug-
ins to point to the AspectJ runtime library Jar file (aspectjrt.jar) shipped with
AJDT. The AspectJ runtime library is a small library (about 35K) that all AspectJ
programs need when they execute. This is the only runtime requirement for
AspectJ—that aspectjrt.jar be somewhere on the class path—the AspectJ compil-
er produces regular Java class files that can be executed on any Java Virtual
Machine (JVM) and look just like any other Java application to the JVM. Third,
a new file called build.ajproperties has been created in the project. This file
stores configuration information about the building of the project, which we
look at in detail later.

30 First Steps in AJDT

Figure 2.11 An AspectJ project.

If you ever want to turn an AspectJ project back into a regular Java project,
the process is equally simple: select the project in the Package Explorer and
choose Remove AspectJ Nature (see Figure 2.12). See the sidebar “Eclipse
Builders and Natures” if you are curious as to what goes on when a project is
converted to an AspectJ project and back again.

ch02.qxd 11/22/04 9:37 AM Page 30

Figure 2.12 Converting an AspectJ project back into a Java project.

2.3 Creating an AspectJ Project 31

Eclipse Builders and Natures

Projects in Eclipse have one or more project natures associated with them. A project
nature tells the rest of the world what kind of capabilities the project has. Java proj-
ects have the Java nature, and tools that work with Java programs can offer their work-
bench contributions for working with those projects. AspectJ projects have both the
Java nature and the AspectJ nature, so Java tools should continue working, but they
also benefit from the AspectJ specific tools too. Builders are closely associated with
natures. Normally when a nature is added to a project, it installs a project builder.
Projects can have multiple builders, just as they can have multiple natures. Java proj-
ects use the Java builder (the Eclipse Java compiler), but AspectJ projects use the
AspectJ builder. When you convert a Java project to an AspectJ project, the AspectJ
nature is added to the project, and the Java builder is replaced with the AspectJ builder
(any other builders defined for the project are left alone). When you remove the
AspectJ nature from a project, the AspectJ nature is removed, and the AspectJ builder
is replaced with the Java builder. Of course, if you have AspectJ-specific artifacts in your
projects, you might get build errors when the Java builder encounters them.

ch02.qxd 11/22/04 9:37 AM Page 31

2.3.2 Configuring the Workbench for AspectJ Development

The very first time you activate the AspectJ tools inside a workspace (for exam-
ple, by converting a project to an AspectJ project, or by creating a new AspectJ
project) you will see the AJDT Preferences Configuration Wizard appear (see
Figure 2.13).

32 First Steps in AJDT

Figure 2.13 AJDT Preferences Configuration Wizard.

This wizard offers to make two configuration customizations for you that
will make working with AspectJ inside Eclipse a much more pleasant experience:

Make the AspectJ editor default for “.java” The standard Java editor
that is associated with .java files does not understand the extra keywords
that AspectJ introduces, and neither does the Outline view associated
with it understand aspect constructs. Choosing this customization makes
the AspectJ editor be associated with .java files by default. The AspectJ
editor is an extension of the Java editor offering all of the Java editor fea-
tures, plus the capability to understand AspectJ programs.

Disable analyzing of annotations while typing The Java Development
Tools include an eager parser that analyzes your program as you type, giv-
ing you early indications of problems you will have when you compile the
code. This eager parser does not understand AspectJ; hence it incorrectly
reports errors (the infamous “red squiggles”) in your AspectJ program,
which can be distracting. Figure 2.14 shows an example of the problem.

ch02.qxd 11/22/04 9:37 AM Page 32

The eager parser does not recognize the type AnAspect (because aspects are
not present in the type-space that it uses for name resolution), and so high-
lights it as a problem when in fact the AspectJ compiler will build the
source file perfectly fine. Selecting this customization deactivates the eager
parsing. The AJDT development team is working on an update to the tools
support that enables the eager parser to understand AspectJ constructs, too.
When this new version is available, it will be possible to turn the “analyze
annotations while typing” option back on again for AspectJ programs.

2.3 Creating an AspectJ Project 33

Figure 2.14 Don’t get the red squiggles; disable “analyze annotations while typing.”

2.3.3 Creating a New AspectJ Project

Of course, it is also possible to create a new AspectJ project from scratch with-
out converting an existing Java project. To do this, you use the New AspectJ
Project Wizard. You can reach the wizard via the Eclipse workbench menus by
selecting File > New > Project, and then AspectJ Project. Alternatively, use the
New icon on the toolbar and select AspectJ Project from there (see Figure 2.15).

Figure 2.15 Launching the New AspectJ Project Wizard.

ch02.qxd 11/22/04 9:37 AM Page 33

When the wizard launches, the dialog box shown in Figure 2.16 displays. It
behaves exactly like the New Java Project wizard, except that the project it
creates at the end is an AspectJ one.

