
113

4 
State Management

HERE DO YOU STORE per-client state in a Web application? This
question is at the root of many heated debates over how to best

design Web applications. The disconnected nature of HTTP means that
there is no “natural” way to keep state on behalf of individual clients, but
that certainly hasn’t stopped developers from finding ways of doing it.
Today there are many choices for keeping client-specific state in an
ASP.NET Web application, including Session state, View state, cookies, the
HttpContext.Items collection, and any number of custom solutions. The
best choice depends on many things, including the scope (Do you need the
state to last for an entire user session or just between two pages?), the size
(Are you worried about passing too much data in the response and would
prefer to keep it on the server?), and the deployment environment (Is this
application deployed on a Web farm so that server state must be somehow
shared?), just to name a few.

ASP.NET 2.0 does not offer a penultimate solution for storing client
state, but it does introduce three new features that should be considered
any time you are looking for a place to store state on behalf of individual
users. The first feature, cross-page posting, is actually the resurrection of a
common technique used in classic ASP and other Web development envi-
ronments for propagating state between two pages. This technique was not
available in ASP.NET 1.1 because of the way POST requests were parsed
and processed by individual pages, but has now been reincorporated into

W

Onion.book  Page 113  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management114

ASP.NET in such a way that it works in conjunction with server-side con-
trols and other ASP.NET features. The second feature is a trio of new
server-side controls that implement the common technique of showing
and hiding portions of a page as the user interacts with it. The Wizard con-
trol gives developers a simple way to construct a multistep user interface
on a single page, and the MultiView and View controls provide a slightly
lower-level (and more flexible) way of hiding and displaying panes. 

The last feature, Profile, is by far the most intriguing. Profile provides a
prebuilt implementation that will store per-client state across requests and
even sessions of your application in a persistent back-end data store. It ties
into the Membership provider of ASP.NET 2.0 for identifying authenti-
cated clients, and generates its own identifier for working with anony-
mous users as well, storing each client’s data in a preconfigured database
table. This feature provides a flexible and extensible way of storing client
data and should prove quite useful in almost any ASP.NET application.

Cross-Page Posting
This version of ASP.NET reintroduces the ability to perform cross-page
posts. Once a common practice in classic ASP applications, ASP.NET 1.x
made it nearly impossible to use this technique for state propagation
because of server-side forms and view state. This section covers the funda-
mentals of cross-page posting in general, and then looks at the support
added in ASP.NET 2.0.

Fundamentals
One common mechanism for sending state from one page to another in
Web applications is to use a form with input elements whose action
attribute is set to the URL or the target page. The values of the source
page’s input elements are passed as name-value pairs to the target page in
the body of the POST request (or in the query string if the form’s method
attribute is set to GET), at which point the target page has access to the val-
ues. Listings 4-1 and 4-2 show a pair of sample pages that request a user’s
name, age, and marital status, and display a customized message on the
target page. 

Onion.book  Page 114  Wednesday, October 4, 2006  8:50 AM



Cross-Page Posting 115

Listing 4-1: sourceform.aspx—sample form using a cross-page post

<!-- sourceform.aspx -->

<%@ Page language="C#" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

    <title>Source Form</title>

</head>

<body>

    <form action="target.aspx" method="post">

        Enter your name:

        <input name="_nameTextBox" type="text" id="_nameTextBox" />

        <br />

        Enter your age:

        <input name="_ageTextBox" type="text" id="_ageTextBox" /><br />

        <input id="_marriedCheckBox" type="checkbox" 

               name="_marriedCheckBox" />

        <label for="_marriedCheckBox">Married?</label><br />

        <input type="submit" name="_nextPageButton" value="Next page" />

    </form>

</body>

</html>

Listing 4-2: target.aspx—sample target page for a cross-page post

<!-- target.aspx -->

<%@ Page language="C#" %>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

    <title>Target Page</title>

</head>

<body>

  <h3>

  Hello there 

  <%= Request.Form["_nameTextBox"] %>, you are

  <%= Request.Form["_ageTextBox"] %> years old and are

  <%= (Request.Form["_marriedCheckBox"] == "on") ? "" : "not " %>

  married!

  </h3>

</body>

</html>

This example works fine in both ASP.NET 1.1 and 2.0, and with a few
simple modifications would even work in classic ASP. This technique is
rarely used in ASP.NET, however, because the form on the source page
cannot be marked with runat="server"; thus, many of the advantages of

Onion.book  Page 115  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management116

ASP.NET, including server-side controls, cannot be used. ASP.NET builds
much of its server-side control infrastructure on the assumption that pages
with forms will generate POST requests back to the same page. In fact, if
you try and change the action attribute of a form that is also marked with
runat="server", it will have no effect, as ASP.NET will replace the attribute
when it renders the page with the page’s URL itself. As a result, most
ASP.NET sites resort to alternative techniques for propagating state
between pages (like Session state or using Server.Transfer while caching
data in the Context.Items collection).

In the 2.0 release of ASP.NET, cross-page posting is now supported
again, even if you are using server-side controls and all of the other
ASP.NET features. The usage model is a bit different from the one shown in
Listings 4-1 and 4-2, but in the end it achieves the desired goal of issuing a
POST request from one page to another, and allowing the secondary page
to harvest the contents from the POST body and process them as it desires.
To initiate a cross-page post, you use the new PostBackUrl attribute
defined by the IButtonControl interface, which is implemented by the But-
ton, LinkButton, and ImageButton controls. When the PostBackUrl prop-
erty is set to a different page, the OnClick handler of the button is set to call
a JavaScript function that changes the default action of the form to the tar-
get page’s URL. Listing 4-3 shows a sample form that uses cross-page post-
ing to pass name, age, and marital status data entered by the user to a
target page.

Listing 4-3: SourcePage1.aspx—using cross-page posting support in ASP.NET 2.0

<!-- SourcePage1.aspx -->

<%@ Page Language="C#" CodeFile="SourcePage1.aspx.cs" 

         Inherits="SourcePage1" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

    <title>Source page 1</title>

</head>

<body>

    <form id="form1" runat="server">

        <div>

            Enter your name:

            <asp:TextBox ID="_nameTextBox" runat="server" /><br />

            Enter your age:

            <asp:TextBox ID="_ageTextBox" runat="server" /><br />

Onion.book  Page 116  Wednesday, October 4, 2006  8:50 AM



Cross-Page Posting 117

            <asp:CheckBox ID="_marriedCheckBox" runat="server" 

                          Text="Married?" /><br />

            <asp:Button ID="_nextPageButton" runat="server" 

                     Text="Next page" PostBackUrl="~/TargetPage.aspx" />

        </div>

    </form>

</body>

</html>

Once you have set up the source page to post to the target page, the next
step is to build the target page to use the values passed by the source page.
Because ASP.NET uses POST data to manage the state of its server-side
controls, it would not have been sufficient to expect the target page to pull
name/value pairs from the POST body, since many of those values (like
__VIEWSTATE) need to be parsed by the server-side controls that wrote
the values there in the first place. Therefore, ASP.NET will actually create a
fresh instance of the source page class and ask it to parse the POST body on
behalf of the target page. This page instance is then made available to the
target page via the PreviousPage property, which is now defined in the
Page class. Listings 4-4 and 4-5 show one example of how you could use
this property in a target page to retrieve the values of the controls from the
previous page: by calling FindControl on the Form control, you can
retrieve individual controls whose state has been initialized with values
from the post’s body.

