Item 6: Distinguish Between Value Types and Reference Types = 1

Item 6: Distinguish Between Value Types and Reference Types

Value types or reference types? Structs or classes? When should you use
each? This isn’t C++, in which you define all types as value types and can
create references to them. This isn’t Java, in which everything is a refer-
ence type. You must decide how all instances of your type will behave
when you create it. It’s an important decision to get right the first time.
You must live with the consequences of your decision because changing
later can cause quite a bit of code to break in subtle ways. It’s a simple
matter of choosing the struct or class keyword when you create the
type, but it’s much more work to update all the clients using your type if
you change it later.

It’s not as simple as preferring one over the other. The right choice
depends on how you expect to use the new type. Value types are not poly-
morphic. They are better suited to storing the data that your application
manipulates. Reference types can be polymorphic and should be used to
define the behavior of your application. Consider the expected responsi-
bilities of your new type, and from those responsibilities, decide which
type to create. Structs store data. Classes define behavior.

The distinction between value types and reference types was added to
.NET and C# because of common problems that occurred in C++ and
Java. In C++, all parameters and return values were passed by value. Pass-
ing by value is very efficient, but it suffers from one problem: partial
copying (sometimes called slicing the object). If you use a derived object
where a base object is expected, only the base portion of the object gets
copied. You have effectively lost all knowledge that a derived object was
ever there. Even calls to virtual functions are sent to the base class version.

The Java language responded by more or less removing value types from
the language. All user-defined types are reference types. In the Java lan-
guage, all parameters and return values are passed by reference. This
strategy has the advantage of being consistent, but it’s a drain on per-
formance. Let’s face it, some types are not polymorphic—they were not
intended to be. Java programmers pay a heap allocation and an eventual
garbage collection for every variable. They also pay an extra time cost to
dereference every variable. All variables are references. In C#, you declare
whether a new type should be a value type or a reference type using the
struct or class keywords. Value types should be small, lightweight
types. Reference types form your class hierarchy. This section examines

2 Chapter 1

C# Language Elements

different uses for a type so that you understand all the distinctions
between value types and reference types.

To start, this type is used as the return value from a method:

private MyData _myData;
public MyData Foo()

{

return _myData;
}

// call it:

MyData v = Foo();
TotalSum += v.Value;

If MyData is a value type, the return value gets copied into the storage for
v. Furthermore, v is on the stack. However, if MyData is a reference type,
you've exported a reference to an internal variable. You've violated the
principal of encapsulation (see Item 23).

Or, consider this variant:

private MyData _myData;
public MyData Foo()

{

return _myData.Clone() as MyData;
}

// call it:

MyData v = Foo();
TotalSum += v.Value;

Now, v is a copy of the original _myData. As a reference type, two objects
are created on the heap. You don’t have the problem of exposing internal
data. Instead, you've created an extra object on the heap. If v is a local
variable, it quickly becomes garbage and Clone forces you to use runtime
type checking. All in all, it’s inefficient.

Types that are used to export data through public methods and properties
should be value types. But that’s not to say that every type returned from
a public member should be a value type. There was an assumption in the
earlier code snippet that MyData stores values. Its responsibility is to store
those values.

Item 6: Distinguish Between Value Types and Reference Types = 3

But, consider this alternative code snippet:

private MyType _myType;
public IMyInterface Foo()

{

return _myType as IMyInterface;
}

// call it:

IMyInterface iMe = Foo();
iMe.DoWork();

The _myType variable is still returned from the Foo method. But this
time, instead of accessing the data inside the returned value, the object is
accessed to invoke a method through a defined interface. Youre accessing
the MyType object not for its data contents, but for its behavior. That
behavior is expressed through the IMyInterface, which can be imple-
mented by multiple different types. For this example, MyType should be a
reference type, not a value type. MyType’s responsibilities revolve around
its behavior, not its data members.

That simple code snippet starts to show you the distinction: Value types
store values, and reference types define behavior. Now look a little deeper
at how those types are stored in memory and the performance considera-
tions related to the storage models. Consider this class:

public class C

{
private MyType _a = new MyType();

private MyType _b new MyType();

// Remaining implementation removed.