34 First Steps in AJDT

Figure 2.16 The New AspectJ Project Wizard.

2.4 Creating the PolicyChangeNotification Aspect

The Simple Insurance project is now ready for use with AspectJ. It was automat-
ically built by the AspectJ compiler when we converted it to an AspectJ project,
so now would be a good time to run the test suite again and verify that the
AspectJ compiler has indeed built the project correctly. The tests should all pass
correctly.

We are ready to begin the refactoring. Recall that we want to replace the calls
to notifyListeners that are scattered throughout the policy class hierarchy
with a modular implementation in an aspect. Just as to create a new class we
would use the New Class Wizard, so to create a new aspect we use the New
Aspect Wizard.

2.4.1 The New Aspect Wizard

We want to create an aspect in the insurance.model.impl package where the
policy implementation classes are defined. Select the insurance.model.impl
package in the Package Explorer, and from the context menu choose New >
Aspect. This launches the New Aspect Wizard, as shown in Figure 2.17. (You can
also get to this wizard from the File > New workbench menu, and the New icon
on the toolbar.)

ch02.qxd 11/22/04 9:37 AM Page 34

Figure 2.17 The New Aspect Wizard.

Notice that the New Aspect Wizard is very similar to the New Class Wizard.
The source folder and package fields are prefilled because we launched the wiz-
ard from the context menu of the package in the Package Explorer. We just need
to provide a name for the aspect and then click Finish. Because the aspect is going
to encapsulate the implementation of policy-change notification, we have called
it PolicyChangeNotification. Upon completion of the wizard, the aspect is
created and opened in the editor, as shown in Figure 2.18.

2.4 Creating the PolicyChangeNotification Aspect 35

Figure 2.18 A skeletal aspect.

ch02.qxd 11/22/04 9:37 AM Page 35

In the Package Explorer, you can see that the wizard has created a new
source file called PolicyChangeNotification.aj. AJDT uses the .aj extension
for source files containing aspects, but you can configure it to use .java instead
if you prefer. See the sidebar “Choice of File Suffix: .java or .aj”

In the editor, you can see the basic form of an aspect. Notice that it looks just
like a class definition, except that it uses the aspect keyword in place of the key-
word class. In AspectJ, aspects are first class entities in the program just as
classes are. There are a lot of similarities between aspects and classes—in fact
pretty much anything you can declare in a class you can declare in an aspect, too,
but aspects can also do things that classes cannot do. We look at some of those
things in Section 2.5.

If you have the Outline view open (Window > Show View > Outline), you
will see an outline like that shown in Figure 2.19. This shows us that the source
file contains no import declarations (the package statement and any import dec-
larations work in exactly the same way for an aspect as they do for a class), and
a single aspect with no members.

36 First Steps in AJDT

Figure 2.19 The Outline view.

Chapter 9 provides full details on aspects in AspectJ, but you already know a
surprising amount because of your familiarity with classes in Java. You certainly
know enough to continue following the examples in this chapter, so let’s move on
and make our PolicyChangeNotification aspect do something useful.

ch02.qxd 11/22/04 9:37 AM Page 36

2.5 Stating the Notification Policy

How will we know whether our refactoring has succeeded? All the tests will pass,
of course, but they do that now. The problem we want to address is the duplica-
tion and scattering of calls to notifyListeners throughout the policy hierarchy.
If our refactoring is a success, there will be no calls to notifyListeners left in
the policy hierarchy, and they will all have been replaced by a single call in the
PolicyChangeNotification aspect. AspectJ enables us to capture requirements
such as this directly in the code, and in this section you learn how. To do that, we
need to introduce you to a couple of new concepts: join points and pointcuts.

2.5.1 Introducing Join Points

Programs live to execute, and when they execute, stuff happens. Methods get
called, objects get initialized, fields are accessed and updated, constructors are
executed, and so on. AspectJ calls these events that happen when a program is
running join points. If program execution was a spectator sport, and you were
commentating on the 2006 world championships, join points are the things that
you would highlight in your commentary:

Bob: Looks like we’re in for a good clean run today.
Jim: Yes Bob, the classes are being fetched from disk now; I
can’t wait for this one to get started.
Bob: We’re off! The main class is loaded and the static
initializer just ran.

