
Chapter 5

117

J

AVA

Brief Summary of Java

Java programs are compiled into an intermediate format, known as byte-
code, and then run through an interpreter that executes in a Java Virtual
Machine (JVM).

The basic syntax of Java is similar to C and C++. All white space is
treated equally, indent level does not matter, statements end in a semicolon,
and blocks of code are enclosed between

{

 and

}

.
Comments are enclosed between

/*

 and

*/

, or else begin with

//

, in
which case the rest of the line is a comment.

Data Types and Variables

The integer data types are

byte

,

short

,

int

, and

long

, which corre-
spond to numbers of 8, 16, 32, and 64 bits. The types

float

 and

double

store floating-point numbers;

char

 stores a 16-bit Unicode character, and

boolean

 can hold one of two values,

true

 or

false

.

barr138002_ch05.fm Page 117 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

118

Variables are declared with a type and name, as in the following:

int myint;

They can be initialized at the same time:

char delimeter = '/';
boolean finished = false;

Variables can be declared anywhere they are used. The scope of a vari-
able usually extends to the end of the code block it was declared in.

Java allows variables to be converted between different numeric types
by casting, as in the following:

int a;
double d = (double)a;

You can also cast between objects, but that is beyond the scope of this
book.

Variables can be declared as

final

, which means that their value
cannot be changed after it is initialized:

final int MAX_LEN = 128;

Arithmetic expressions in Java are straightforward, with

%

used for
modulo:

k = a + b;
remainder = tot % users;

The

++

 and

--

 operators exist. If they are used in prefix notation, the
expression is evaluated after the operation is done. In postfix notation,
the expression is evaluated before the operation is complete. So, with the
following code

d = 4;
e = ++d;
f = e--;

e

 and

f

 are both set to

5

.

Strings (and Objects)

Beyond the basic data types, everything in Java is declared as a class.
A

class

 is a grouping of variables and methods (functions that operate

barr138002_ch05.fm Page 118 Thursday, August 19, 2004 3:04 PM

Brief Summary of Java

119

on those variables). The word

object

 is often used to refer to a class, but
technically, a class is a description of an object and an instance is an actual
object.

You can define your own classes; Java includes many predefined ones.
One such class is

String

 (or more precisely,

java.lang.String

),
which is used to store a constant string. Strings in Java are not just arrays
of characters—they are a class that has defined methods for accessing
and modifying the characters.

The

String

 can serve as an example of how Java objects are used. A

String

 can be created from an array of characters, as follows:

char[] myArray = { 'a', 'b', 'c' };
String myString = new String(myArray);

The expression new

String(myArray)

 invokes what is called a

constructor

 for the class

String

.

Constructors

 create a new instance of an
object, optionally taking parameters. How many parameters a construc-
tor takes, and the type and order of those parameters, are part of the
constructor’s

signature

. Multiple constructors can exist for a given class
as long as they have different signatures. For example, another construc-
tor for

String

 is called as follows:

String myString = new String(myArray, 2, 1);

That is, specifying an offset and count within

myArray

.

Y

ou can
also call

String myString = new String();

This creates an empty string. (A

String

 cannot be changed after it’s
initialized, so it would stay empty.) The

String

 class actually has nine
constructors, plus two more obsolete ones.

When Java sees a literal string in double quotes, it automatically
creates a

String

 object, so you can write the following:

String newString = "text";

This is actually an assignment of one

String

 to another. This auto-
matic creation of an object from a literal is unique to the

String

 class (all
other literals, such as numbers, become primitive types), but it sure is
convenient.

No destructors exist in Java; objects are destroyed by the

garbage collector

at some point after the last reference to them is removed (often because
the variables holding that reference go out of scope). A variable can be

barr138002_ch05.fm Page 119 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

120

assigned a keyword

null

 to force a reference it is holding to be
removed:

anotherString = null;

However, the garbage collector makes no guarantees about how soon
an object will be destroyed once there are no references to it.

Java does not have explicit pointers; in a sense, all variables that refer to
objects are pointers. When you assign between two objects of the same
type, you actually assign a reference to the object on the right-hand side. To
create a new instance of an object, you need to call one of its constructors:

myObject a, b;
a = b; // reference
a = new myObject(b); // create a new object

Classes define methods that can be called on an instance of that class.
For example, the

String

 class has a method

length()

 that returns the
length of the string:

String j = "abc123";
x = j.length();

As previously mentioned, a

String

 cannot change after it’s initialized.
Java has another class,

StringBuffer

, which holds strings that can
change. A

StringBuffer

 can be constructed from a

String

, or from a
length, which specifies how many characters of capacity it should start
with:

StringBuffer sb1 = new StringBuffer("howdy");
StringBuffer sb2 = new StringBuffer(100);

StringBuffer has a variety of methods on it:

sb.append("more data");
char c = sb.charAt(12);
sb.reverse();

In Java, the + operator can concatenate strings together. A sequence
such as the following

String greeting = "Hello";
greeting = greeting + " there";

is legal. Because the original String that greeting points to cannot be
modified, the concatenation actually involves the creation of a new

barr138002_ch05.fm Page 120 Thursday, August 19, 2004 3:04 PM

Brief Summary of Java

121

String, which greeting is then set to point to. Therefore, the reference to
the original "Hello" string is removed, which eventually causes it to be
destroyed.

Note

The concatenation statement also involves some more behind-the-scenes
magic by the compiler. It creates a temporary StringBuffer, then calls
the StringBuffer.append() method for each expression separated by a +
sign, then calls StringBuffer.toString() to convert it back to the result
String. As with the automatic creation of String objects from constant
strings, this is a special case on the part of Java, but is there because string
concatenation is so useful.

StringBuffer.append() is overloaded, so it can be passed any
primitive type. Thus, you can call the following

int j = 4;
String b = "Value is" + j;

and b will equal "Value is 4". In fact, StringBuffer.append()
works for any object by appending the result of the object’s toString()
method, which can be overridden as needed by the author of the object’s
class.

Arrays

Arrays in Java are declared with square brackets:

int[] intArray;

The array then has to be created:

intArray = new int[10];

intArray would then be indexed from 0 to 9.
Arrays can also be created at declaration time, if values are specified

using an array initializer:

int[] array2 = { 5, 4, 3, 2, 1 };

You can’t explicitly specify the length in that case because it’s deter-
mined from how many values are provided.

barr138002_ch05.fm Page 121 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

122

You can get the number of elements in an array:

k = array2.length;

Note that this is not a method, so no parentheses appear after length.
Arrays can also hold objects, so you can declare the following:

MyObject[] objarray;

This would then be created as follows (this could be combined with
the declaration):

objarray = new MyObject[5];

It is important to note that this creates only the array. You still need to
create the five objects:

for (k = 0; k < 5; k++) {
 objarray[k] = new MyObject();
}

To create subarrays, create an array where each element is an array.
The first array can be declared and created in one step

int[][] bigArray = new int[6][];

and then each subarray needs to be created (each one can be different
lengths, in fact):

for (m = 0; m < 6; m++) {
 bigArray[m] = new int[20];
}

You can initialize arrays when they are declared:

short[][] shortArray = { { 1, 2, 3 }, { 4 }, { 5 , 6 } };

After that, shortArray[0] would be an array of three elements,
shortArray[1] would be an array of one element, and
shortArray[2] would be an array of two elements.

