
Item 7: Prefer Immutable Atomic Value Types

Immutable types are simple: After they are created, they are constant. If
you validate the parameters used to construct the object, you know that it
is in a valid state from that point forward. You cannot change the object’s
internal state to make it invalid. You save yourself a lot of otherwise neces-
sary error checking by disallowing any state changes after an object has
been constructed. Immutable types are inherently thread safe: Multiple
readers can access the same contents. If the internal state cannot change,
there is no chance for different threads to see inconsistent views of the
data. Immutable types can be exported from your objects safely. The
caller cannot modify the internal state of your objects. Immutable types
work better in hash-based collections. The value returned by
Object.GetHashCode() must be an instance invariant (see Item 10);
that’s always true for immutable types.

Not every type can be immutable. If it were, you would need to clone
objects to modify any program state. That’s why this recommendation is
for both atomic and immutable value types. Decompose your types to the
structures that naturally form a single entity. An Address type does. An
address is a single thing, composed of multiple related fields. A change in
one field likely means changes to other fields. A customer type is not an
atomic type. A customer type will likely contain many pieces of informa-
tion: an address, a name, and one or more phone numbers. Any of these
independent pieces of information might change. A customer might
change phone numbers without moving. A customer might move, yet still
keep the same phone number. A customer might change his or her name
without moving or changing phone numbers. A customer object is not
atomic; it is built from many different immutable types using composi-
tion: an address, a name, or a collection of phone number/type pairs.
Atomic types are single entities: You would naturally replace the entire
contents of an atomic type. The exception would be to change one of its
component fields.

Here is a typical implementation of an address that is mutable:

// Mutable Address structure.

public struct Address

{

private string _line1;

private string _line2;

Item 7: Prefer Immutable Atomic Value Types ❘ 1

Wagner_Item7.qxd 10/18/04 4:07 PM Page 1

private string _city;

private string _state;

private int _zipCode;

// Rely on the default system-generated

// constructor.

public string Line1

{

get { return _line1; }

set { _line1 = value; }

}

public string Line2

{

get { return _line2; }

set { _line2 = value; }

}

public string City

{

get { return _city; }

set { _city= value; }

}

public string State

{

get { return _state; }

set

{

ValidateState(value);

_state = value;

}

}

public int ZipCode

{

get { return _zipCode; }

set

{

ValidateZip(value);

_zipCode = value;

}

}

2 ❘ Chapter 1 C# Language Elements

Wagner_Item7.qxd 10/18/04 4:07 PM Page 2

// other details omitted.

}

// Example usage:

Address a1 = new Address();

a1.Line1 = "111 S. Main";

a1.City = "Anytown";

a1.State = "IL";

a1.ZipCode = 61111 ;

// Modify:

a1.City = "Ann Arbor"; // Zip, State invalid now.

a1.ZipCode = 48103; // State still invalid now.

a1.State = "MI"; // Now fine.

Internal state changes means that it’s possible to violate object invariants,
at least temporarily. After you have replaced the City field, you have
placed a1 in an invalid state. The city has changed and no longer matches
the state or ZIP code fields. The code looks harmless enough, but suppose
that this fragment is part of a multithreaded program. Any context switch
after the city changes and before the state changes would leave the poten-
tial for another thread to see an inconsistent view of the data.

Okay, so you’re not writing a multithreaded program. You can still get
into trouble. Imagine that the ZIP code was invalid and the set threw an
exception. You’ve made only some of the changes you intended, and
you’ve left the system in an invalid state. To fix this problem, you would
need to add considerable internal validation code to the address struc-
ture. That validation code would add considerable size and complexity.
To fully implement exception safety, you would need to create defensive
copies around any code block in which you change more than one field.
Thread safety would require adding significant thread-synchronization
checks on each property accessor, both sets and gets. All in all, it would be
a significant undertaking—and one that would likely be extended over
time as you add new features.

Instead, make the Address structure an immutable type. Start by chang-
ing all instance fields to read-only:

public struct Address

{

private readonly string _line1;

private readonly string _line2;

Item 7: Prefer Immutable Atomic Value Types ❘ 3

Wagner_Item7.qxd 10/18/04 4:07 PM Page 3

private readonly string _city;

private readonly string _state;

private readonly int _zipCode;

// remaining details elided

}

You’ll also want to remove all set accessors to each property:

public struct Address

{

// ...

public string Line1

{

get { return _line1; }

}

public string Line2

{

get { return _line2; }

}

public string City

{

get { return _city; }

}

public string State

{

get { return _state; }

}

public int ZipCode

{

get { return _zipCode; }

}

}

Now you have an immutable type. To make it useful, you need to add all
necessary constructors to initialize the Address structure completely.
The Address structure needs only one additional constructor, specifying
each field. A copy constructor is not needed because the assignment
operator is just as efficient. Remember that the default constructor is still

4 ❘ Chapter 1 C# Language Elements

Wagner_Item7.qxd 10/18/04 4:07 PM Page 4

accessible. There is a default address where all the strings are null, and the
ZIP code is 0:

public struct Address

{

private readonly string _line1;

private readonly string _line2;

private readonly string _city;

private readonly string _state;

private readonly int _zipCode;

public Address(string line1,

string line2,

string city,

string state,

int zipCode)

{

_line1 = line1;

_line2 = line2;

_city = city;

_state = state;

_zipCode = zipCode;

ValidateState(state);

ValidateZip(zipCode);

}

// etc.