Listing 4-4: TargetPage.aspx—target page of a cross-page post

<!-- TargetPage.aspx -->

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Tar-

getPage.aspx.cs" 

         Inherits="TargetPage" %>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

    <title>Target Page</title>

</head>

<body>

    <form id="form1" runat="server">

        <div>

            <asp:Label runat="server" ID="_messageLabel" />

        </div>

    </form>

</body>

</html>

Onion.book  Page 117  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management118

Listing 4-5: TargetPage.aspx.cs—target page of a cross-page post codebehind

// TargetPage.aspx.cs

public partial class TargetPage : System.Web.UI.Page

{

    protected void Page_Load(object sender, EventArgs e)

    {

        if (PreviousPage != null)

        {

            TextBox nameTextBox = 

                 (TextBox)PreviousPage.Form.FindControl("_nameTextBox");

            TextBox ageTextBox = 

                 (TextBox)PreviousPage.Form.FindControl("_ageTextBox");

            CheckBox marriedCheckBox = 

            (CheckBox)PreviousPage.Form.FindControl("_marriedCheckBox");

            

            _messageLabel.Text = string.Format(

   "<h3>Hello there {0}, you are {1} years old and {2} married!</h3>",

            nameTextBox.Text, ageTextBox.Text, 

            marriedCheckBox.Checked ? "" : "not");

        }

    }

}

The technique shown in Listing 4-5 for retrieving values from the previ-
ous page is somewhat fragile, as it relies on the identifiers of controls on
the previous page as well as their hierarchical placement, which could eas-
ily be changed. A better approach is to expose any data from the previous
page to the target page by writing public property accessors in the code-
behind, as shown in Listing 4-6.

Listing 4-6: SourcePage1.aspx.cs—exposing public properties to the target page

// File: SourcePage1.aspx.cs

public partial class SourcePage1 : Page

{    

    public string Name

    {

      get { return _nameTextBox.Text; }

    }

    public int Age

    {

      get { return int.Parse(_ageTextBox.Text); }

    }

Onion.book  Page 118  Wednesday, October 4, 2006  8:50 AM



Cross-Page Posting 119

    public bool Married

    {

      get { return _marriedCheckBox.Checked; }

    }

}

Once the public properties are defined, the target page can cast the
PreviousPage property to the specific type of the previous page and
retrieve the values using the exposed properties, as shown in Listing 4-7.

Listing 4-7: TargetPage.aspx.cs—target page using properties to retrieve source page values

// TargetPage.aspx.cs

public partial class TargetPage : System.Web.UI.Page

{

    protected void Page_Load(object sender, EventArgs e)

    {

        SourcePage1 sp = PreviousPage as SourcePage1;

        if (sp != null)

        {

            _messageLabel.Text = string.Format(

    "<h3>Hello there {0}, you are {1} years old and {2} married!</h3>",

            sp.Name, sp.Age, sp.Married ? "" : "not");

        }

    }

}

Because this last scenario is likely to be the most common use of cross-
page posting—that is, a specific source page exposes properties to be con-
sumed by a specific target page—there is a directive called PreviousPage-
Type that will automatically cast the previous page to the correct type for
you. When you specify a page in the VirtualPath property of this directive,
the PreviousPage property that is generated for that page will be strongly
typed to the previous page type, meaning that you no longer have to per-
form the cast yourself, as shown in Listings 4-8 and 4-9.

Listing 4-8: TargetPage.aspx with strongly typed previous page

<!-- TargetPage.aspx -->

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="Tar-

getPage.aspx.cs" 

         Inherits="TargetPage" %>

<%@ PreviousPageType VirtualPath="~/SourcePage1.aspx" %>

...

Onion.book  Page 119  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management120

Listing 4-9: TargetPage.aspx.cs—using strongly typed PreviousPage accessor

// TargetPage.aspx.cs

public partial class TargetPage : System.Web.UI.Page

{

    protected void Page_Load(object sender, EventArgs e)

    {

        if (PreviousPage != null)

        {

            _messageLabel.Text = string.Format(

    "<h3>Hello there {0}, you are {1} years old and {2} married!</h3>",

            PreviousPage.Name, PreviousPage.Age, 

            PreviousPage.Married ? "" : "not");

        }

    }

}

Implementation
When you set the PostBackUrl property of a button to a different page, it
does two things. First, it sets the client-side OnClick handler for that button
to point to a JavaScript method called WebForm_DoPostBackWithOptions,
which will programmatically set the form’s action to the target page. Sec-
ond, it causes the page to render an additional hidden field,
__PREVIOUSPAGE, which contains the path of the source page in an
encrypted string along with an accompanying message authentication
code for validating the string. Setting the action dynamically like this
enables you to have multiple buttons on a page that all potentially post to
different pages and keeps the architecture flexible. Storing the path of the
previous page in a hidden field means that no matter where you send the
POST request, the target page will be able to determine where the request
came from, and will know which class to instantiate to parse the body of
the message.

Once the POST request is issued to the target page, the path of the pre-
vious page is read and decrypted from the __PREVIOUSPAGE hidden
field and cached. As you have seen, the PreviousPage property on the tar-
get page gives access to the previous page and its data, but for efficiency,
this property allocates the previous page class on demand. If you never
actually access the PreviousPage property, it will never create the class and
ask it to parse the body of the request.

The first time you do access the PreviousPage property in the target
page, ASP.NET allocates a new instance of the previous page type, as

Onion.book  Page 120  Wednesday, October 4, 2006  8:50 AM



Cross-Page Posting 121

determined by the cached path to the previous page extracted from the
__PREVIOUSPAGE hidden field. Once it is created, it then executes the
page much like it would if the request had been issued to it. The page is not
executed in its entirety, however, since it only needs to restore the state
from the POST body, so it runs through its life cycle up to and including the
LoadComplete event. The Response and Trace objects of the previous page
instance are also set to null during this execution since there should be no
output associated with the process.

It is important to keep in mind that the preceding page will be created
and asked to run through LoadComplete. If you have any code that gener-
ates side effects, you should make an effort to exclude that code from running
when the page is executed during a cross-page postback. You can check to
see whether you are being executed for real or for the purpose of evaluat-
ing the POST body of a cross-page post by checking the IsCrossPagePost-
Back property. For example, suppose that the source page wrote to a
database in its Load event handler for logging purposes. You would not
want this code to execute during a cross-page postback evaluation since
the request was not really made to that page. Listing 4-10 shows how you
might exclude your logging code from being evaluated during a cross-
page postback.

Listing 4-10: Checking for IsCrossPagePostBack before running code with side effects

public partial class SourcePage1 : Page

{    

    protected void Page_Load(object sender, EventArgs e)

    {

        if (!IsCrossPagePostBack)

        {

            WriteDataToLogFile();

        }

    }

}

Caveats
While this new support for cross-page posting is a welcome addition to
ASP.NET, it does have some potential drawbacks you should be aware of
before you elect to use it. The first thing to keep in mind is that the entire
contents of the source page is going to be posted to the target page. This
includes the entire view state field and all input elements on the page. If

Onion.book  Page 121  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management122

you are using cross-page posting to send the value of a pair of TextBox
controls to a target page, but you have a GridView with view state enabled
on the source page, you’re going to incur the cost of posting the entire con-
tents of the GridView in addition to the TextBox controls just to send over
a pair of strings. If you can’t reduce the size of the request on the source
page to an acceptable amount, you may want to consider using an alterna-
tive technique (like query strings) to propagate the values.