Finally, if the entries in the arrays are objects, they also have to be con-
structed, as shown here:

final int XDIM = 6;
final int YDIM = 10;
SomeObj[][] oa;

barr138002_ch05.fm Page 122 Thursday, August 19, 2004 3:04 PM

Brief Summary of Java

123

oa = new SomeObj[XDIM][];
for (int i = 0; i < XDIM; i++) {
 oa[i] = new SomeObj[YDIM];
 for (int j = 0; j < YDIM; j++) {
 oa[i][j] = new SomeObj();
 }
}

Conditionals

Java conditionals use the same if/else syntax as C:

if (j == 5) {
 // do something
} else {
 // do something else
}

The switch statement is also the same, with explicit break state-
ments required, and a default case:

switch (newChar) {
 case "@":
 process_at();
 break;
 case ".":
 process_dot();
 break;
 default:
 ignore();
}

Loops

Looping is done with for, while, and do/while:

while (k > 8) {
 do_processing();
}

do {
 eof = get_line();
} while (eof != true);

barr138002_ch05.fm Page 123 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

124

break breaks out of a loop, and continue jumps to the next iteration. A
label can be added to break or continue to specify which loop it refers to:

outerloop:
for (x = 0; x < 20; x++) {
 for (y = x; y < 20; y++) {
 if (something) {
 break outerloop;
 }
 }
}

outerloop: is a label for the loop and the statement break outer-
loop; breaks out of the labeled loop. It does not jump to the point where
the outerloop: label exists in the code.

Classes

A class is defined as follows:

class MyClass {
 private int a;
 public StringBuffer b;
 public MyClass(int j) {
 a = j;
 b = new StringBuffer(j);
 }
 public MyClass(String s) {
 a = s.length();
 b = new StringBuffer(s);
 }
 public int getLength() {
 return a;
 }
}

a and b are member variables in the class. a is defined with an access
specifier of private, which means that it is hidden from the view of
external code. b is public, which means that anyone can access it if he
has an instance of MyClass. For example

MyClass mc = new MyClass("hello");
String abc = mc.b; // this is allowed, b is public
int def = mc.a; // this is NOT allowed, a is private

barr138002_ch05.fm Page 124 Thursday, August 19, 2004 3:04 PM

Brief Summary of Java

125

We’ll get back to access specifiers within the next few paragraphs. For
now, note that MyClass has two constructors, one of which takes an int
as a parameter, and the other takes a String (the second one is the one
called in the previous code sample). Both constructors initialize a and b.
Variables can also be initialized when they are declared, so b could have
been declared as follows:

public StringBuffer b = new StringBuffer();

Although, for this class, that would not be necessary because every
constructor initializes b.

Classes can also inherit from another class. A subclass inherits all the
state and behavior of its superclass (but not the constructors), although it
can override methods by providing new ones with the same name
(unless those methods were declared with the final keyword).

Inheritance is indicated by the extends keyword:

abstract class Polygon {
 Point[] points;
 abstract int getcount();
}

class Triangle extends Polygon {
 public Triangle() {
 points = new Point[3];
 }
 int getcount() { return 3 };
}

The access specifier of a class variable can be public, private,
protected, or package (the default). public means that any code can
access it; private means that only methods in the class itself can access
it; package means that any code in the same “package” (which is a way
to group classes) can access it.

A variable marked protected can be accessed by the class, sub-
classes, and all classes in the same package. Actually, to be more precise,
subclasses can only access a protected member inherited from a super-
class when the object is an instance of the subclass (which it usually will
be). They can’t modify an instance of the superclass itself. (If you didn’t
catch all that, don’t worry too much about it.)

Members of a class (variables or methods) can be declared with the
keyword static, which makes them “class members,” as opposed to

barr138002_ch05.fm Page 125 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

126

“instance members,” which is the case that’s been described so far. Class
variables and class methods exist just once, as opposed to once per
instance. For example, a class could assign unique identifiers to each
instance it creates, as shown here:

class ImportantObject {
 private static int nextcounter = 0;
 private int counter;
 public ImportantObject() {
 counter = nextcounter++;
 }
 // continues...
}

Each instance of the class has its own counter member, but there is
only one global nextcounter.

A method on a class can be declared abstract, which means that it
defines the parameters and return value, but has no actual implementa-
tion. A class can also be declared abstract; this is required if it defines
at least one abstract method. (It is also required if a class does not
provide implementation for any abstract methods declared in its super-
classes.) An abstract class cannot itself be instantiated—it exists to ensure
that subclasses follow the “contract” that it defines.

Closely related to classes are interfaces. The main difference between
an interface and an abstract class is that all the methods on an interface
must be abstract:

public interface identify {
 String getName();
}

Other classes can now support an interface using the implements
keyword. Unlike inheritance, where a class can only inherit from one
class, classes can implement as many interfaces as they like, as long as
they provide implementations of all the interfaces’ methods (or are
declared abstract):

class SomeClass implements identify {
 final String name = "SomeClass";
 String getName() { return name };
 // rest of class follows...
}

barr138002_ch05.fm Page 126 Thursday, August 19, 2004 3:04 PM

Brief Summary of Java

127

A class with only public member variables—and no methods—can be
used to group variables by name, similar to C structures:

class Record {
 public String name;
 public int id;
 public int privilege;
}

Record r = new Record();
r.name = "Joe";
r.id = 12;
r.privilege = 3;

Java likely has a class for almost any standard operation you want to
do; the documentation lists constructors and methods. For example,
classes exist that wrap all the primitive types, such as this one that wraps
the short primitive in a class called Short (note the capital “S” on the
class name), and provides various useful methods:

Short s = new Short(12);
String str = s.toString();

I won’t go into more details about specific classes, except as needed in
the examples.

Exceptions

Java supports exceptions, which are objects that can be caught:

try {
 file = new FileInputStream("data.tmp");
} catch (FileNotFoundException e) {
 System.err.println("Exception " + e.getMessage());
} finally {
 // cleanup code
}

A try can have multiple catch blocks, each catching a different
exception. (There is a hierarchy of exception classes, leading back to a
class called Throwable. A catch block that catches a particular excep-
tion also catches any exceptions that are subclasses of that exception.)

barr138002_ch05.fm Page 127 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

128

If an exception happens and is caught, the catch block executes. The
finally block always executes, whether or not an exception happens,
and is usually used for cleanup code.

You can create and throw exceptions:

if (bytesleft == 0) {
 throw new EOFException();
}

Java requires that methods that can throw an exception specify it in
the declaration of the method, using the throws keyword:

public void read_file(File file)
 throws IOException {
 if (!check_valid(file)) {
 throw new IOException("check_valid() failed");
 }
}

Method declarations must also list any exceptions that can be thrown
by methods they call, unless they catch the exception. Thus, a method
that called read_file() (as defined above) would need to either put it
in a try block with an associated catch block that caught IOException,
or specify in its own declaration that it throws IOException. (This
“catch or specify” rule does not apply to a class of exceptions known as
runtime exceptions, which inherit from the class RuntimeException.
This rule is detailed in the Java documentation.)

Importing Other Code

To use a class, you must import the package that defines it. This is specified
in the documentation of the class. For example, to use the Timer class,
include the following in the code:

import java.util.Timer;

This can include a wildcard:

import java.util.*;

barr138002_ch05.fm Page 128 Thursday, August 19, 2004 3:04 PM

 Is a Year a Leap Year?

129

Command-Line Applications and Applets

The examples used in this chapter are split between command-line
applications and applets designed to run in a web browser. A command-
line application has to contain a class that implements a main()method,
which must be defined as public static, return type void, and
receive the command-line parameters as an array of String objects
called args (the first element in args is the first parameter, etc.):

public class MyApplication {
 public static void main(String[] args) {
 for (int j = 0; j < args.length; j++) {
 System.out.println(args[j]);
 }
 }
}

An applet inherits from a class called Applet:

public class MyApplet extends Applet {
 public void paint(Graphics g) {
 g.drawString("Testing 123", 10, 10);
 }
}

The paint() method is overridden from a superclass a few levels up
from Applet, and is used to display on the screen. The Graphics class
has many methods used to draw lines and shapes, display text, change
color, and so on.

➊ Is a Year a Leap Year?

This program determines if the first argument passed to it is a leap year,
and prints the result.