}

Using the immutable type requires a slightly different calling sequence to
modify its state. You create a new object rather than modify the existing
instance:

// Create an address:

Address a1 = new Address("111 S. Main",

"", "Anytown", "IL", 61111);

// To change, re-initialize:

a1 = new Address(a1.Line1,

a1.Line2, "Ann Arbor", "MI", 48103);

Item 7: Prefer Immutable Atomic Value Types ❘ 5

Wagner_Item7.qxd 10/18/04 4:07 PM Page 5

The value of a1 is in one of two states: its original location in Anytown, or
its updated location in Ann Arbor. You do not modify the existing address
to create any of the invalid temporary states from the previous example.
Those interim states exist only during the execution of the Address con-
structor and are not visible outside of that constructor. As soon as a new
Address object is constructed, its value is fixed for all time. It’s exception
safe: a1 has either its original value or its new value. If an exception is
thrown during the construction of the new Address object, the original
value of a1 is unchanged.

To create an immutable type, you need to ensure that there are no holes
that would allow clients to change your internal state. Value types do not
support derived types, so you do not need to defend against derived types
modifying fields. But you do need to watch for any fields in an immutable
type that are mutable reference types. When you implement your con-
structors for these types, you need to make a defensive copy of that muta-
ble type. All these examples assume that Phone is an immutable value
type because we’re concerned only with immutability in value types:

// Almost immutable: there are holes that would

// allow state changes.

public struct PhoneList

{

private readonly Phone[] _phones;

public PhoneList(Phone[] ph)

{

_phones = ph;

}

public IEnumerator Phones

{

get

{

return _phones.GetEnumerator();

}

}

}

Phone[] phones = new Phone[10];

6 ❘ Chapter 1 C# Language Elements

Wagner_Item7.qxd 10/18/04 4:07 PM Page 6

// initialize phones

PhoneList pl = new PhoneList(phones);

// Modify the phone list:

// also modifies the internals of the (supposedly)

// immutable object.

phones[5] = Phone.GeneratePhoneNumber();

The array class is a reference type. The array referenced inside the
PhoneList structure refers to the same array storage (phones) allocated
outside of the object. Developers can modify your immutable structure
through another variable that refers to the same storage. To remove this
possibility, you need to make a defensive copy of the array. The previous
example shows the pitfalls of a mutable collection. Even more possibilities
for mischief exist if the Phone type is a mutable reference type. Clients
could modify the values in the collection, even if the collection is
protected against any modification. This defensive copy should be made
in all constructors whenever your immutable type contains a mutable
reference type:

// Immutable: A copy is made at construction.

public struct PhoneList

{

private readonly Phone[] _phones;

public PhoneList(Phone[] ph)

{

_phones = new Phone[ph.Length];

// Copies values because Phone is a value type.

ph.CopyTo(_phones, 0);

}

public IEnumerator Phones

{

get

{

return _phones.GetEnumerator();

}

}

}

Item 7: Prefer Immutable Atomic Value Types ❘ 7

Wagner_Item7.qxd 10/18/04 4:07 PM Page 7

Phone[] phones = new Phone[10];

// initialize phones

PhoneList pl = new PhoneList(phones);

// Modify the phone list:

// Does not modify the copy in pl.

phones[5] = Phone.GeneratePhoneNumber();

You need to follow the same rules when you return a mutable reference
type. If you add a property to retrieve the entire array from the
PhoneList struct, that accessor would also need to create a defensive
copy. See Item 23 for more details.

The complexity of a type dictates which of three strategies you will use to
initialize your immutable type. The Address structure defined one con-
structor to allow clients to initialize an address. Defining the reasonable
set of constructors is often the simplest approach.

You can also create factory methods to initialize the structure. Factories
make it easier to create common values. The .NET Framework Color
type follows this strategy to initialize system colors. The static methods
Color.FromKnownColor() and Color.FromName() return a copy of a
color value that represents the current value for a given system color.

Third, you can create a mutable companion class for those instances in
which multistep operations are necessary to fully construct an immutable
type. The .NET string class follows this strategy with the
System.Text.StringBuilder class. You use the StringBuilder class
to create a string using multiple operations. After performing all the oper-
ations necessary to build the string, you retrieve the immutable string
from the StringBuilder.

Immutable types are simpler to code and easier to maintain. Don’t
blindly create get and set accessors for every property in your type. Your
first choice for types that store data should be immutable, atomic value
types. You easily can build more complicated structures from these
entities.

8 ❘ Chapter 1 C# Language Elements

Wagner_Item7.qxd 10/18/04 4:07 PM Page 8