Validation is another potential trouble area with cross-page posting. If
you are using validation controls in the client page to validate user input
prior to the cross-page post, you should be aware that server-side valida-
tion will not take place until you access the PreviousPage property on the
target page. Client-side validation will still happen as usual before the
page issues the POST, but if you are relying on server-side validation at all,
you must take care to check the IsValid property of the previous page
before accessing the data exposed by the PreviousPage property. 

A common scenario where this may occur is with custom validation
controls. If you have set up a custom validation control with a server-side
handler for the ServerValidate event, that method will not be called until
you access the PreviousPage after the cross-page posting has occurred.
Then there is the question of what to do if the previous page contains
invalid data, since you can no longer just let the page render back to the cli-
ent with error messages in place (because the client has already navigated
away from the source page). The best option is probably just to place an
indicator message that the data is invalid and provide a link back to the
previous page to enter the data again. Listings 4-11 and 4-12 show a sample
of a source page with a custom validation control and a button set up to
use cross-page posting, along with a target page. Note that the code in the
target page explicitly checks the validity of the previous page’s data before
using it and the error handling added if something is wrong.

Listing 4-11: Source page with custom validator

<!-- SourcePageWithValidation.aspx -->

<%@ Page Language="C#" %>

<script runat="server">

    public int Prime

    {

        get { return int.Parse(_primeNumberTextBox.Text); }

    }

Onion.book  Page 122  Wednesday, October 4, 2006  8:50 AM



Cross-Page Posting 123

    private bool IsPrime(int num)

    {

        // implementation omitted

    }

    protected void _primeValidator_ServerValidate(object source,

                           ServerValidateEventArgs args)

    {

        args.IsValid = IsPrime(Prime);

    }   

</script>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

    <title>Source page with validation</title>

</head>

<body>

    <form id="form1" runat="server">

        <div>

            Enter your favorite prime number:

            <asp:TextBox ID="_primeNumberTextBox" runat="server" />

            <asp:CustomValidator ID="_primeValidator" runat="server" 

                 ErrorMessage="Please enter a prime number"

               OnServerValidate="_primeValidator_ServerValidate">

                                         **</asp:CustomValidator><br />

            <asp:Button ID="_nextPageButton" runat="server" 

                        Text="Next page" 

                        PostBackUrl="~/TargetPageWithValidation.aspx"

                         /><br />

            <br />

            <asp:ValidationSummary ID="_validationSummary" 

                                   runat="server" />

        </div>

    </form>

</body>

</html>

Listing 4-12: Target page checking for validation

<!-- TargetPageWithValidation.aspx -->

<%@ Page Language="C#" %>

<%@ PreviousPageType VirtualPath="~/SourcePageWithValidation.aspx" %>

<script runat="server">

    protected void Page_Load(object sender, EventArgs e)

    {

        if (PreviousPage != null && PreviousPage.IsValid)

        {

          _messageLabel.Text = "Thanks for choosing the prime number " +

                        PreviousPage.Prime.ToString();

        }

continues

Onion.book  Page 123  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management124

        else

        {

            _messageLabel.Text = "Error in entering data";

            _messageLabel.ForeColor = Color.Red;

            _previousPageLink.Visible = true;

        }

    }

</script>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

    <title>Target Page With validation</title>

</head>

<body>

    <form id="form1" runat="server">

        <div>            

            <asp:Label runat="server" ID="_messageLabel" /><br />

            <asp:HyperLink runat="server" ID="_previousPageLink" 

                           NavigateUrl="~/SourcePageWithValidation.aspx"

                           visible="false">

                  Return to data entry page...</asp:HyperLink>

        </div>

    </form>

</body>

</html>

Finally, it is important to be aware that the entire cross-page posting
mechanism relies on JavaScript to work properly, so if the client either
doesn’t support or has disabled JavaScript, your source pages will simply
post back to themselves as the action on the form will not be changed on
the client in response to the button press. 

Multi-Source Cross-Page Posting
Cross-page posting can also be used to create a single target page that can
be posted to by multiple source pages. Such a scenario may be useful if you
have a site that provides several different ways of collecting information
from the user but one centralized page for processing it.

If we try and extend our earlier example by introducing a second source
page, also with the ability to collect the name, age, and marital status of the
client, we run into a problem because each page is a distinct type with its
own VirtualPath, and the target page will somehow have to distinguish
between a post from source page 1 and one from source page 2. One way to

Onion.book  Page 124  Wednesday, October 4, 2006  8:50 AM



Cross-Page Posting 125

solve this problem is to implement a common interface in each source
page’s base class; this way, the target page assumes only that the posting
page implements a particular interface and is not necessarily of one spe-
cific type or another. For example, we could write the IPersonInfo interface
to model our cross-page POST data, as shown in Listing 4-13.

Listing 4-13: IPersonInfo interface definition

public interface IPersonInfo

{

  string Name { get; }

  int Age { get; }

  bool Married { get; }

}

In each of the source pages, we then implement the IPersonInfo on the
codebehind base class, and our target page can now safely cast the Previ-
ousPage to the IPersonInfo type and extract the data regardless of which
page was the source page, as shown in Listing 4-14.

Listing 4-14: Generic target page using interface for previous page

IPersonInfo pi = PreviousPage as IPersonInfo;

if (pi != null)

{

  _messageLabel.Text = string.Format("<h3>Hello there {0}, you are {1} 

years old and {2} married!</h3>",

                    pi.Name, pi.Age, pi.Married ? "" : "not");

}

 It would be even better if we could use the PreviousPageType directive
to strongly type the PreviousPage property to the IPersonInfo interface. In
fact, there is a way to associate a type with a previous page instead of using
the virtual path, which is to specify the TypeName attribute instead of the
VirtualPath attribute in the PreviousPageType directive. Unfortunately, the
TypeName attribute of the PreviousPageType directive requires that the
specified type inherit from System.Web.UI.Page. You can introduce a
workaround to get the strong typing by defining an abstract base class that
implements the interface (or just defines abstract methods directly) and
inherits from Page, as shown in Listing 4-15.

Onion.book  Page 125  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management126

Listing 4-15: Abstract base class inheriting from Page for strong typing with PreviousPageType

public abstract class PersonInfoPage : Page, IPersonInfo

{

  public abstract string Name { get; }

  public abstract int Age { get; }

  public abstract bool Married { get; }

}

 This technique then requires that each of the source pages you author
change their base class from Page to this new PersonInfoPage base, and
then implement the abstract properties to return the appropriate data. List-
ing 4-16 shows an example of a codebehind class for a source page using
this new base class.

Listing 4-16: Codebehind class for a sample source page inheriting from PersonInfoPage

public partial class SourcePage1 : PersonInfoPage

{ 

  public override string Name

  {

    get { return _nameTextBox.Text; }

  }

  public override int Age

  {

    get { return int.Parse(_ageTextBox.Text); }

  }

  public override bool Married

  {

    get { return _marriedCheckBox.Checked; }

  }

}

 Once all source pages are derived from our PersonInfoPage and the
three abstract properties are implemented, our target page can be rewritten
with a strongly typed PreviousPageType directive, which saves the trouble
of casting, as shown in Listing 4-17.