C var = new C();

How many objects are created? How big are they? It depends. If MyType is
a value type, you've made one allocation. The size of that allocation is
twice the size of MyType. However, if MyType is a reference type, you've
made three allocations: one for the ¢ object, which is 8 bytes (assuming
32-bit pointers), and two more for each of the MyType objects that are
contained in a C object. The difference results because value types

4 Chapter 1

C# Language Elements

are stored inline in an object, whereas reference types are not. Each vari-
able of a reference type holds a reference, and the storage requires extra
allocation.

To drive this point home, consider this allocation:
MyType [] var = new MyType[100];

If MyType is a value type, one allocation of 100 times the size of a MyType
object occurs. However, if MyType is a reference type, one allocation just
occurred. Every element of the array is null. When you initialize each ele-
ment in the array, you will have performed 101 allocations—and 101
allocations take more time than 1 allocation. Allocating a large number of
reference types fragments the heap and slows you down. If you are creat-
ing types that are meant to store data values, value types are the way to go.

The decision to make a value type or a reference type is an important one.
It is a far-reaching change to turn a value type into a class type. Consider
this type:

public struct Employee
{
private string _name;
private int _ID;

private decimal _salary;
// Properties elided

public void Pay(BankAccount b)
{

b.Balance += _salary;

¥

This fairly simple type contains one method to let you pay your employ-
ees. Time passes, and the system runs fairly well. Then you decide that
there are different classes of Employees: Salespeople get commissions,
and managers get bonuses. You decide to change the Employee type into
a class:

public class Employee
{

private string _name;

Item 6: Distinguish Between Value Types and Reference Types =5

private int _ID;

private decimal _salary;
// Properties elided

public virtual void Pay(BankAccount b)
{

b.Balance += _salary;

3

That breaks much of the existing code that uses your customer struct.
Return by value becomes return by reference. Parameters that were
passed by value are now passed by reference. The behavior of this little
snippet changed drastically:

Employee el = Employees.Find("CEO");
el.Salary += Bonus; // Add one time bonus.
el.Pay(CEOBankAccount);

What was a one-time bump in pay to add a bonus just became a perma-
nent raise. Where a copy by value had been used, a reference is now in
place. The compiler happily makes the changes for you. The CEO is prob-
ably happy, too. The CFO, on the other hand, will report the bug. You just
can’t change your mind about value and reference types after the fact: It
changes behavior.

This problem occurred because the Employee type no longer follow the
guidelines for a value type. In addition to storing the data elements that
define an employee, you've added responsibilities—in this example, pay-
ing the employee. Responsibilities are the domain of class types. Classes
can define polymorphic implementations of common responsibilities
easily; structs cannot and should be limited to storing values.

The documentation for .NET recommends that you consider the size of a
type as a determining factor between value types and reference types. In
reality, a much better factor is the use of the type. Types that are simple
structures or data carriers are excellent candidates for value types. It’s true
that value types are more efficient in terms of memory management:
There is less heap fragmentation, less garbage, and less indirection. More
important, value types are copied when they are returned from methods

6 Chapter 1

C# Language Elements

or properties. There is no danger of exposing references to internal struc-
tures. But you pay in terms of features. Value types have very limited sup-
port for common object-oriented techniques. You cannot create object
hierarchies of value types. You should consider all value types as though
they were sealed. You can create value types that implement interfaces,
but that requires boxing, which Item 17 shows causes performance degra-
dation. Think of value types as storage containers, not objects in the OO
sense.

You'll create more reference types than value types. If you answer yes to all
these questions, you should create a value type. Compare these to the pre-
vious Employee example:

1. Is this type’s principal responsibility data storage?

2. Is its public interface defined entirely by properties that access or
modify its data members?

3. Am I confident that this type will never have subclasses?

4. Am I confident that this type will never be treated polymorphically?

Build low-level data storage types as value types. Build the behavior of
your application using reference types. You get the safety of copying data
that gets exported from your class objects. You get the memory usage
benefits that come with stack-based and inline value storage, and you can
utilize standard object-oriented techniques to create the logic of your
application. When in doubt about the expected use, use a reference type.