A year is a leap year if it is divisible by 4, unless it is divisible by 100.
However, years divisible by 400 are leap years.

The program internally uses a method that throws one of two excep-
tions: one if the year is a leap year, and one if it isn’t. Because these
exception classes don’t do anything different from the built-in Exception
class, they don’t need to override any methods; they can simply be
declared and used.

barr138002_ch05.fm Page 129 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

130

To convert the command-line parameter from a string to a number,
the program uses the static method parseLong() from the class
Long, which is a class that wraps the primitive type long. Because
parseLong() is a static method, it is not called on an instance of the
class.
parseLong() is defined to throw NumberFormatException if the

input string cannot be converted to a number. Because checkLeap-
Year() throws the two user-defined exceptions and, thus, typically is
called inside a try block, it is not too much work to also catch
NumberFormatException.
NumberFormatException is a runtime exception and, therefore,

does not have to be listed in the throws clause of the declaration of
checkLeapYear(), but it is included because throwing that exception
is the designated way to handle an invalid input.

Source Code

1. public class IsLeapYear {
2.
3. public static class LeapYearException
4. extends Exception {}
5. public static class NotLeapYearException
6. extends Exception {}
7.
8. static void checkLeapYear(String year)
9. throws LeapYearException, NotLeapYearException,

10. NumberFormatException {
11.
12. long yearAsLong = Long.parseLong(year);
13.
14. //
15. // A leap year is a multiple of 4, unless it is
16. // a multiple of 100, unless it is a multiple of
17. // 400.
18. //
19. // We calculate the three values, then make a
20. // 3-bit binary value out of them and look it up
21. // in results.
22. //
23.
24. final boolean results[] =
25. { true, false, false, true,
26. false, false, false, false };

barr138002_ch05.fm Page 130 Thursday, August 19, 2004 3:04 PM

 Is a Year a Leap Year?

131

27.
28. if (results[
29. ((((yearAsLong % 4) == 0) ? 1 : 0) << 2) +
30. ((((yearAsLong % 100) == 0) ? 1 : 0) << 1) +
31. ((((yearAsLong % 400) == 0) ? 1 : 0) << 0)]) {
32. throw new LeapYearException();
33. } else {
34. throw new NotLeapYearException();
35. }
36. }
37.
38. public static void main(String[] args) {
39.
40. if (args.length > 0) {
41.
42. try {
43. checkLeapYear(args[0]);
44. } catch (NumberFormatException nfe) {
45. System.out.println(
46. "Invalid argument: " +
47. nfe.getMessage());
48. } catch (LeapYearException lye) {
49. System.out.println(
50. args[0] + " is a leap year");
51. } catch (NotLeapYearException nlye) {
52. System.out.println(
53. args[0] + " is not a leap year");
54. }
55. }
56. }
57. }

Suggestions

1. What exactly does it mean if a bit is on in results?
2. Because the value computed on lines 29–31 is immediately used to

index into results, an array of size 8, is it guaranteed that this
value will be properly restricted so as to not produce an invalid
array index?

3. How many possible kinds of years are there, and given that it is less
than the size of results, are there certain values for the index into
results that will never occur?

barr138002_ch05.fm Page 131 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

132

Hints

Walk through main() with the following values for args[0]:

1. Multiple of 100 is not a leap year: "1900"
2. Multiple of 4 is a leap year: "1904"
3. Multiple of 400 is a leap year: "2000"
4. Any other year is not a leap year: "2001"

Explanation of the Bug

Not surprisingly, the problem is in the declaration of the results array
on lines 24–26. It is reversed; that is, it is declared as if the calculation of
the index on lines 29–31 had every bit flipped, which is an F.init error.
The proper declaration should be as follows:

 private static final boolean results[] =
{ false, false, false, false,
true, false, false, true };

Alternately, the assignment of the bits on lines 29–31 could be flipped.
With the bits assigned as-is, if a year is divisible by 400, the low bit in

the index will be on, which means that the index in binary is in the form
xx1. Because such years are also divisible by 4 and 100, the next two bits
are also on. Thus, indices 1, 3, and 5 in results won’t ever be used.
Years divisible by 400 always wind up with an index of 7 (binary 111).

If year is not divisible by 400, but is divisible by 100, the low bit is off,
but the second bit is on, so the index is in the form x10. Because such a
year is also divisible by 4, the index is always 6 (binary 110), and index 2
is never used.

For the rest of the years, those not divisible by 100 (or 400), the index
is in the form x00. Years divisible by 4 result in an index of 4 (binary 100),
and those not divisible by 4 result in an index of 0.

Therefore, the only indices that matter are 0, 4, 6, and 7. Of those, 0
and 6 should be false (not leap years), and 4 and 7 should be true (leap
years). Because of the bug, those indices had their bits flipped, so 7 and 1
were false, and 3 and 0 were true. The “unused” indices (2, 4, 5, and 6)
were also set to false.

Thus, the program as written would, by chance, work if a year was
divisible by 100 but not by 400 (a year such as 1900), correctly reporting,

barr138002_ch05.fm Page 132 Thursday, August 19, 2004 3:04 PM

 Convert a Number to Text

133

based on the value of index 6, that such a year was not a leap year. It
would misrepresent the years 2000 (index 7) and 2004 (index 4) as not
being leap years, and the year 2001 (index 0) as being a leap year.

 Convert a Number to Text

This class takes a number and converts it to the equivalent text in
English.

For example, the input 1 should return the string “one” and 123,456
should return the string “one hundred twenty three thousand four hundred
fifty six.” (The program does not try to insert the word “and” between
any of the numbers.)

The class has one constructor, which takes the integer to convert as a
parameter, and has a single method—getString()—that returns the
string. This is not necessarily the ideal interface for such a class, but it
works for these purposes.

The constructor uses the pow() method from the Math package,
which raises a number to a power. It also uses the substring() method
of the String class, which when called with one parameter, creates a
new String starting at the specified offset in the original string. (The
offset is zero-based.)

Source Code

1. class EnglishNumber {
2.
3. private static final String[] ones = {
4. " one", " two", " three", " four", " five",
5. " six", " seven", " eight", " nine", " ten",
6. " eleven", " twelve", " thirteen", " fourteen",
7. " fifteen", " sixteen", " seventeen",
8. " eighteen", " nineteen"
9. };

10. private static final String[] tens = {
11. " twenty", " thirty", " forty", " fifty",
12. " sixty", " seventy", " eighty", " ninety"
13. };
14. //
15. // A Java long can only go up to 2^63 - 1,
16. // so quintillions is as big as it gets. The

❷

barr138002_ch05.fm Page 133 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

134

17. // program would automatically handle larger
18. // numbers if this array were extended.
19. //
20. private static final String[] groups = {
21. "",
22. " thousand",
23. " million",
24. " billion",
25. " trillion",
26. " quadrillion",
27. " quintillion"
28. };
29.
30. private String string = new String();
31.
32. public String getString() { return string; }
33.
34. public EnglishNumber (long n) {
35.
36. // Go through the number one group at a time.
37.
38. for (int i = groups.length-1; i >= 0; i--) {
39.
40. // Is the number as big as this group?
41.
42. long cutoff =
43. (long)Math.pow((double)10,
44. (double)(i*3));
45.
46. if (n >= cutoff) {
47.
48. int thisPart = (int)(n / cutoff);
49.
50. // Use the ones[] array for both the
51. // hundreds and the ones digit. Note
52. // that tens[] starts at "twenty".
53.
54. if (thisPart >= 100) {
55. string +=
56. ones[thisPart/100] +
57. " hundred";
58. thisPart = thisPart % 100;
59. }
60. if (thisPart >= 20) {
61. string += tens[(thisPart/10)-1];
62. thisPart = thisPart % 10;
63. }

barr138002_ch05.fm Page 134 Thursday, August 19, 2004 3:04 PM

 Convert a Number to Text

135

64. if (thisPart >= 1) {
65. string += ones[thisPart];
66. }
67.
68. string += groups[i];
69.
70. n = n % cutoff;
71.
72. }
73. }
74.
75. if (string.length() == 0) {
76. string = "zero";
77. } else {
78. // remove initial space
79. string = string.substring(1);
80. }
81. }
82. }

Suggestions

1. Look at the main for loop, running from lines 38–73. What is the
goal of one iteration of this loop?

2. What is the meaning of the variable thisPart?
3. The functionality is split because the return string is computed in the

constructor, but not returned until getString() is called. What
variable is returned? Where is it modified?