Listing 4-17: Strongly typed target page using TypeName

<%@ PreviousPageType TypeName="PersonInfoPage" %>

 

<script runat="server">

protected void Page_Load(object sender, EventArgs e)

{

  if (PreviousPage != null)

Onion.book  Page 126  Wednesday, October 4, 2006  8:50 AM



Wizard and MultiView Controls 127

  {

    _messageLabel.Text = string.Format(

 "<h3>Hello there {0}, you are {1} years old and {2} married!</h3>",

               PreviousPage.Name, PreviousPage.Age, 

               PreviousPage.Married ? "" : "not");

  }

}

</script>

<!-- ... -->

 The effort required to get the strong typing to work for multiple source
pages hardly seems worth it in the end. You already have to check to see
whether the PreviousPage property is null or not, and casting it to the
interface using the as operator in C# is about the same amount of work as
checking for null. However, both ways are valid approaches, and it is up to
you to decide how much effort you want to put into making your previous
pages strongly typed.

Wizard and MultiView Controls
This section covers a new collection of controls in ASP.NET 2.0 that sim-
plify the process of collecting data from the user by using a sequence of
steps that are all on a single page. The controls include the new Wizard
control as well as the View and MultiView controls.

Same Page State Management
Another alternative to storing per-client state across requests is to have the
user post back to the same page instead of navigating from one page to
another. You can achieve the same sequential set of steps for data collec-
tion that you can using multiple pages with this technique by toggling the
display of various panels, showing only one of several panels at any given
time based on the user’s progress. Instead of placing input controls on sep-
arate pages, you place them all on the same page, but separate them with
Panel (or Placeholder) controls as shown in Figure 4-1. When the user
selects the Next button in one panel, the handler for that button sets the
visibility of the current panel to false and of the next panel to true.

This technique works well because all of the state for all the controls is
kept on a single page, and even when the controls in a particular panel are

Onion.book  Page 127  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management128

not displayed, their state is maintained in view state, so programmatically
it is just like working with one giant form. It is also quite efficient, since the
contents of invisible panels are not even sent to the client browser; just the
state of the controls is sent through view state.

Wizard Control
In the 2.0 release of ASP.NET this technique has been standardized in the
form of the Wizard control. Instead of laying out the Panel controls your-
self and adding the logic to flip the visibility of each panel in response to
button presses, you can use the Wizard control to manage the details for
you and focus on laying out the controls for each step. The control itself
consists of a collection of WizardSteps which act as containers for any con-
trols you want to add. Listing 4-18 shows a sample Wizard control popu-
lated with the input elements described in Figure 4-1 (also included is an
adjacent Label control to display the data on completion).

Figure 4-1: Multipanel page

Panel 1

Panel 2

Panel 3

CollectInfo.aspx

Onion.book  Page 128  Wednesday, October 4, 2006  8:50 AM



Wizard and MultiView Controls 129

Listing 4-18: Sample Wizard control with three steps

<asp:Wizard ID="_infoWizard" runat="server" ActiveStepIndex="0" 

            OnFinishButtonClick="_infoWizard_FinishButtonClick" 

            DisplaySideBar="False">

    <WizardSteps>

      <asp:WizardStep ID="_step1" runat="server" Title="Name">

      <table>

        <tr>

          <td>First name:</td>

          <td><asp:TextBox ID="_firstNameTextBox" runat="server" /></td>

        </tr>

        <tr>

          <td>Last name:</td>

          <td><asp:TextBox ID="_lastNameTextBox" runat="server" /></td>

        </tr>                        

      </table>

      </asp:WizardStep>

      <asp:WizardStep ID="_step2" runat="server" Title="Address">

        <table>

          <tr>

            <td>Street:</td>

            <td><asp:TextBox ID="_streetTextBox" runat="server" /></td>

          </tr> 

          <tr>

            <td>City:</td>

            <td><asp:TextBox ID="_cityTextBox" runat="server" /></td>

          </tr>        

          <tr>

            <td>State/Province:</td>

            <td><asp:TextBox ID="_stateTextBox" runat="server" /></td>

          </tr>                 

        </table>

      </asp:WizardStep>

      <asp:WizardStep ID="_step3" runat="server" Title="Preferences">

        <table>

          <tr>

            <td>Favorite color:</td>

            <td><asp:TextBox ID="_colorTextBox" runat="server" /></td>

          </tr>        

          <tr>

            <td>Favorite number:</td>

            <td><asp:TextBox ID="_numberTextBox" runat="server" /></td>

          </tr>        

        </table>

      </asp:WizardStep>

    </WizardSteps>

  </asp:Wizard>

  <asp:Label ID="_summaryLabel" runat="server" />

Onion.book  Page 129  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management130

Like most controls in ASP.NET, both the appearance and behavior of
the Wizard control are extremely customizable. In the previous example,
the control’s SideBar portion, which generates a set of navigation hyper-
links on the left side to let the user jump between steps in the wizard with-
out using the Next/Previous buttons, was not displayed. Figure 4-2 shows
two different renderings of the Wizard control: the first is exactly how the
Wizard control shown in Listing 4-18 would appear, and the second shows
the same control with a different formatting applied and with the
ShowSideBar attribute set to true. This control also supports templates so
that you can completely customize the look and feel of it as desired.

The advantage of working with the Wizard control like this is that it
manages all of the details of the sequential interaction with the user, and
you can treat all of the input elements in each of the separate steps as if
they were all part of a single page. For example, in our OnFinishButton-
Click handler for the Wizard control we can easily use all of the data the
user has entered. Listing 4-19 shows an example of printing a message
back to the user in the form of a label and then hiding the Wizard control as
an indicator that the input sequence is complete.

Figure 4-2: Wizard control, unadorned, and with SideBar and formatting

Onion.book  Page 130  Wednesday, October 4, 2006  8:50 AM



Wizard and MultiView Controls 131

Listing 4-19: Handler for the Wizard’s Finish button click event

protected void _infoWizard_FinishButtonClick(object sender,

                                       WizardNavigationEventArgs e)

{

  _summaryLabel.Text = string.Format(

             "<h2>Thank you for submitting your information!</h2>" +

             "Name: {0} {1}<br /><br/>Address: {2}<br/>" +

             "{3}, {4}<br /><br />Prefs: {5} {6}<br />",

                        _firstNameTextBox.Text, 

                        _lastNameTextBox.Text, _streetTextBox.Text,

                        _cityTextBox.Text, _stateTextBox.Text,      

                        _colorTextBox.Text, _numberTextBox.Text);

  _infoWizard.Visible = false;

}

MultiView and View Controls
If you want the ability to toggle among multiple panels on a page but find
the Wizard control too constraining, you might instead consider using the
MultiView control. A MultiView control consists of several child View
controls, and it maintains an active index indicating which of those child
views should be visible. In fact, the WizardStep control used by the Wizard
control inherits from the View class used by the MultiView, so the similar-
ity is not a coincidence. Unlike the Wizard control, the MultiView renders
nothing but the contents of the active view—there are no buttons, links, or
titles of any kind. This means that it is up to you to determine how the user
switches between the various views. Listings 4-20 and 4-21 show a sample
MultiView with three embedded views to collect data from the user. This
example uses three link buttons to let the user toggle among the three
views by setting the ActiveViewIndex of the MultiView depending on
which button was selected.