2.5 Stating the Notification Policy 37

Choice of File Suffix: .java or .aj

The AspectJ compiler doesn’t care whether you name your source files with the .aj
extension or with the .java extension—it treats them both equally. So you could name
all your source files with the .aj extension, or all with the .java extension, or with any
combination of the two, and it wouldn’t make any difference. It does make a differ-
ence, however, if you convert an AspectJ project back to a Java project for some rea-
son. The Java compiler ignores files with an .aj extension, which can make the move
easier (but you’re still going to have to cope with the fact that all the functions your
aspects were implementing are now missing). However, using the .aj extension for files
containing regular Java classes has the consequence that the types defined in them are
not visible to Eclipse’s Java model. By default therefore, AJDT creates new classes in
source files with a .java extension, and new aspects in source files with an .aj exten-
sion. If you want to change this behavior, you can do so via the AspectJ project
Properties page accessible via the Properties option in the context menu when a
project is selected.

ch02.qxd 11/22/04 9:37 AM Page 37

Jim: A traditional opening, executing the main method now
…
Bob: Hmmm, accessing the "out" field on the old System
class—think he’s going for the System.out.println routine
Jim?
Jim: It does look that way, Bob. Ah, yes, look—calling the
println method, and that’s a nice String there in the
arguments.
Bob: So, the println method is executing, you can almost
feel the tension. Here it comes … there’s an H, an E, …
Jim: It is, it is, it’s "Hello, World!". Very nicely done.
Safely back from the call to println.
Bob: Seems like the execution of the main method is just
about done.
Jim: They think it’s all over … It is now.

AspectJ supports join points for calls made to methods and constructors, for
the actual execution of methods and constructors, for the initialization of class-
es and objects, for field accesses and updates, for the handling of exceptions, and
a few more besides. Chapter 5 provides a more thorough introduction to join
points.

Join points by themselves aren’t all that exciting. Stuff has always happened
when programs are executed. What is different in AOP and in AspectJ is that the
programmer has a way to refer to join points from within the program. A way
to say things such as, “Whenever you update the state of a policy object, notify
all of its listeners.” To the AspectJ compiler, that sentence looks a little bit more
like this: “Whenever a join point that meets these conditions occurs (we’ll call
that a policyStateUpdate shall we?), call the notifyListeners method on
the policy object.”

2.5.2 Writing a Pointcut

The way that we specify which join points we are interested in is to write a point-
cut. Pointcuts are like filters; as the program executes, a stream of join points
occur, and it is the job of a pointcut to pick out the ones that it is interested in.2

The join points we are interested in right now are those that represent a call to
the notifyListeners() method. When we make such a call, we are notifying
the listeners. Here is what the pointcut declaration looks like in AspectJ:

pointcut notifyingListeners() :
call(* PolicyImpl.notifyListeners(..));

38 First Steps in AJDT

2. This is just a conceptual model of how it works; the actual implementation as generated by the AspectJ
compiler is much more efficient than this.

ch02.qxd 11/22/04 9:37 AM Page 38

Figure 2.20 shows the result of typing this into the aspect editor buffer and
pressing Ctrl+S to save.

2.5 Stating the Notification Policy 39

Figure 2.20 A pointcut declaration.

The syntax highlighting shows us that pointcut and call are keywords in
the AspectJ language. Also note that the Outline view has updated to show the
pointcut as a member of the aspect (just like a field or a method is a member of
a class). We can use the Outline view to navigate in the editor buffer by select-
ing the nodes in the tree. For example, if we click the notifyingListeners()
node in the Outline view, the selection in the editor is changed to the pointcut
declaration, as shown in Figure 2.21.

Figure 2.21 Using the Outline view to navigate in the editor buffer.

ch02.qxd 11/22/04 9:37 AM Page 39

The pointcut declaration declares a new pointcut called notifyingListeners
(the name that appears in the Outline view). After a colon (:), comes the definition
of which join points the notifyingListeners pointcut should match. In this case
we are interested in join points that represent a call to certain methods. Inside the
parentheses that follow the call keyword, we get to say which particular method
calls we want to match: calls to the notifyListeners method defined in the
PolicyImpl class. The first asterisk (*) in the expression is a wildcard that says we
don’t care what the return type of the method is, and the two periods (..) inside the
notifyListeners(..) say that we don’t care what arguments it takes. We know
both of these things: The notifyListeners method takes no parameters and
returns void, but they are not pertinent to our pointcut—if the definition of the
notifyListeners method were to change to take a parameter, or to return the
number of listeners notified, we would still want the pointcut to match. By not spec-
ifying the details we don’t care about, we make our program more robust in the face
of change.

Chapter 6 explains everything you ever wanted to know about pointcuts and
more; all that matters for the time being is that you get a feel for what a point-
cut declaration looks like and what it does.