4. What is the trivial input for this program? How is it handled in
the code?

Hints

Walk through the constructor with the following inputs to the constructor,
and determine what value getString() would return:

1. The trivial case: n == 0.
2. Test one iteration of the loop, including one case where a digit is 0:
n == 102.

3. Test several iterations of the loop: n == 1234567.

barr138002_ch05.fm Page 135 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

136

Explanation of the Bug

The code indexes into the

ones

 and

tens

 array incorrectly. Because
arrays are zero-based, the number 1 corresponds to

ones[0]

,

not
ones[1

]

. Thus, the various accesses need to be adjusted for this. Lines
55–57 should change from

string +=
ones[thisPart/100] +
" hundred";

to

 string +=
 ones[(thisPart/100)-1] +
 " hundred";

Line 61 should change from

 string += tens[(thisPart/10)-1];

to

 string += tens[(thisPart/10)-2];

Line 65 should change from

string += ones[thisPart];

to

 string += ones[thisPart-1];

This is an

A.off-by-one

 error that becomes a

D.index

error. It can
actually lead to an

ArrayIndexOutOfBoundsException

 being thrown
in certain cases. (Can you determine which ones?)

 Draw a Triangle on the Screen, Part I

This function draws a triangle on the screen. It becomes the core of an
applet that allows the user to pick the three endpoints by clicking three
times on the screen, which will be completed in the next example.

❸

barr138002_ch05.fm Page 136 Thursday, August 19, 2004 7:15 PM

 Draw a Triangle on the Screen, Part I

137

The algorithm assumes that the three points are ordered by x coordinate.
It fills the triangle by drawing a series of vertical lines, 1 pixel wide. To
do this, it splits the triangle into a “left” and “right” half; that is, the part
from the x coordinate of the first point to the x coordinate of the second
point, and the part from the x coordinate of the second point to the x
coordinate of the third point. This algorithm won’t work well with trian-
gles that are extremely tall and thin, so to cover those cases, the function
also draws a line between each pair of endpoints.

Applets draw to the screen by overriding a member method called
paint(). This method is passed a Graphics class, which supports two
methods that are used here: fillOval() (used to draw a circle) and
drawLine(). The meaning of the parameters can be inferred from their
use (assume that they are passed in the correct order).

In the declaration of the Triangle class, it specifies that it imple-
ments the MouseListener interface. This is explained in the next
program.

Source Code

1. import java.awt.event.*;
2. import java.awt.*;
3.
4. public class Triangle extends java.applet.Applet
5. implements MouseListener {
6.
7. // The rest of the applet will be in the next
8. // example.
9.

10. Point[] pt = new Point[3];
11. int ptCount = 0;
12.
13. public void paint(Graphics g) {
14.
15. int i;
16.
17. // Draw the points that have been selected
18.
19. for (i = 0; i < ptCount; i++) {
20. g.fillOval(pt[i].x - 10, pt[i].y - 10,
21. 20, 20);
22. }
23.

barr138002_ch05.fm Page 137 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

138

24. if (ptCount == 3) {
25.
26. // Connect the endpoints to handle
27. // tall thin triangles.
28.
29. g.drawLine(pt[0].x, pt[0].y,
30. pt[1].x, pt[1].y);
31. g.drawLine(pt[1].x, pt[1].y,
32. pt[2].x, pt[2].y);
33. g.drawLine(pt[0].x, pt[0].y,
34. pt[2].x, pt[2].y);
35.
36. // Calculate x and y diffs between points.
37.
38. int x0to1 = pt[1].x - pt[0].x;
39. int x0to2 = pt[2].x - pt[0].x;
40. int x1to2 = pt[2].x - pt[1].x;
41. int y0to1 = pt[1].y - pt[0].y;
42. int y0to2 = pt[2].y - pt[0].y;
43. int y1to2 = pt[2].y - pt[1].y;
44.
45. // Left part of the triangle.
46.
47. if (x0to1 > 0) {
48. for (i = pt[0].x; i <= pt[1].x; i++) {
49. g.drawLine(
50. i,
51. pt[0].y +
52. ((y0to1 * (i - pt[0].x)) / x0to1),
53. i,
54. pt[0].y +
55. ((y0to2 * (i - pt[0].x)) / x0to2)
56.);
57. }
58. }
59.
60. // Right part of the triangle.
61.
62. for (i = pt[1].x+1; i <= pt[2].x; i++) {
63. g.drawLine(
64. i,
65. pt[1].y +
66. ((y1to2 * (i - pt[1].x)) / x1to2),
67. i,
68. pt[1].y +
69. ((y0to2 * (i - pt[0].x)) / x0to2)

barr138002_ch05.fm Page 138 Thursday, August 19, 2004 3:04 PM

 Draw a Triangle on the Screen, Part I

139

70.);
71. }
72. }
73. }
74. }

Suggestions

1. There are several places with repetitive statements, such as lines 29–34
and 38–43. Check these lines carefully to ensure that they are correct.

2. Although the points are ordered by x coordinate, it’s possible that
two or three of them will have the same x coordinate. As a result,
x0to1, x0to2, or x1to2 could be 0. Examine the code to ensure that
the division operations on lines 52, 55, 66, and 69 would never result
in an ArithmeticException due to divide by zero.

3. Look at the loops on lines 48–57 and lines 62–71. Determine what
values will be passed to g.drawLine() on the first and last iteration
of each of these loops to make sure that they seem reasonable.
Remember how the values are related; for example, the expression
pt[0].y + y0to1 is equal to pt[1].y.

Hints

Walk through the function with ptCount == 3 and the points as
follows:

1. A triangle with nothing unusual:
pt[0].x = 0;
pt[0].y = 20;
pt[1].x = 2;
pt[1].y = 18;
pt[2].x = 4;
pt[2].y = 28;

2. A triangle with points that are the same in the x or y coordinate:
pt[0].x = 0;
pt[0].y = 10;
pt[1].x = 4;
pt[1].y = 10;
pt[2].x = 4;
pt[2].y = 0;

barr138002_ch05.fm Page 139 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

140

Explanation of the Bug

A B.variable error exists in the calculation of the second y coordinate in
the call to g.drawLine() in the second loop. Lines 68–69, which read as
follows

 pt[1].y +
 ((y0to2 * (i - pt[0].x)) / x0to2)

should be

 pt[0].y +
 ((y0to2 * (i - pt[0].x)) / x0to2)

The problem can be spotted by considering the last iteration of the
loop, when i is equal to pt[2].x. In this situation, the expression as ini-
tially written becomes

 pt[1].y +
 ((y0to2 * (pt[2].x - pt[0].x)) / x0to2)

which, because pt[2].x – pt[0].x is equal to x0to2, becomes

 pt[1].y + y0to2

This does not make any particular sense because pt[1].y and y0to2
are not related. With the fix, the expression is instead

 pt[0].y + y0to2

This equals pt[2].y, a reasonable y coordinate for the second end-
point of the last vertical line (in fact, the y coordinate of the first endpoint
of the line also evaluates to pt[2].y, so the “line” is actually just a single
pixel drawn at the point pt[2]).

 Draw a Triangle on the Screen, Part II

This function draws a triangle on the screen, with the points selected by
the user clicking three times on the screen. It uses the paint() method
from the previous example. Because the paint() routine expects the
points to be sorted by x coordinate, this function takes care of that.