Listing 4-20: MultiView with LinkButtons

        <asp:LinkButton ID="_view1LinkButton" runat="server" 

                OnClick="_view1LinkButton_Click">

                View 1</asp:LinkButton>&nbsp;&nbsp;

        <asp:LinkButton ID="_view2LinkButton" runat="server" 

                OnClick="_view2LinkButton_Click">

                View 2</asp:LinkButton>&nbsp;&nbsp;

        <asp:LinkButton ID="_view3LinkButton" runat="server" 

                OnClick="_view3LinkButton_Click">

                View 3</asp:LinkButton><br />

continues

Onion.book  Page 131  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management132

        <asp:MultiView ID="_infoMultiView" runat="server" 

                       ActiveViewIndex="0">

            <asp:View ID="_view1" runat="server">

             <table>

                <tr>

                  <td>First name:</td>

                  <td><asp:TextBox ID="_firstNameTextBox" 

                                   runat="server" /></td>

                </tr>

                <tr>

                  <td>Last name:</td>

                  <td><asp:TextBox ID="_lastNameTextBox" 

                                   runat="server" /></td>

                </tr>                        

              </table>

            </asp:View>

            <asp:View ID="_view2" runat="server">

                <table>

                  <tr>

                    <td>Street:</td>

                    <td><asp:TextBox ID="_streetTextBox" 

                                     runat="server" /></td>

                  </tr> 

                  <tr>

                    <td>City:</td>

                    <td><asp:TextBox ID="_cityTextBox" 

                                     runat="server" /></td>

                  </tr>        

                  <tr>

                    <td>State/Province:</td>

                    <td><asp:TextBox ID="_stateTextBox" 

                                     runat="server" /></td>

                  </tr>                 

                </table>

            </asp:View>

            <asp:View ID="_view3" runat="server">

                <table>

                  <tr>

                    <td>Favorite color:</td>

                    <td><asp:TextBox ID="_colorTextBox"

                                     runat="server" /></td>

                  </tr>        

                  <tr>

                    <td>Favorite number:</td>

                    <td><asp:TextBox ID="_numberTextBox" 

                                     runat="server" /></td>

                  </tr>        

                </table>

            </asp:View>

        </asp:MultiView>

Onion.book  Page 132  Wednesday, October 4, 2006  8:50 AM



Profile 133

Listing 4-21: LinkButton handlers for MultiView switching

protected void _view1LinkButton_Click(object sender, EventArgs e)

{

   _infoMultiView.ActiveViewIndex = 0;

}

protected void _view2LinkButton_Click(object sender, EventArgs e)

{

    _infoMultiView.ActiveViewIndex = 1;

}

protected void _view3LinkButton_Click(object sender, EventArgs e)

{

    _infoMultiView.ActiveViewIndex = 2;

}

Profile
Profile provides a simple way of defining database-backed user profile
information. With just a few configuration file entries, you can quickly
build a site that stores user preferences (or any other data, for that matter)
into a database, all with a simple type-safe interface for the developer. In
many ways, Profile looks and feels much like Session state, but unlike Ses-
sion state, Profile is persistent across sessions and is also tied into the
Membership provider, so authenticated clients have data stored associated
with their real identities instead of some arbitrary identifier. Anonymous
clients will have an identifier generated for them, stored as a persistent
cookie so that subsequent access from the same machine will retain their
preferences as well. In addition, Profile is retrieved on demand and writ-
ten only when modified, so unlike out-of-process Session state storage,
you only incur a trip to the database when you actually use Profile, not
implicitly with each request.

Fundamentals
The first step in using Profile is to declare the properties you would like to
store on behalf of each user in your web.config file under the <profile> ele-
ment. Your first decision is whether you want to allow anonymous clients
to store profile data or only authenticated clients. If you elect to support
anonymous clients, you must enable anonymous identification by adding
the anonymousIdentification element in your web.config file with its

Onion.book  Page 133  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management134

enabled attribute set to true. This will cause ASP.NET to generate a unique
identifier (a GUID) to associate with each anonymous user via a persistent
cookie. If the user is authenticated, the membership identifier for that user
will be used directly and no additional cookie will be created. You also
have control over whether individual properties are stored on behalf of
anonymous users through the allowAnonymous attribute of the add ele-
ment. Listing 4-22 shows a sample web.config file with anonymous identi-
fication enabled, and three property declarations, one each for the user’s
favorite color, favorite number, and favorite HTTP status code. Note that
all properties in this example allow anonymous access.

Listing 4-22: Defining three Profile properties in web.config

<configuration>    

  <system.web>

     <anonymousIdentification enabled="true" />

     <profile enabled="true">

        <properties>

          <add name="FavoriteColor" defaultValue="blue" 

                    type="System.String" 

                    allowAnonymous="true" />

          <add name="FavoriteNumber" defaultValue="42" 

                    type="System.Int32" 

                    allowAnonymous="true" />

          <add name="FavoriteHttpStatusCode" 

                    type="System.Net.HttpStatusCode" 

                    allowAnonymous="true" serializeAs="String" 

                    defaultValue="OK" />

        </properties>

    </profile>

  </system.web>

</configuration>

When ASP.NET compiles your site, it creates a new class that derives
from ProfileBase with type-safe accessors to the properties you declared.
These accessors use the Profile provider to save and retrieve these proper-
ties to and from whatever database the provider is configured to interact
with. Listing 4-23 shows what the generated class would look like for the
three profile properties defined in Listing 4-22.

Onion.book  Page 134  Wednesday, October 4, 2006  8:50 AM



Profile 135

Listing 4-23: Generated ProfileCommon Class

public class ProfileCommon : ProfileBase {    

    public virtual HttpStatusCode FavoriteHttpStatusCode {

        get {

            return ((HttpStatusCode)(this.GetPropertyValue(

                       "FavoriteHttpStatusCode")));

        }

        set {

            this.SetPropertyValue("FavoriteHttpStatusCode",

                        value);

        }

    }

    

    public virtual int FavoriteNumber {

        get {

            return ((int)(this.GetPropertyValue(

                              "FavoriteNumber")));

        }

        set {

            this.SetPropertyValue("FavoriteNumber", value);

        }

    }

    

    public virtual string FavoriteColor {

        get {

            return ((string)(this.GetPropertyValue(

                                  "FavoriteColor")));

        }

        set {

            this.SetPropertyValue("FavoriteColor", value);

        }

    }

        

    public virtual ProfileCommon GetProfile(string username)    

    {

        return ((ProfileCommon)(ProfileBase.Create(

                          username)));

    }

}

The second thing that happens is ASP.NET adds a property declaration
to each generated Page class in your site named Profile, which is a type-safe
accessor to the current Profile class (which is part of the HttpContext), as
shown in Listing 4-24.

Onion.book  Page 135  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management136

Listing 4-24: Type-safe property added to Page-derived class for profile access

public partial class Default_aspx : Page

{

   protected ProfileCommon Profile {

      get {

          return ((ProfileCommon)(this.Context.Profile));

      }

   }

  //...

}

This lets you interact with your profile properties in a very convenient
way. For example, Listing 4-25 shows a snippet of code that sets the profile
properties based on fields in a form.