2.5.3 Using Declare Warning

This is all very nice, but the aspect still doesn’t actually do anything. At the start
of this section, we said that if our refactoring is a success, there will be no calls
to notifyListeners left in the policy hierarchy, and they will all have been
replaced by a single call in the PolicyChangeNotification aspect. So any call
to the notifyListeners method that does not occur within the
PolicyChangeNotification aspect breaks the modularity that we are trying
to achieve. It would be useful at this point if we could find all such places.
We can use an AspectJ construct known as declare warning to do just that. Let’s
declare it to be a compile time warning if anyone other than the
PolicyChangeNotification aspect starts notifyingListeners. We can write
it like this:

declare warning :
notifyingListeners() && !within(PolicyChangeNotification)
: "Only the PolicyChangeNotification aspect should be

notifying listeners";

40 First Steps in AJDT

ch02.qxd 11/22/04 9:37 AM Page 40

Figure 2.22 Declare warning in the editor buffer.

We can see again from the syntax highlighting that declare warning is a
keyword (pair of keywords to be precise) in the AspectJ language. The general
form of the statement is this: “Declare it to be a compile-time warning, if any join
point matching the following pointcut expression occurs, and this is the warning
message I’d like you to use.” In this particular case: “Declare it to be a compile-
time warning, if any join point occurs that matches the notifyingListeners
pointcut and is not within the PolicyChangeNotification aspect. At such
points, issue a compile-time warning with the message ‘Only the
PolicyChangeNotification aspect should be notifying listeners.’”

If we turn our attention to the Outline view, we can see that something very
interesting has happened, as shown in Figure 2.23.

2.5 Stating the Notification Policy 41

Figure 2.22 shows what happens when we type this into the editor buffer
and press Ctrl+S to save.

ch02.qxd 11/22/04 9:37 AM Page 41

Figure 2.23 Declare warning matches in the Outline view.

First of all, you can see that the declare warning appears in the Outline view
as another kind of member within the aspect. There’s also a plus sign (+) next to the
declare warning node, indicating that there is content beneath it. If you expand
this node you see matched by, and if you expand that node you see a list of all the
places that are violating our policy of not calling notifyListeners outside of the
PolicyChangeNotification aspect. There are 15 of them, and these nodes are
actually hyperlinks that will take you directly to the offending statements in the pro-
gram source code if you click them. Let’s click the first entry in the list,
HousePolicyImpl.setWorth. The editor opens on the HousePolicyImpl class, at
the point where the call to notifyListeners is made, as shown in Figure 2.24.

42 First Steps in AJDT

Figure 2.24 Showing warnings in the workbench.

ch02.qxd 11/22/04 9:37 AM Page 42

In the gutter of the editor buffer, next to the call to notifyListeners, you
can see a warning icon. There are also warning decorations on the file icons for
all the source files in which warnings have been found, as you can see in the
Package Explorer, and in the titles of the files at the top of the Editor window.
The gutter to the right of the editor buffer gives an overview of the whole source
file. It shows us that there are two warnings in the file, one on the line we are
looking at, and one farther down in the source file. Hovering over the warning
in the editor brings up the tool tip shown in Figure 2.25.

2.5 Stating the Notification Policy 43

Figure 2.25 Hover help for declared warnings.

You can clearly see the text of our declare warning—a powerful way to get a
message across to a programmer who inadvertently violates the intended encapsu-
lation of change notification in the aspect. Having navigated to the
HousePolicyImpl.java file using the Outline view, we can click the back button
on the toolbar (see Figure 2.26) to go back to the PolicyChangeNotification
aspect again. In this way, we can easily navigate back and forth.

Figure 2.26 Navigating back to the aspect.

Just in case you weren’t getting the message that there are violations of the
PolicyChangeNotification aspect’s change notification rule by now, take a
look at the Problems view as shown in Figure 2.27. You will see that a compiler
warning message has been created for each join point that matches the pointcut
we associated with the “declare warning” statement. These are just like any
other compiler warning, and you can double-click them to navigate to the source
of the problem.

ch02.qxd 11/22/04 9:37 AM Page 43

Figure 2.27 We’ve got problems!

When we have successfully completed the refactoring, none of these warn-
ings should remain.

44 First Steps in AJDT

How Can You Match Join Points at Compile Time?

The more astute readers will have noticed a slight anomaly in the descriptions we
just gave in this section. Join points are events that occur during the runtime execu-
tion of a program, so how can a pointcut match any join points at compile time when
the program isn’t running? The answer is that it doesn’t; but what the compiler can
do, is look at a line of code containing a call to the notifyListeners method and
say “when this program executes, that line of code is going to give rise to a join point
that will match this pointcut.” It is the results of this static analysis that display as warn-
ings. Chapter 6 covers some kinds of pointcut expressions that cannot be fully eval-
uated at compile time. (They require a runtime test to confirm the match.) These
kinds of pointcut expressions cannot be used with the declare warning statement
(which obviously needs to know at compile time whether or not there is a match).