❹

barr138002_ch05.fm Page 140 Thursday, August 19, 2004 3:04 PM

 Draw a Triangle on the Screen, Part II

141

Calling the repaint() method of the Applet class (which is actually
a method of the Component class, the great-grandparent of Applet)
eventually causes the paint() method to be called.

In addition to extending the java.applet.Applet class, as all
applets do, the function also implements the MouseListener interface
to receive mouse clicks. The only method in this interface that matters
here is mousePressed(). This calls the method getPoint() (whose
functionality is obvious) on the MouseEvent passed as a parameter. If an
applet consumes a MouseEvent (or any event derived from its super-
class InputEvent), it notes this by calling the consume() method.

The class calls addMouseListener() during initialization of the
applet, and removeMouseListener() during destruction. This is how it
registers to receive mouse events. These methods take, as a parameter, an
object that implements MouseListener. Because the Triangle class
extends MouseListener, it can pass this, that is, a pointer to the
instance of the applet class itself, as a parameter.

The class should implement several methods that are not shown to save
space. Applets normally implement a method getAppletInfo(), which
returns the title and author of the applet. In addition, the MouseListener
interface has four other methods: mouseReleased(), mouseClicked(),
mouseEntered(), and mouseExited(). All these methods take
a MouseEvent as a parameter, but don’t need to do anything in this
example.

Source Code

1. import java.awt.event.*;
2. import java.awt.*;
3.
4. public class Triangle extends java.applet.Applet
5. implements MouseListener {
6.
7. Point[] pt = new Point[3];
8. int ptCount = 0;
9.

10. public void init() {
11. addMouseListener(this);
12. }
13.
14. public void paint(Graphics g) {
15. // See previous example for implementation

barr138002_ch05.fm Page 141 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

142

16. }
17.
18. public void mousePressed(MouseEvent e) {
19.
20. if (ptCount < 3) {
21. pt[ptCount] = new Point(e.getPoint());
22. if ((ptCount++) == 3) {
23. Point p;
24.
25. // Order the points by x value, so
26. // pt[0] has the lowest x and pt[2]
27. // has the highest.
28.
29. if ((pt[1].x < pt[2].x) &&
30. (pt[1].x < pt[0].x)) {
31. p = pt[0]; pt[0] = pt[1]; pt[1] = p;
32. } else if ((pt[2].x < pt[1].x) &&
33. (pt[2].x < pt[0].x)) {
34. p = pt[0]; pt[0] = pt[2]; pt[2] = p;
35. }
36. if (pt[1].x > pt[2].x) {
37. p = pt[1]; pt[1] = pt[2]; pt[2] = p;
38. }
39. }
40. }
41. e.consume();
42. repaint();
43. }
44.
45. public void destroy() {
46. removeMouseListener(this);
47. }

Suggestions

1. Look at the code on lines 29–38. The comment on lines 25–27 state
that the goal is to order the points. Is it correct? How would you
describe the goal after line 35?

2. mousePressed() calls repaint() even if this is not the third point
selected. Is it correct to assume that paint() is ready to be called in
this situation?

3. Examine the code to swap points on lines 31, 34, and 37. Is it done
correctly? How many different inputs would be needed to ensure
that all these code lines were covered?

barr138002_ch05.fm Page 142 Thursday, August 19, 2004 3:04 PM

 Reverse a Linked List

143

Hints

Walk through the mousePressed() method, passing in the third point
equal to (20, 50) and with the following values for member variables:

ptCount == 2
pt[0].x == 0
pt[0].y == 100
pt[1].x == 10
pt[1].y == 75

Explanation of the Bug

The bug is on line 22, which reads as follows:

 if ((ptCount++) == 3) {

When using the postfix notation for ++, the expression is evaluated
before the addition is done. Therefore, this expression is true only when
ptCount is already 3 before it is incremented. However, the if() on line
20 will prevent that entire block of code on lines 21–39 from executing
if ptCount is 3 or greater. Therefore, the entire block of code from lines
23–38 will never execute, and the variables won’t ever be sorted. This
leads to paint() being called with unordered points (unless the user
happens to click them in sorted x order) which causes the algorithm to
malfunction.

The code should instead read as follows:

 if ((++ptCount) == 3) {

Because the increment is done at the incorrect time, you could con-
sider this an F.location error, or you could describe it as B.expression.

 Reverse a Linked List

This function reverses a singly linked list by walking the list and chang-
ing pointers.

Each element in the list is an instance of a class ListNode. The list
itself is an instance of a class List. ListNode has a next member that

➎

barr138002_ch05.fm Page 143 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

144

points to the next element on the list. The final element on the list has a
next pointer equal to null.

List has a method called Reverse(), which is the method to reverse
the linked list.

Source Code

1. class ListNode {
2.
3. private int value;
4. protected ListNode next;
5.
6. public ListNode(int v) {
7. value = v;
8. next = null;
9. }

10.
11. public ListNode(int v, ListNode n) {
12. value = v;
13. next = n;
14. }
15.
16. public int getValue() { return value; }
17.
18. }
19.
20. class List {
21.
22. private ListNode head;
23.
24. public List() {
25. head = null;
26. }
27.
28. public List(ListNode ln) {
29. head = ln;
30. }
31.
32. public void Reverse() {
33.
34. // Walk the list, reversing the direction of
35. // the next pointers.
36.
37. ListNode ln1, ln2, ln3, ln4;

barr138002_ch05.fm Page 144 Thursday, August 19, 2004 3:04 PM

 Reverse a Linked List

145

38.
39. if (head == null)
40. return;
41.
42. ln1 = head;
43. ln2 = head.next;
44. ln3 = null;
45.
46. while (ln2 != null) {
47. ln4 = ln2.next;
48. ln1.next = ln3;
49. ln3 = ln1;
50. ln1 = ln2;
51. ln2 = ln4;
52. }
53.
54. //
55. // When we get to the end of the list, the last
56. // element we looked at is the new head.
57. //
58.
59. head = ln1;
60. }
61. }

Suggestions

1. What are the empty and trivial cases for the Reverse() method?
How will the code handle them?

2. What is the purpose of the variable ln4?
3. Describe the meaning of ln1, ln2, and ln3 after the while loop

ends. Is the comment on lines 54–57 correct?

Hints

Walk through Reverse() in the following cases:

1. The list has only one element, so head.next == null.
2. The list has three elements, so head points to Node1, Node1.next

points to Node2, Node2.next points to Node3, and Node3.next is
null.

barr138002_ch05.fm Page 145 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

146

Explanation of the Bug

The code on line 59 is correct. The value of ln1 after the last iteration of the
while() loop is the new head of the list. However, the next pointer of
that element is still null because it used to be the end of the list.

In the somewhat-confusing nomenclature of this function, ln3 is the
element that used to be before ln1 in the list, so to finish off the reversal,
there needs to be a line added after line 59 that reads as follows:

ln1.next = ln3;

This is a D.limit error because the code works correctly except when
handling the last element of the old list. The effect of the bug is that the
last element of the old list keeps its next pointer as null. Since this
element becomes the first element of the new list, this truncates the list to
a single element.

 Check if a List Has a Loop

This function checks if a singly linked list has a loop in it.
It uses the same ListNode and List classes from the previous exam-

ples, but implements a new member method, HasLoop(). A list has a
loop if there is some ListNode node in it for which node.next is equal
to head.