Listing 4-25: Setting profile properties

void enterButton_Click(object sender, EventArgs e)

{

  Profile.FavoriteColor = colorTextBox.Text;

  Profile.FavoriteNumber  = int.Parse(numberTextBox.Text);

  Profile.FavoriteHttpStatusCode = (HttpStatusCode)

                   Enum.Parse(typeof(HttpStatusCode), 

                           statusCodeTextBox.Text);

}

If you look in the database used by the Profile provider (by default a
local SQL Server 2005 Express database in your application’s App_Data
directory), you will see a table called aspnet_Profile with 5 columns:

UserId

PropertyNames

PropertyValuesString

PropertyValuesBinary

LastUpdatedDate

In the example shown in Listings 4-22, 4-23, and 4-25 these columns
were populated with the following values:

405A7333-2C8D-4E63-AB56-BA54398D47DF

FavoriteColor:S:0:3:FavoriteNumber:S:3:2:FavoriteHttpStatusCode:S:5:16:

red42MovedPermanently

2006-1-1 09:00:00.000

So you can see that by default the Profile provider uses a string serial-
ization with property names and string lengths carefully stored as well on

Onion.book  Page 136  Wednesday, October 4, 2006  8:50 AM



Profile 137

a per-user basis. In our example the user was anonymous, so a GUID was
generated and used to index the property values in the aspnet_Profile
table. The UserId column is actually a foreign key reference to the UserId
column of the aspnet_Users table, where the membership system keeps
user information (anonymous user information is also stored in this table).

Migrating Anonymous Profile Data
If your application supports both anonymous and authenticated clients,
you may find that clients are frustrated when they store data as an anony-
mous user only to find it disappear when they log in and become authenti-
cated. You can take steps to migrate their anonymous data to their
authenticated identity by using the MigrateAnonymous event of the Profile-
Module. This event, which you would typically add as a handler in
global.asax, is triggered when an anonymous client with profile informa-
tion transitions to an authenticated user. Listing 4-26 shows a sample glo-
bal.asax file with a handler for this event transferring all profile state to the
new profile data store for the newly authenticated client.

Listing 4-26: Sample global.asax file migrating anonymous profile data

<%@ Application Language="C#" %>

<script runat="server">

  void Profile_MigrateAnonymous(object sender, 

                                ProfileMigrateEventArgs e)

  {

    ProfileCommon prof = Profile.GetProfile(e.AnonymousID);

    Profile.FavoriteColor = prof.FavoriteColor;

    Profile.FavoriteNumber = prof.FavoriteNumber;

    Profile.FavoriteHttpStatusCode = prof.FavoriteHttpStatusCode;

  }

</script>

Note that the anonymous identifier previously associated with the cli-
ent is available through the ProfileMigrateEventArgs parameter, and the
actual profile for that identity is accessible using the static GetProfile
method of the Profile class. In most cases it would be wise to prompt the
user before migrating her anonymous data, since that user may have pro-
file data already associated with her account and might elect to not have
the data she entered as an anonymous client overwrite the data that was
stored previously on her behalf.

Onion.book  Page 137  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management138

Managing Profile Data
Once you start using Profile in a live site, you will quickly discover that the
number of entries in your profile database can grow without bound, espe-
cially if you have enabled anonymous storage. To deal with this, there is a
class called ProfileManager which you can use to periodically clean up the
profile database. Listing 4-27 shows the core static methods of this class,
which tie into the current Profile provider.

Listing 4-27: The ProfileManager class

public static class ProfileManager

{

  public static int DeleteInactiveProfiles(

         ProfileAuthenticationOption authenticationOption, 

         DateTime userInactiveSinceDate);

  public static bool DeleteProfile(string username);

  public static ProfileInfoCollection FindProfilesByUserName(...);

  public static ProfileInfoCollection GetAllProfiles(...);

  public static int GetNumberOfInactiveProfiles(...);

  public static int GetNumberOfProfiles(...);

    //...

}

This class is accessible both in an ASP.NET Web application as well as in
any .NET application that links to the System.Web.dll assembly. You can
use the static methods in this class to build an administrative page in your
site that lets the administrator clean up the profile database from time to
time, perhaps giving her the option of specifying an inactive lower bound
above which all profiles should be deleted (using the last parameter to
DeleteInactiveProfiles method). If you prefer to automate the process, you
could also write a Windows service that ran continuously on the server,
deleting inactive profiles periodically, or perhaps a command line program
that was run as part of a batch script periodically. Whichever technique
you use is unimportant, but making sure you have a plan to clear out
unused profile data from time to time is critical, especially if you allow
anonymous clients to store data.

Storing Profile Data
The default Profile provider in ASP.NET 2.0 stores profile data in a local
SQL Server 2005 Express database located in the App_Data directory of

Onion.book  Page 138  Wednesday, October 4, 2006  8:50 AM



Profile 139

your application. For most production sites, this will be insufficient, and
they will want to store the data in a full SQL Server database along with
the rest of the data for their application. You can change the default data-
base used by the Profile provider class by changing the value of the
LocalSqlServer connection string in your web.config file. Prior to doing
this, you must ensure that the target database has the profile and member-
ship tables installed, which you can do using the aspnet_regsql.exe utility.
Running this utility without any parameters brings up a user interface
which walks you through installing the schema into an existing database,
or creating a new default database, aspnetdb, to store all of ASP.NET 2.0’s
application services (membership, roles, profiles, Web part personaliza-
tion, and the SQL Web event provider). 

You can also use the command line parameters to install the database in
an automated fashion (for example, if you are writing an install script for
your application). For instance, to install all of the ASP.NET 2.0 application
services into a new database named aspnetdb on the local machine (using
Windows credentials to access the database), you would run the
command:

aspnet_regsql -A all -C server=.;database=aspnetdb;trusted_connection=yes 

Then, to change your ASP.NET application to use this new database to
store Profile data (along with all other Application Service data), you
would remove the LocalSqlServer connection string and then add it with a
connection string pointing to your new database, as shown in Listing 4-28.

Listing 4-28: Changing the default database for Profile storage

<configuration>

 <connectionStrings>

  <remove name="LocalSqlServer" />

  <add name="LocalSqlServer" 

       connectionString=

               "Server=.;Database=aspnetdb;trusted_connection=yes"/>

 </connectionStrings>

 <!--...-->

Serialization
As you saw earlier, the default serialization for properties stored in Profile
is to write them out as strings, storing the property names and substring

Onion.book  Page 139  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management140

indices in the PropertyNames column. You can control how your proper-
ties are serialized by changing the serializeAs attribute on the add element
in web.config. This attribute can be one of four values:

Binary

ProviderSpecific

String

Xml

The default is ProviderSpecific, which might better be called Type-
Specific since the type of the object will determine the format of its serial-
ization. ProviderSpecific with the default SQL Provider implementation
writes the property as a simple string if it is either a string already or a
primitive type (int, double, float, etc.). Otherwise it defaults to XML serial-
ization, which is a natural fallback because it will work with most types
(even custom ones) without any modification to the type definition itself.
So what ProviderSpecific really means is StringForPrimitiveTypesAnd-
StringsOtherwiseXml, which is obviously quite a mouthful, so it’s under-
standable they went with something shorter. This can lead to some
confusing behavior if you’re not aware of it, however. For example, con-
sider the two Profile property definitions shown in Listing 4-29.

Listing 4-29: Sample Profile property definitions with invalid default values

<add name="TestCode" type="System.Net.HttpStatusCode" 

     defaultValue="OK" /> <!-- defaultValue invalid -->

<add name="TestDate" type="DateTime" 

     defaultValue="1/1/2006"/> <!-- defaultValue invalid -->

After using integer and string profile properties, adding an enum and a
DateTime in this manner seems reasonable. Because the default serializa-
tion is ProviderSpecific, we now know that these two types will be serial-
ized with the XmlSerializer, so specifying default values as simple strings
is not going to fly (as you will find out quickly once you try accessing the
properties). You have two ways of dealing with this problem. One is to
specify the XML-serialized value directly in the configuration file (taking
care to escape any angle brackets), as shown in Listing 4-30.