ch02.qxd 11/22/04 9:37 AM Page 44

2.6 Implementing the Notification Policy

Section 2.5 showed you how to declare how you would like the world to be. This
is the section were we get to make it that way. Remember that when we started
on this journey, we had the simple requirement that whenever the state of a pol-
icy is updated, we should notify all of its listeners. It seems that a useful next step
would be to write a pointcut that captures all the join points where the state of
a policy is updated. We could call it policyStateUpdate:

pointcut policyStateUpdate() :
execution(* set*(..)) && this(PolicyImpl);

This pointcut defines a policyStateUpdate to be the execution of any
method whose name begins with “set,” returning any value and taking any argu-
ments. In addition, the object executing the method must be an instance of
PolicyImpl. Because we have been following the JavaBeans naming convention
in our domain model, this pointcut matches the set of state-updating methods in
the policy class hierarchy very well. If we type this pointcut declaration into the
editor buffer and save it, the editor should now look like Figure 2.28.

2.6 Implementing the Notification Policy 45

Figure 2.28 Adding the policyStateUpdate pointcut.

We have a way of matching all the join points where the state of a policy is
updated. Now all we need to do is find a way to specify some action to take at
those join points (notifying listeners). What we need is advice.

ch02.qxd 11/22/04 9:37 AM Page 45

2.6.1 Introducing Advice

Pointcuts match join points, but advice is the means by which we specify what
to do at those join points. AspectJ supports different kinds of advice—before
advice enables you to specify actions to take before a matched join point, after
advice enables you to specify actions to take after a matched join point, and
around advice gives you complete control over the execution of the join point. In
our case we want to notify listeners after returning from a policyStateUpdate:

after() returning : policyStateUpdate() {
// do something

}

Figure 2.29 shows what happens when we type this into the editor buffer and
save it. You can see that after and returning are AspectJ keywords. Also
notice the similarities between the advice block and a method—both can take
parameters (although we have none here yet), and both specify a block of code
to execute when they are called. A key difference though is that methods are
called explicitly, whereas the advice is implicitly invoked by AspectJ whenever a
join point matching its associated pointcut expression occurs. Chapter 7 contains
a full discussion of advice in AspectJ.

46 First Steps in AJDT

Figure 2.29 Adding advice to the aspect.

ch02.qxd 11/22/04 9:37 AM Page 46

2.6.2 Calling the Notify Method

Finally we get to implement the advice body and put in the call to notifyListeners.
All we need to do is put in a call to policy.notifyListeners() in the body of the advice:

after() returning : policyStateUpdate() {
policy.notifyListeners();

}

If we enter this into the editor buffer, and save, the compiler tells us that there
is a small problem with our implementation as it stands (see Figure 2.30).
“policy” cannot be resolved, the variable is not defined. How can the advice get
ahold of the policy object whose state has just been updated?

2.6 Implementing the Notification Policy 47

Figure 2.30 “policy cannot be resolved.”

We need to pass the policy object into the advice as a parameter, which is
done in the same way as specifying parameters for methods:

after(PolicyImpl policy) returning : policyStateUpdate() {
policy.notifyListeners();

}

Let’s try that out in the editor. Figure 2.31 shows the result: a “formal
unbound in pointcut” error.

ch02.qxd 11/22/04 9:37 AM Page 47

Figure 2.31 Formal unbound in pointcut.

What could that mean? Recall that unlike a method, there are no explicit
calls to advice. So if you do not call the advice explicitly, passing in the parame-
ters it needs, from where does the advice get its parameter values? The answer is
that the advice parameter values have to be provided by the pointcut: When the
pointcut matches a join point, it needs to extract some information from that
join point (in our case, the policy object that has just been updated), and pass it
into the advice. The error message is telling us that the “formal” (advice param-
eter) is not “bound” in the pointcut—or to put it another way, the pointcut is not
giving the advice the parameter it needs yet.

Take another look at the definition of the policyStateUpdate pointcut:

pointcut policyStateUpdate() :
execution(* set*(..)) && this(PolicyImpl);

This matches any join point that is the execution of a method whose name
begins with “set,” where the currently executing object (the object bound to
“this” within the method body) is an instance of PolicyImpl. What we need is
for the pointcut to tell us not just whether the currently executing object is an
instance of PolicyImpl, but which instance it is. The set of values provided by
a pointcut when it matches a join point is specified in its parameter list:

pointcut policyStateUpdate(PolicyImpl aPolicy) : …

(So that’s what those parentheses after the pointcut name are for!) Now it
just remains to specify where the value of the policy parameter comes from. This
is done via name binding in the pointcut expression:

48 First Steps in AJDT

ch02.qxd 11/22/04 9:37 AM Page 48

pointcut policyStateUpdate(PolicyImpl aPolicy) :
execution(* set*(..)) && this(aPolicy);

This revised pointcut expression matches the same join points as the previ-
ous version (the execution of any method whose name begins with “set,” and
where the object executing the method is an instance of PolicyImpl), but also
makes available the actual PolicyImpl object at each join point it matches.