Source Code

1. class List {
2.
3. private ListNode head;
4.
5. public List() {
6. head = null;
7. }
8.
9. public List(ListNode ln) {

10. head = ln;
11. }

➏

barr138002_ch05.fm Page 146 Thursday, August 19, 2004 3:04 PM

 Check if a List Has a Loop

147

12.
13. public boolean HasLoop() {
14.
15. //
16. // The algorithm is to start two pointers
17. // at the head of the list; as the first pointer
18. // advances one element in the list, the second
19. // advances by two elements. If the second
20. // pointer hits a null next pointer, then the
21. // list does not have a loop; if the second
22. // pointer hits the first pointer, then the list
23. // has a loop.
24. //
25.
26. ListNode ln1, ln2;
27.
28. if ((head == null) || (head.next == null))
29. return false;
30.
31. ln1 = head;
32. ln2 = head.next;
33.
34. while (true) {
35.
36. if (ln1 == ln2)
37. return true;
38.
39. if (ln1.next == null)
40. return false;
41. else
42. ln1 = ln1.next;
43.
44. if (ln1 == ln2)
45. return true;
46.
47. if (ln2.next == null)
48. return false;
49. else
50. ln2 = ln2.next;
51.
52. if (ln1 == ln2)
53. return true;
54.
55. if (ln2.next == null)
56. return false;

barr138002_ch05.fm Page 147 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

148

57. else
58. ln2 = ln2.next;
59.
60. }
61. }

Suggestions

1. What are the empty and trivial cases for this function?
2. Because the main loop in the code is while(true), why is the

function guaranteed to eventually exit?
3. How many different inputs are necessary to guarantee complete

code coverage?

Hints

Walk through HasLoop() in the following cases:

1. The list has only one element, so head.next == null.
2. The list has three elements, so head points to Node1, Node1.next

points to Node2, Node2.next points to Node3, and Node3.next is
null.

3. The list has a loop, where head points to Node1, Node1.next points
to Node2, and Node2.next points to head.

Explanation of the Bug

The code returns true, which indicates that it has found a loop, on
any list with more than one element. The reason is that the check on
lines 44–45, immediately after advancing ln1

 if (ln1 == ln2)
 return true;

is true when ln1 is advanced from the first to the second element in the
list. This is because ln2 is initialized before the loop to point to the sec-
ond element, and it has not moved yet.

In fact, the check is unnecessary because the code is concerned with
ln2 looping around and catching up to ln1, so there is no need to check

barr138002_ch05.fm Page 148 Thursday, August 19, 2004 3:04 PM

 Quicksort

149

for equality after ln1 advances. This is an F.location error because the
two lines should not exist at all.

 Quicksort

This function implements the quicksort algorithm.
Quicksort works by choosing an arbitrary element in the array and

then dividing the array into two parts: The first part contains all
elements less than or equal to the chosen element, and the second part
contains all elements greater than the chosen element. The chosen ele-
ment is then swapped into the spot between the two parts (known as the
pivot point), which is its proper spot in the ultimately sorted array.
The function is then called recursively twice—once on each part—to
complete the sort.

Assume that the stack is deep enough that recursion will not cause a
stack overflow when properly processing any array that is passed to the
function.

The function declares an interface quickcompare, which has a single
method compare(). This method is passed two instances of the class
Object (which, in Java, is the root of the class hierarchy, and thus a super-
class of any object), and returns a negative, zero, or positive number if
the first parameter is less than, equal to, or greater than the second
parameter, respectively. This is how the equivalent of function pointers
can be supported in Java. To use the Quicksort class, you first declare a
class that implements the quickcompare interface in an appropriate
way for the data you want to sort, such as this one for String objects

private static class StringComp implements quickcompare {
 public int compare(Object a, Object b) {
 return ((String)a).compareTo((String)b);
 }
}

and then pass an instance of that class to quicksort()

public static void main(String[] args) {
 quicksort(
 args, 0, args.length-1, new StringComp());
}

➐

barr138002_ch05.fm Page 149 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

150

(In this example, StringComp is declared as static so it can be
called from main(), which is also static.)

Note that to make recursion easier, quicksort() defines the end
parameter inclusively, thus the need to pass args.length-1 in the
previous call.

Source Code

1. public class QuickSort {
2.
3. public interface quickcompare {
4. public int compare(Object a, Object b);
5. }
6.
7. // Declare it static since it does not operate
8. // on class member variables (there aren't any).
9.

10. public static void quicksort(
11. Object[] array,
12. int start,
13. int end,
14. quickcompare qc) {
15.
16. if (start < end) {
17.
18. Object temp;
19. int pivot, low, high;
20.
21. //
22. // Partition the array.
23. //
24.
25. pivot = start;
26. low = start+1;
27. high = end;
28. while (true) {
29. while ((low < high) &&
30. (qc.compare(array[low],
31. array[pivot]) <= 0)) {
32. ++low;
33. }
34. while ((high >= low) &&
35. (qc.compare(array[high],
36. array[pivot]) > 0)) {
37. --high;

barr138002_ch05.fm Page 150 Thursday, August 19, 2004 3:04 PM

 Quicksort

151

38. }
39. if (low < high) {
40. temp = array[low];
41. array[low] = array[high];
42. array[high] = temp;
43. } else {
44. break;
45. }
46. }
47. temp = array[pivot];
48. array[pivot] = array[high];
49. array[high] = temp;
50.
51. // Now sort before and after the pivot.
52.
53. quicksort(array, start, high, qc);
54. quicksort(array, high+1, end, qc);
55. }
56. }
57. }

Suggestions

1. What can you say about the relationship between low and high
during the main while() loop? Can low ever be greater than high?

2. What is the goal at line 33? What is the goal at line 38?
3. At the end of the loop, how are low and high related? What types of

inputs would cause different situations at the end of the loop?
4. Think of the empty, trivial, and already solved inputs for this code.
5. Because the code is called recursively, how can you be sure that it

will ever terminate?

Hints

Assume an implementation of quickcompare that compares objects of
type Integer. (Recall that Integer wraps the primitive int type. The
array has to be of type Integer because quickcompare needs to compare
a subclass of Object.) Walk through the code with the following inputs:

1. Array is unsorted, no duplicates:
array = [Integer(3), Integer(1), Integer(4),
➥Integer(5), Integer(2)];

barr138002_ch05.fm Page 151 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

152

start = 0
end = 4

2. Array contains only two duplicates:

array = [Integer(4), Integer(4)]
start = 0
end = 1

3. Array has the largest number in the first element (important because
the value of the first element is the pivot chosen on the first pass):

array = [Integer(6), Integer(3), Integer(5)]
start = 0
end = 2

Explanation of the Bug

The first of the two recursive calls, on line 53, is too expansive. It reads as
follows:

 quicksort(array, start, high, qc);

Recall that the pivot element was just swapped into position

high

.
Because of the way the call is written, it includes the pivot element in
the elements sorted by the recursive call. Normally, this won’t cause
problems—the pivot element is less than any of the elements in the sec-
ond group (the one recursively sorted by the call on line 54), and can be
equal to elements in the first group (the one being sorted by this call), so
it is technically correct to lump it in with the first group.

The problem, however, is that for certain arrays,

high

 never changes
from the initial value that’s assigned to it (which was

end

), and

start

never changes during the function, so the recursive call might be
attempting to sort the exact same range as the outer call. This means that
it continues to recurse, never shortening the array it tries to sort, and
eventually overflows the stack.

For example, the second hint causes infinite recursion. In practice, this
bug causes infinite recursion when two or more elements of the array are
of equal value (as reported by the

quickcompare

 method). That’s because
the bug happens when

array[high]

 and

array[pivot]

 have the same
value on some iteration of the loop.

The fix is to not include the pivot element in the recursive sort,
because the pivot element is in its proper place in the array. Line 53
should read as follows:

 quicksort(array, start, high-1, qc);

barr138002_ch05.fm Page 152 Thursday, August 19, 2004 8:33 PM

 Play the Game Pong, Part I

153

This bug’s type could be debated, but classify it as A.logic because it
involves a particular set of inputs that the algorithm does not handle
correctly.

 Play the Game Pong, Part I

The PongTimerTask class is used as the timer class for another class that
plays the simple video game known as Pong.