Listing 4-30: Specifying XML-serialized default values

<add name="TestCode" type="System.Net.HttpStatusCode" 

     defaultValue=

        "&lt;HttpStatusCode&gt;OK&lt;/HttpStatusCode&gt;" />

Onion.book  Page 140  Wednesday, October 4, 2006  8:50 AM



Profile 141

<add name="TestDate" type="DateTime" 

     defaultValue=

            "&lt;dateTime&gt;2006-01-01&lt;/dateTime&gt;" />

The other (and perhaps more appealing) option is to change the serial-
ization from ProviderSpecific (which we know turns into XML) to String.
String serialization only works for types that have TypeConversions
defined for strings, which in our case is true since both enums and the
DateTime class have string conversions defined (we discuss how to write
your own string conversions in the next section). If you look carefully at
Listing 4-22, you will notice that it specifies a serializeAs attribute of String
for the HttpStatusCode so that a simple string default value of "OK" could
be used, as shown in Listing 4-31.

Listing 4-31: Specifying string default values

<add name="TestCode" type="System.Net.HttpStatusCode" 

     serializeAs="String"

     defaultValue="OK" />

<add name="TestDate" type="DateTime" 

     serializeAs="String"

     defaultValue="2006-01-01" />

The other option for serialization is Binary, which will use the Binary-
Formatter to serialize the property. With the default SQL provider, this will
write the binary data into the database’s PropertyValuesBinary column.
This is a useful option if you want to make it difficult to tweak the profile
values directly in the database, or if you are storing types whose entire
state is not properly persisted using the XmlSerializer (classes with private
data members that are not accessible through public properties fall into
this category, for example). Before you can use the binary option, the type
being stored must be marked with the Serializable attribute or must imple-
ment the ISerializable interface. Keep in mind that selecting the binary
serialization option makes it impossible to specify a default value, so it is
typically used only for complex types for which a default value doesn’t
usually make sense anyway. If you ever do need to specify a default value
for binary serialization, it is technically possible by base64 encoding a seri-
alized instance of the type and using the resulting string in the default-
Value property.

Onion.book  Page 141  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management142

User-Defined Types as Profile Properties
One of the advantages of the Profile architecture is that it is generic enough
to store arbitrary types and, as we have seen, it supports several different
persistence models. This means that it is quite straightforward to write
your own classes to store user data and then store the entire class in Profile.
Suppose, for example, we wanted to provide a shopping cart for users to
let them collect items to purchase. We might write a class to store an indi-
vidual item containing a description and a cost, and another class that keeps
a list of all of the items in the current cart as well as exposing a property
that calculates the total cost of all items in the cart, as shown in Listing 4-32.

Listing 4-32: Sample ShoppingCart class definition

namespace PS

{

    [Serializable]

    public class ShoppingCart

    {

        private List<Item> _items = new List<Item>();

        public Collection<Item> Items

        {

            get { return new Collection<Item>(_items); }

        }

        public float TotalCost

        {

            get

            {

                float sum = 0F;

                foreach (Item i in _items)

                    sum += i.Cost;

                return sum;

            }

        }

    }

    [Serializable]

    public class Item

    {

        private string _description;

        private float  _cost;

        public Item() : this("", 0F) { }

        public Item(string description, float cost)

Onion.book  Page 142  Wednesday, October 4, 2006  8:50 AM



Profile 143

        {

            _description = description;

            _cost = cost;

        }

        public string Description

        {

            get { return _description;  }

            set { _description = value; }

        }

        public float Cost

        {

            get { return _cost;  }

            set { _cost = value; }

        }

    }

}

Note that our classes are marked with the [Serializable] attribute in
anticipation of using binary serialization (although the XmlSerializer will
work fine with these classes as well, so we have both options at our dis-
posal). We can then add a profile property of type ShoppingCart to our col-
lection, and we have a fully database-backed per-client persistent
shopping cart implemented!

<profile enabled="true">

  <properties>

    <add name="ShoppingCart" type="PS.ShoppingCart" 

         allowAnonymous="true" />

  </properties>

</profile>

Using the shopping cart in our application is as simple as accessing the
ShoppingCart property in Profile and adding new instances of the Item
class as needed (the sample available for download has a complete inter-
face for users to shop using this class as the storage mechanism).

Profile.ShoppingCart.Items.Add(

         new Item("Chocolate covered cherries", 3.95F));

Optimizing Profile
You may be wondering at this point what sort of cost is incurred by lever-
aging Profile to store your per-client data, especially if you start using

Onion.book  Page 143  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management144

complex classes like the ShoppingCart, which may end up storing signifi-
cant amounts of information on behalf of each user. Those of you who
have taken advantage of the SQL Server-backed Session state feature intro-
duced in ASP.NET 1.0 may be especially leery, since by default each
request for a page incurred two round trips to the state database to retrieve
and then flush session from and to the database. The good news is that by
default, the profile persistence mechanism is reasonably efficient. Unlike
out-of-process Session state, it performs lazy retrieval of the profile data on
behalf of a user (loading on demand only), and only writes the profile data
back out if it has changed.

Unfortunately, if you are storing anything besides strings, DateTime
classes, or primitive types, it becomes impossible for the ProfileModule to
determine whether the content has actually changed, and it is forced to
write the profile back to the data store every time it is retrieved. This is
obviously true for custom classes as well, so be aware that adding any
types beside string, DateTime, and primitives will force Profile to write
back to the database at the end of each request that accesses Profile. Inter-
nally there is a dirty flag used to keep track of whether a property in Profile
has changed or not. You can explicitly set the IsDirty property for a profile
property to false. If you do this for all properties associated with a specific
provider instance, then when that provider instance is asked to save the
profile data, it will see that all the properties passed to it are not dirty and it
will skip communication with the database. This approach relies on
knowledge of the underlying SettingsBase, SettingsProperty, and Settings-
PropertyValue types (all in System.Configuration). For a profile property
called Nickname, you could force it to not be considered dirty, as shown in
Listing 4-33.

Listing 4-33: Setting the IsDirty attribute for a property in a custom class

Profile.PropertyValues["Nickname"].IsDirty = false;

Note that you can disable automatic profile saving using the automatic-
SaveEnabled attribute on the <profile/> element in the configuration file
(this attribute defaults to true). You can set automaticSaveEnabled to false
to stop ProfileModule from storing the Profile on your behalf automatically.
It is then up to you to call Profile.Save if you want to store data back to the
database. Alternatively, you can hook the ProfileModule’s ProfileAutoSaving

Onion.book  Page 144  Wednesday, October 4, 2006  8:50 AM



Profile 145

event. If you set the ContinueWithProfileAutoSave property on the event
argument to false, then the ProfileModule will not call Profile.Save.

As you saw earlier, it is possible to specify String, Binary, or Xml as the
serialization mechanism for your properties. If you are storing your own
custom classes like our ShoppingCart example, you can take steps to
reduce the amount of space used to store instances of your class in one of
two ways: writing your own TypeConverter for the class to support con-
version to string format, or implementing the ISerializable interface to con-
trol the format of the binary data used by the BinaryFormatter. Listing 4-34
shows the default serialization of our ShoppingCart class with four items
in it in XML format. The equivalent binary serialization occupies 678 bytes
of space.