We are nearly there now; we just need a way to say that the policy object pro-
vided by the pointcut when it matches a join point should be matched to the poli-
cy parameter we specified in the advice definition. This is done by name binding, too:

after(PolicyImpl policy) returning :
policyStateUpdate(policy)

{
policy.notifyListeners();

}

If we make these changes in the editor buffer, the aspect compiles success-
fully. Figure 2.32 shows the completed aspect in the editor.

2.6 Implementing the Notification Policy 49

Figure 2.32 The completed PolicyChangeNotification aspect.

The next section shows you how you can use the tools to understand the
effect of the advice that we just wrote.

ch02.qxd 11/22/04 9:37 AM Page 49

2.7 Showing Advice In AJDT

AJDT contains a lot of features designed to help you understand and be aware
of the effects of advice in your program. The primary means are the editor and
Outline view, but there is also a visualization view and the capability to generate
documentation.

2.7.1 The Outline View

Let’s look at the Outline view for the PolicyChangeNotification aspect. This
is shown in Figure 2.33, with the node for the after returning advice fully
expanded. Notice how the Outline view shows us all the places that the advice
advises. To be slightly more precise, the Outline view is showing us all the places
in the program source code that will give rise to a join point at runtime that will
be matched by the pointcut expression associated with the advice. Just like the
declare warning matches in the Outline view, these matches are links, too. If you
click one, it will take you to the corresponding source location.

50 First Steps in AJDT

Figure 2.33 Showing the effect of advice in the Outline view.

If we click the first match in the list, HousePolicyImpl.setWorth
(double), the editor opens on the source file containing the definition of the
HousePolicyImpl class, at the setWorth method. The Outline view updates to
display the outline for the HousePolicyImpl class, as shown in Figure 2.34.

ch02.qxd 11/22/04 9:37 AM Page 50

The node for the setWorth method has been expanded, and we can see
that it has been “advised by” the after returning advice in the
PolicyChangeNotification aspect. The setAddress method has also been
advised, the plus sign (+) next to its node in the tree view gives us a cue, and if we
expanded it we would see the “advised by” relationship as we do for setWorth.
Once again the entries shown under “advised by” are hyperlinks that can be used
to navigate to the definition of the advice affecting the method, simply by clicking.

2.7 Showing Advice In AJDT 51

Figure 2.34 An advised method in the Outline view.

2.7.2 The Editor

Now let’s look at the editor buffer we just opened on HousePolicyImpl.java.
This is shown in Figure 2.35. There are two key points to note in this figure.
First, in the left margin next to the setWorth and setAddress methods, we see
an advice marker (the arrow pointing down and to the right). This tells us that
there is after advice in place on these methods. In other words, after returning
from the execution of the setWorth and setAddress methods, some advice
will run.

ch02.qxd 11/22/04 9:37 AM Page 51

Figure 2.35 Advised methods in the editor.

In the right margin, we see the overview ruler for the whole source file. In
this margin, there are check marks indicating the presence of advice (and also the
warnings generated by the declare warning statement). You can click these check
marks to navigate to the corresponding location in the source file.

Returning our attention to the advice markers in the left margin once more, they
tell us that the method has after returning advice, but not which advice. As we have
already seen, we can use the Outline view to find that out. Another option is to
right-click the advice marker to bring up the context menu, as shown in Figure 2.36.

52 First Steps in AJDT

Figure 2.36 Using the context menu to discover advice.

ch02.qxd 11/22/04 9:37 AM Page 52

Selecting the Advised by option in the menu brings up a list of all the advice
affecting the method. Selecting one of the items in the list (in Figure 2.36 there is
only one) opens the editor on the advice declaration.

2.7.3 Documentation and Visualization

AJDT also provides a visualization view that gives you an overview of the source
files in your application and where the advice defined in aspects matches lines of
source code that will give rise to advised join points at runtime. Figure 2.37
shows an example of the kind of views it produces.

2.7 Showing Advice In AJDT 53

Figure 2.37 Visualization view.

Each vertical bar represents an individual source file. The highlighted bars
contain lines of code that will give rise to join points matched by advice at run-
time. The stripes on the highlighted bars indicate the places that advice applies.
You can click these to navigate. In this example, the Visualiser is highlighting the
classes in the policy hierarchy. Chapter 12 provides more detail on using the
Visualiser.