The timer class extends the built-in class TimerTask. The base class
has an abstract method run() that must be implemented by the class. In
turn, the implementation of this method calls the updatePosition()
method as long as the applet has focus. The updatePosition()
method moves the ball as appropriate after one timer tick.

In the game, a ball moves down the screen toward a paddle that the
player controls (“down the screen” means from lower to higher y coordi-
nates). If the player can move the paddle sideways so the ball hits it, the
ball bounces back up, possibly with a change in the angle at which it
moves. The ball bounces off the edges and top of the applet window
until it moves back toward the paddle. If the ball misses the paddle, the
ball goes to the bottom of the applet window and the game ends.

Note that Random.nextInt(n) returns a number between 0 (inclu-
sive) and n (exclusive).

The variables’ names should be self explanatory, although of course,
you should check them. Assume for now that the variables are initial-
ized with reasonable values. The paint() method of the applet is
included to provide some clarification. The first two parameters to both
fillRect() and fillOval() are the x and y coordinates of the upper-
left corner. The second two parameters are the width and height.

In the next example, this function is expanded into a class that plays a
complete Pong game.

Source Code

1. import java.util.Timer;
2. import java.util.TimerTask;
3. import java.util.Random;
4.
5. public class Pong extends java.applet.Applet {
6.

➑

barr138002_ch05.fm Page 153 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

154

7. private int paddleX, paddleY, maxX, maxY;
8. private int paddleWidth, paddleHeight;
9. private int ballX, ballY;

10. private int ballWidth, ballHeight;
11. private int ballMoveX, ballMoveY;
12. private Dimension size;
13. boolean focus;
14. Random random;
15.
16. class PongTimerTask extends TimerTask {
17.
18. void updatePosition() {
19.
20. int highestAllowedX = maxX - ballWidth;
21.
22. ballX += ballMoveX;
23. if (ballX < 0) {
24. ballX = -ballX;
25. ballMoveX = -ballMoveX;
26. } else if (ballX > highestAllowedX) {
27. ballX = (highestAllowedX * 2) - ballX;
28. ballMoveX = - ballMoveX;
29. }
30.
31. ballY += ballMoveY;
32. if (ballY < 0) {
33. ballY = -ballY;
34. ballMoveY = -ballMoveY;
35. } else if ((ballY + ballHeight) >= paddleY) {
36.
37. if ((ballY + ballHeight - ballMoveY) <
38. paddleY) {
39.
40. // Just hit the paddle in the Y
41. // direction -- now check if
42. // the middle of the ball intersects
43. // the paddle in the X direction
44. // (this check isn't perfect since
45. // ballMove has already been added
46. // to ballX, but it is good enough).
47.
48. int ballMiddleX =
49. ballX + (ballWidth / 2);
50.
51. if ((ballMiddleX >= paddleX) ||
52. (ballMiddleX <= (paddleX +
53. paddleWidth))) {

barr138002_ch05.fm Page 154 Thursday, August 19, 2004 3:04 PM

 Play the Game Pong, Part I

155

54. ballY =
55. ((paddleY - ballHeight) * 2) -
56. ballY;
57. ballMoveY = -ballMoveY;
58. int newX =
59. random.nextInt(7) + 7;
60. // keep moving in same X dir
61. ballMoveX = (ballMoveX > 0) ?
62. newX : -newX;
63. }
64. }
65. }
66. }
67.
68. public void run() {
69.
70. if (focus) {
71. updatePosition();
72. repaint();
73. }
74. if (ballY > maxY) {
75. timer.cancel();
76. }
77. }
78. }
79. public void paint(Graphics g) {
80.
81. g.setColor(Color.BLACK);
82. g.fillRect(paddleX, paddleY,
83. paddleWidth, paddleHeight);
84. g.setColor(Color.RED);
85. g.fillOval(ballX, ballY, ballWidth, ballHeight);
86.
87. }
88.
89. }

Suggestions

1. Which member variables in the Pong class are potentially updated
by the updatePosition() method, as opposed to only being used?

2. What do the calculation on line 27 and the similar calculation on
lines 50–51 accomplish? What are some “inputs” that could test these
single lines of code?

barr138002_ch05.fm Page 155 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

156

3. How are

ballX

 and

ballY

 restricted? Verify any modifications to
these variables to ensure that the restrictions are honored.

Hints

Walk through

updatePosition()

 with the following inputs. (Before
you do, imagine each scenario visually. For example, the first one repre-
sents the ball bouncing off the left wall while moving downward.)

1.

ballX = 4
ballY = 50
ballMoveX = -6
ballMoveY = 10

2.

ballX = 146
ballY = 2
ballMoveX = 7
ballMoveY = -6
highestAllowedX = 150

3.

ballX = 50
ballY = 176
ballMoveX = 10
ballMoveY = 8
ballWidth = 10
ballHeight = 10
paddleX = 45
paddleY = 190
paddleWidth = 30

Explanation of the Bug

The check on lines 51–53

 if ((ballMiddleX >= paddleX) ||
 (ballMiddleX <= (paddleX +

paddleWidth))) {

has a

B.expression

 error. The logical operator

||

 is incorrect. As written,
the paddle is “unmissable”; the ball always bounces up when it reaches
the level of the paddle, even if the paddle is nowhere near it. If the ball
is to the right of the paddle, the first part of the

||

 expression will be
true; if it is to the left of the paddle, the second part will be true; and if
it is hitting the paddle, both parts will be true. In all cases the overall
expression will be true.

barr138002_ch05.fm Page 156 Thursday, August 19, 2004 7:16 PM

 Play the Game Pong, Part II

157

The logical operator should be && instead, so the code should read as
follows:

 if ((ballMiddleX >= paddleX) &&
 (ballMiddleX <= (paddleX +
 paddleWidth))) {

 Play the Game Pong, Part II

This applet plays a game of Pong using the PongTimerTask class from
the previous example.

The applet class implements two interfaces:

• KeyListener receives keystrokes. The user presses 'Z' to go left
and 'M' to go right. (The code uses “key typed” events rather than
the lower-level “key pressed” and “key released” events.)

• FocusListener determines if the applet’s window has the focus, so
that the game can be paused when the focus is lost.

The schedule() method on the Timer class, as called here, sets up
a recurring task, and takes three parameters: an implementation of
the TimerTask interface, a delay in milliseconds until the first execution
of the task, and a delay in milliseconds between subsequent executions of
the task. The implementation of PongTimerTask is not shown. Assume
that it uses the code from the previous example (with the bug fixed).
Recall that the timer calls the run() method of PongTimerTask, which
calls updatePosition() if focus is true.

By design, the applet does not deal with the size of the applet window
changing in the middle. (If you want to enhance it to handle this, applets
can implement the ComponentListener interface to receive notifica-
tions of resizing.)

Source Code

1. import java.awt.event.*;
2. import java.awt.*;
3. import java.util.Timer;
4. import java.util.TimerTask;

➒

barr138002_ch05.fm Page 157 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

158

5. import java.util.Random;
6.
7. public class Pong extends java.applet.Applet
8. implements KeyListener, FocusListener {
9.