Listing 4-34: XML-serialized shopping cart with four items (590 characters)

<?xml version="1.0" encoding="utf-16"?>  

<ShoppingCart xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xmlns:xsd="http://www.w3.org/2001/XMLSchema">    

  <Items>      

<Item>        

  <Description>Chocolate covered cherries</Description>        

  <Cost>3.95</Cost>      

</Item>      

<Item>        

  <Description>Toy Train Set</Description>        

  <Cost>49.95</Cost>      

</Item>      

<Item>        

  <Description>XBox 360</Description>        

  <Cost>399.95</Cost>      

</Item>      

<Item>        

  <Description>Wagon</Description>        

  <Cost>24.95</Cost>      

</Item>    

  </Items>  

</ShoppingCart>

By default, you cannot use the serializeAs="String" option for custom
types, since there is no way to convert the types to and from a string format
in a lossless way. You can provide such a conversion yourself by imple-
menting a TypeConverter for your class. This involves creating a class that
inherits from TypeConverter, implementing the conversion methods, and
then annotating your original class with the TypeConverter attribute that

Onion.book  Page 145  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management146

associates it with your conversion class. You must also decide on how to
persist your class as a string (and then parse it from a string), which can be
a nontrivial task, so make sure it’s worth the effort before taking this
approach. As an example, here is a TypeConverter class for the Item class
that represents items in our shopping cart. In this case I chose to use a non-
printable character as a delimiter, and since the Item class consists of two
pieces of state which are easily rendered as strings, the parsing becomes
trivial using the Split method of the string class. The converter class is then
associated with the Item class using the TypeConverter attribute, both of
which are shown in Listing 4-35.

Listing 4-35: Writing a custom type converter

    public class ItemTypeConverter : TypeConverter

    {

        private const char _delimiter = (char)10;

        public override object 

             ConvertFrom(ITypeDescriptorContext context, 

                    CultureInfo culture, object value)

        {

            string sValue = value as string;

            if (sValue != null)

            {

                string[] vals = sValue.Split(_delimiter);

                return new Item(vals[0], 

                            float.Parse(vals[1]));

            }

            else

                return base.ConvertFrom(context, 

                                     culture, value);

        }

        public override object

               ConvertTo(ITypeDescriptorContext context, 

                            CultureInfo culture, 

                         object value, Type destinationType)

        {

            if (destinationType == typeof(string))

            {

                Item i = value as Item;

                return string.Format("{0}{1}{2}", 

                        i.Description, _delimiter, i.Cost);

            }

            else

            {

Onion.book  Page 146  Wednesday, October 4, 2006  8:50 AM



Profile 147

                return base.ConvertTo(context, culture, 

                        value, destinationType);

            }

        }

        public override bool CanConvertFrom(

                             ITypeDescriptorContext context, 

                             Type sourceType)

        {

            if (sourceType == typeof(string))

                return true;

            else

                return base.CanConvertFrom(

                              context, sourceType);

        }

        public override bool CanConvertTo(

                             ITypeDescriptorContext context,

                             Type destinationType)

        {

            if (destinationType == typeof(string))

                return true;

            else

                return base.CanConvertTo(

                            context, destinationType);

        }

    }

    [Serializable]

    [TypeConverter(typeof(ItemTypeConverter))]

    public class Item

    {

      ...

With these classes in place, our Item class can be used with string serial-
ization in a profile property. Note that for our shopping cart to be com-
pletely serializable as a string, we also need to write a type converter for
our ShoppingCart class, a sample of which can be found in the download-
able samples for this book. The advantage of controlling the persistence in
this way is that the serialization of the same shopping cart filled with four
items now only takes 79 characters!

Going the Custom Route
Any time you find yourself spending a lot of time trying to make an archi-
tecture do what you want, it is important to step back and make sure that

Onion.book  Page 147  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management148

the work necessary to customize the architecture to do what you want is
less than what it would take to do it entirely yourself. Profile is a great
example of a feature that is convenient and easy to use but that may be too
constraining as your design evolves. Let’s look at what features Profile
specifically gives us.

• Support for anonymous and authenticated clients

• Anonymous users identified through a new cookie (or alternatively 
through embedded id with URL mangling, including support for 
autodetect cookieless mode)

• Arbitrary type storage, strongly typed through configuration file

• Per-client persistent data store

• Management class for cleaning up unused profile data

One of the drawbacks to using Profile to store client data is that it stores
all of the data in one column (or two columns if you are using both string
and binary serialization) of the database table. This means that it is practi-
cally impossible to make modifications to the profile data without going
through the profile API. It’s also impractical to generate any reports from
the data or otherwise collect information from the database directly.

If you find yourself wanting more control over the storage of per-client
state in your application, you have two choices: build a custom Profile pro-
vider or forget Profile and just write data yourself. Building a custom Profile
provider gives you the ability to retarget where Profile actually writes the data,
but because of the nature of the provider interface, it doesn’t really make it
any easier to write property values to specific columns in a table. For more
information and samples on building custom Profile providers, take a look
at the ASP.NET provider model toolkit (http://msdn.microsoft.com/
asp.net/downloads/providers/default.aspx).

If you decide to forget Profile and just write the serialization of client
data yourself, be aware that you can still leverage the identification fea-
tures of Profile even if you aren’t using the storage features. Specifically,
there is a UserName property on the ProfileBase class that will contain
either the name of the current authenticated user or the GUID that was
generated for an anonymous user. You can use this UserName property as
a unique index into a custom database table of your own construction to

Onion.book  Page 148  Wednesday, October 4, 2006  8:50 AM



Summary 149

easily store and retrieve user data. Just make sure that Profile and anony-
mousIdentification are enabled in your application, and you can use the
same client identification mechanism as Profile.

<anonymousIdentification enabled="true"/>

        <profile enabled="true" />

By writing your own client persistence backend using the unique iden-
tifier provided by Profile, you gain several unique advantages over the
generic profile implementation.

• The ability to write stored procedures against client data

• The ability to retrieve only the portions of data you need for a client at 
any given time (instead of relying on Profile to just load the whole 
chunk into memory)

• The ability to cache per-client data across requests for efficiency

• Complete control over the serialization, and the ability to map onto 
existing tables instead of creating new data stores that you may 
already have in place

The sample available for download contains an alternate implementa-
tion of the shopping cart described earlier, using a custom database table to
store cart items and leveraging the unique client identifier available
through the ProfileBase class. In general, you may even consider starting
out by using Profile for convenience to get things started, and then later
migrate some of the profile data into custom tables with a separate data
access layer. In this sense, Profile fills a convenient role as an easy way to
store per-client data, with an obvious path forward to factoring data out
into a more strongly typed schema.

SUMMARY

With the reintroduction of cross-page posting and the introduction of Pro-
file and the Wizard, View, and MultiView controls to the ASP.NET devel-
oper’s toolbox, ASP.NET 2.0 should make the discussion of where to store
client state in Web applications even more interesting. Cross-page posting
brings back the common technique of parsing the POST request from a

Onion.book  Page 149  Wednesday, October 4, 2006  8:50 AM



Chapter 4:  State Management150

source page in a different target page. The Wizard, MultiView, and View
controls provide an easy-to-use implementation of a common technique of
showing and hiding parts of a page as the client interacts with it. Profile
gives developers a complete solution for persisting client data across ses-
sions, for both authenticated and anonymous users. 

Onion.book  Page 150  Wednesday, October 4, 2006  8:50 AM