A final way of understanding the effects of advice is through the documen-
tation that AJDT produces via the ajdoc tool (ajdoc is AspectJ’s version of the
javadoc tool). We show you how to use AJDT to generate documentation in
Chapter 4.

ch02.qxd 11/22/04 9:37 AM Page 53

2.8 Evaluating the Implementation

We can see then from the tools that the advice we wrote seems to be calling
notifyListeners() at all the right times. We’re not finished yet though because
we still have all the old calls to notifyListeners() scattered throughout the
policy classes, and we haven’t run the test suite.

We want to know that all the tests would still pass with the
PolicyChangeNotification aspect in place, and all the old calls to
notifyListeners() removed. Ideally we would like to know that now, before
we actually go ahead and remove all those calls, because that will be a smaller step
if we find we have to backtrack. We are going to show you an AspectJ technique
you can use to do this. Remember we said that AspectJ supports several kinds of
advice, including around advice. Around advice gives you complete control over
the execution of a matched join point. One of the things you can do with around
advice is decide whether and when the computation at the matched join point
should proceed. A “no-op” around advice implementation looks like this:

Object around() : somePointcut() {
return proceed();

}

It does nothing before proceeding with the computation at the join point,
and returns immediately that computation has completed. As a transition stage
in the development of the PolicyChangeNotification aspect, we can add the
following around advice to the aspect:

void around() : notifyingListeners() &&
!within(PolicyChangeNotification)

{
}

Because it contains no call to proceed, this advice has the effect of bypassing
the computation at join points it matches. We previously defined the
notifyingListeners pointcut to match all calls to notifyListeners, so this
advice effectively removes all those calls that aren’t made by our aspect from the
runtime execution of the program—it lets us run the test cases and see what
would happen if the calls weren’t there. We should stress at this point that we are
only using empty around advice as a transition stage in our refactoring. We do
not advise you to create programs that use around advice to “stub out” unwant-
ed calls as a permanent part of the design. See the next chapter for an example
of the use of around advice as part of the program design.

54 First Steps in AJDT

ch02.qxd 11/22/04 9:37 AM Page 54

With this temporary around advice in place, we can run the test suite. The
results are shown in Figure 2.38. A test case has failed!

2.8 Evaluating the Implementation 55

Figure 2.38 A failing test case.

What’s going on? We can double-click in the JUnit view to go to the test case
definition. The editor opens on the test case, with the failing assert highlighted
(see Figure 2.39).

Figure 2.39 The failing test case definition.

ch02.qxd 11/22/04 9:37 AM Page 55

You can see that the test case adds a new claim against a policy, and then
checks to see that a notification of update was received. The method called to
add the new claim against the policy is addClaim. We defined the
policyStateUpdate pointcut to match the execution of methods beginning
with “set” on policy objects. “addClaim” does not fit this pattern—our pointcut
definition is not quite correct. If we open the editor on the PolicyImpl class, we
can see what’s going on (see Figure 2.40).

56 First Steps in AJDT

Figure 2.40 Clues in the editor.

Notice that the setClaims method has an after advice marker next to it in
the left margin. The addClaim method has no such advice marker—although it
does have a warning marker because the old implementation contains a call to
notifyListeners. Another clue is in the ruler in the right margin. You can see
that the advice markers and warning markers are nicely paired throughout the
file, apart from the last two (highlighted), which have warnings but no advice
markers. These warnings are against the addClaim and removeClaim methods.

ch02.qxd 11/22/04 9:37 AM Page 56

Aspects aren’t a silver bullet—you can use them to improve the modularity
of your programs, but they don’t alleviate the need for test-driven development
or any of the other best practices you have learned from working with Java.

2.8.1 Updating the Pointcut Declaration

Let’s go back to the PolicyChangeNotification aspect and update the defini-
tion of the policyStateChange pointcut. We want to match join points that
represent either the execution of a “set” method, or the “addClaim” method, or
the “removeClaim” method. Figure 2.41 shows the updated pointcut definition.

2.8 Evaluating the Implementation 57

Figure 2.41 The updated pointcut definition.

We can use either the Outline view or the editor to check that we are now
indeed matching the execution of the add and remove claim methods. Figure
2.42 shows how the PolicyImpl.java source file looks in the editor now.

ch02.qxd 11/22/04 9:38 AM Page 57

Figure 2.42 New matches as a result of the updated pointcut.

Notice that the advice markers are now appearing next to the addClaim and
removeClaim methods. In the right margin you can also see that the advice
markers and the warnings are now balanced: every time there is a call to
notifyListeners coded in the PolicyImpl class, there is also advice in effect
to achieve the same result. Now when we re-run the test cases, they all pass.

2.8.2 Removing the Old Calls to Notify

Now the time has come to remove all the calls to notifyListeners that are
scattered throughout the classes in the policy hierarchy. We can use the warning
tasks in the Problems view (see Figure 2.27) to navigate to all the offending
places and remove the call. Now we can take out the around advice as well, and
the job is done. Save all the files and re-run the test cases—they all pass.

Figure 2.43 shows the completed PolicyChangeNotification aspect.

58 First Steps in AJDT

ch02.qxd 11/22/04 9:38 AM Page 58

Figure 2.43 The finished aspect.

2.8.3 Comparing the Modular and Non-modular Implementations

While working through the tasks in the Problems view removing all the unwant-
ed calls to notifyListeners, we noticed an interesting case in the
LifePolicyImpl class. This is shown in Figure 2.44.

2.8 Evaluating the Implementation 59

ch02.qxd 11/22/04 9:38 AM Page 59

Figure 2.44 Ironman.

Notice that the setDrinker method contained a call to notifyListeners,
but the call to setIronman a little farther down in the source file did not. This
was a bug in the original implementation. How did this happen? Originally
Simple Insurers Inc. just sold ordinary life policies pretty much like every other
insurance company. Sometime after the original LifePolicyImpl class was writ-
ten, the marketing department decided that anyone fit enough to compete in an
Ironman competition ought to be a pretty good prospect for life insurance, and
decided to go after the market niche with special discounts. The programmer that
added the ironman field into the LifePolicyImpl class forgot to add in the call
to notifyListeners.

The PolicyChangeNotification aspect does notify listeners after the iron-
man field has been updated. Because the pointcut specifies by property (all the
set methods) rather than by exhaustive enumeration when a notification should
be issued, it gets it right. In our experience, it is fairly common for an aspect-
based implementation such as this to be more accurate than the scattered, hand-
coded alternative.

60 First Steps in AJDT

ch02.qxd 11/22/04 9:38 AM Page 60

2.9 Finishing Touches

Now that our refactoring is complete, we can make one more finishing touch. In
the PolicyChangeNotification aspect, we can turn the declare warning state-
ment into a declare error.

declare error :
notifyingListeners() && !within(PolicyChangeNotification)
: "Only the PolicyChangeNotification aspect should be

notifying listeners";

Now if anyone inadvertently breaks the modularity we just put in place, he
or she will receive a compilation error.

Finally we are now ready to go ahead and add the PetPolicyImpl class we
need for the new pet insurance business line—the change that started us off down
this road in the first place. Pet policies have attributes such as petName, petType,
vetName, and vetAddress. Figure 2.45 shows the PetPolicyImpl class in the
editor.

2.9 Finishing Touches 61

Figure 2.45 Adding in the PetPolicyImpl class.

ch02.qxd 11/22/04 9:38 AM Page 61

Notice that all the methods that update the state of the PetPolicyImpl class
are being advised by the PolicyChangeNotification aspect. The aspect con-
tinues to correctly notify changes even in code added to the system after the
aspect was written. This is the power of capturing the design for change notifi-
cation in the code (whenever the state of a policy changes), rather than coding
by hand the implications of the design (putting calls to notifyListeners
throughout the policy hierarchy).

If the PetPolicyImpl programmer somehow manages to miss the advice
markers in the editor gutter and the “advised by” relationships in the Outline
view, and starts to implement change notification the old way, the
PolicyChangeNotification aspect soon tells him or her (see Figure 2.46).

62 First Steps in AJDT

Figure 2.46 Catching a violation of the change notification design.

2.10 Summary

We’ve come a long way in this chapter. We identified a problem in the Simple
Insurance application that came to light when we decided to add support for pet
insurance to the application, whereby calls to notifyListeners were spread
throughout the policy class hierarchy. We decided to refactor this implementa-
tion to get back to a one-to-one mapping from design requirement (notify when-
ever the state of a policy object changes) to implementation. We applied the
eXtreme programming philosophy “make sure everything is expressed once and
only once,” also known as the DRY principle (don’t repeat yourself). Using

ch02.qxd 11/22/04 9:38 AM Page 62

AJDT and AspectJ, we were able to implement a modular solution to change
notification using an aspect. The tools helped us during the refactoring process,
both to explore the code and to incrementally test the changes we were making.

When we had finished, all the test cases were passing, we had replaced 15
calls to notifyListeners with one single call, found and removed a bug, and
left behind a guard (the declare error) so that our chosen design modularity
would remain in place in the code during evolution and maintenance. Even bet-
ter, the solution we implemented in the aspect continued working even when the
new PetPolicyImpl class was added—there was no additional effort spent
implementing change notification for pet policies.

There is more that we could do to modularize change notification for policies—
keeping track of listeners, and adding and removing them, also really belongs in the
PolicyChangeNotification aspect. Chapter 8 shows you how to do that, too.

2.10 Summary 63

ch02.qxd 11/22/04 9:38 AM Page 63

ch02.qxd 11/22/04 9:38 AM Page 64