10. private int paddleX, paddleY, maxX, maxY;
11. private int paddleWidth, paddleHeight;
12. private int ballX, ballY;
13. private int ballMoveX, ballMoveY;
14. private int ballWidth, ballHeight;
15. boolean focus;
16. Random random;
17.
18. class PongTimerTask extends TimerTask {
19. // Implementation is in previous example.
20. }
21.
22. PongTimerTask timerTask;
23. Timer timer;
24.
25. public void init() {
26.
27. random = new Random(System.currentTimeMillis());
28.
29. Dimension size = getSize();
30. maxX = size.width;
31. maxY = size.height;
32. paddleWidth = 80;
33. paddleHeight = 20;
34. ballX = 0;
35. ballY = 0;
36. ballMoveX = random.nextInt(7) + 7;
37. ballMoveY = 10;
38. ballWidth = 20;
39. ballHeight = 20;
40.
41. addKeyListener(this);
42. addFocusListener(this);
43.
44. focus = hasFocus();
45.
46. timerTask = new PongTimerTask();
47. timer = new Timer();
48. // schedule it ten times per second
49. timer.schedule(timerTask, 100, 100);
50.
51. }

barr138002_ch05.fm Page 158 Thursday, August 19, 2004 3:04 PM

 Play the Game Pong, Part II

159

52.
53. public void paint(Graphics g) {
54.
55. g.setColor(Color.BLACK);
56. g.fillRect(paddleX, paddleY,
57. paddleWidth, paddleHeight);
58. g.setColor(Color.RED);
59. g.fillOval(ballX, ballY, ballWidth, ballHeight);
60.
61. }
62.
63. public void destroy() {
64. timer.cancel();
65. removeKeyListener(this);
66. removeFocusListener(this);
67. }
68.
69. // KeyListener methods
70.
71. public void keyPressed(KeyEvent e) {
72.
73. }
74.
75. public void keyReleased(KeyEvent e) {
76.
77. }
78.
79. public void keyTyped(KeyEvent e) {
80.
81. char c = e.getKeyChar();
82.
83. if ((c == 'z') || (c == 'Z')) {
84. paddleX =
85. (paddleX > 10) ? (paddleX - 10) : 0;
86. } else if ((c == 'm') || (c == 'M')) {
87. paddleX =
88. (paddleX < (maxX - (paddleWidth + 10))) ?
89. (paddleX + 10) : (maxX - paddleWidth);
90. }
91. repaint();
92.
93. }
94.
95. // FocusListener methods
96.
97. public void focusGained(FocusEvent e) {
98. focus = true;

barr138002_ch05.fm Page 159 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

160

99. }
100.
101. public void focusLost(FocusEvent e) {
102. focus = false;
103. }
104. }

Suggestions

1. Describe the exact meaning of each variable declared on
lines 10–14.

2. Look at lines 83–90. What is the goal of this section?
3. Based on your understanding of updatePosition() and how

positions are stored, is 0 a valid initialization value for ballX and
ballY?

Hints

With the values initialized as they are in init()

1. Walk through keyTyped() for three different values for
e.keyGetChar() : 'z', 'M', and 'a'.

2. Walk through the first iteration of updatePosition() (refer to
previous example), assuming that focus is true.

Explanation of the Bug

There is an F.init error. paddleX and paddleY are never initialized.
The paddle position can be initialized as desired. The following code,

added anywhere in the init() method (although between lines 31 and
32 would be the logical place), puts the paddle in the middle of the
applet (left-to-right), and the bottom of the paddle 50 pixels from the
bottom:

 paddleX = (size.width - paddleWidth) / 2;
 paddleY = size.height - (paddleHeight + 50);

barr138002_ch05.fm Page 160 Thursday, August 19, 2004 3:04 PM

 Compute Bowling Scores

161

 Compute Bowling Scores

This program computes the score of a bowling game.
To quickly recap the rules, bowling is played in 10 frames. At the

beginning of each frame, 10 pins are set up, and the bowler is given two
rolls to knock them all down. The score for a frame is the total number of
pins knocked down by the two rolls. However, if all the pins are knocked
down by the first roll (known as a strike), the score for the frame is
increased by the total number of pins knocked down by the next two
rolls. If all the pins are knocked down by the first and second roll combined
(known as a spare), the score for the frame is increased by the number of
pins knocked down by the next roll.

Thus, the maximum score for a frame is 30 points, which happens
when the bowler records a strike in this frame and in the next two
frames. If the bowler records a spare or a strike in the 10th frame, he or
she gets to roll one or two more balls, respectively, to have the proper
chance to get bonus points added on to the 10th frame score (the pins
knocked down on those extra balls don’t count by themselves, only as
bonuses on the 10th frame score).

The program does not simulate rolling the ball and knocking down
pins. It prompts the user with the number of pins left and asks how
many were knocked down. It does know when it is time to move to the
next frame, and when extra rolls are needed after the 10th frame. It also
prints the total score of the game when it’s over.

The program reads input using an object declared as the following:

 BufferedReader bufrd =
 new BufferedReader(
 new InputStreamReader(System.in));

You can assume this works as expected, but if you want more detail:
System.in is the “standard input” stream, which is an instance of
the class InputStream. BufferedReader, which provides the useful
readLine() method, is a subclass of Reader, which is a different class
for reading character streams. InputStreamReader is another subclass
of Reader, which is passed an InputStream in its constructor and thus
converts between the two classes. (The constructor for BufferedReader
is defined to take a Reader as a parameter. The fact that it can take an
InputStreamReader, which is a subclass of Reader, demonstrates the
power of class inheritance.)

➓

barr138002_ch05.fm Page 161 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

162

In the case of an I/O error, BufferedReader.readLine() throws an
IOException exception. Because this is not expected, rather than put the
readLine() call inside a try/catch block, the declaraton of main()
specifies that it can throw IOException also. On the other hand,
the code does catch the NumberFormatException that is thrown by
Integer.parseInt() because this occurs if the user enters a non-
number, including a blank line.

If you want to delve a bit deeper into Java (and object-oriented pro-
gramming in general), understand why the Bowling class declares a
static member variable called b:

static final Bowling b = new Bowling();

The instance b has to exist to create Frame objects. Because Frame
is a nested class within the Bowling class, Java needs to associate an
instance of Bowling with each Frame created. This is done automati-
cally when the Frame is created within a non-static Bowling member
method, which is why Frame objects have their own creation method,
Bowling.newFrame(). But, although main() is a member method of
Bowling, it is declared static, so you cannot simply call newFrame()
because there is no Bowling object to call it on. The static b is created for
this purpose, allowing the program to call b.newFrame() from within
main().

Having gone to the trouble of creating b, it would be possible to
change the static member variables in Bowling, such as rolls, to be
non-static, and then refer to b.rolls instead, but either way works.

Source Code

1. import java.io.*;
2.
3. public class Bowling {
4.
5. static final int MAXFRAMES = 10;
6. static final int MAXROLLS = (MAXFRAMES * 2 + 1);
7. static int[] rolls = new int[MAXROLLS];
8. static Frame[] frames = new Frame[MAXFRAMES];
9.

10. static final Bowling b = new Bowling();
11.
12. class Frame {
13. public int[] rollindex = new int[3];

barr138002_ch05.fm Page 162 Thursday, August 19, 2004 3:04 PM

 Compute Bowling Scores

163

14.
15. public Frame() {
16. for (int i = 0; i < 3; i++) {
17. rollindex[i] = -1;
18. }
19. }
20.
21. public int getTotal() {
22. int tot = 0;
23. for (int i = 0; i < 3; i++) {
24. if (rollindex[i] != -1) {
25. tot += rolls[rollindex[i]];
26. }
27. }
28. return tot;
29. }
30. }
31.
32. public Frame newFrame() {
33. return new Frame();
34. }
35.
36. public static void main(String[] args)
37. throws IOException {
38.
39. String inputline;
40. int nextroll = 0;
41. int i, pinsleft, hitpins;
42. boolean extrarolls = false;
43.
44. for (i = 0; i < MAXROLLS; i++) {
45. rolls[i] = 0;
46. }
47.
48. BufferedReader bufrd =
49. new BufferedReader(
50. new InputStreamReader(System.in));
51.
52. nextframe:
53. for (int frame = 0; frame < MAXFRAMES; frame++) {
54.
55. frames[frame] = b.newFrame();
56. pinsleft = 10;
57. for (int roll = 0; roll < 3; roll++) {
58.
59. // Get number of pins hint from user
60. while (true) {

barr138002_ch05.fm Page 163 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

164

61. System.out.println(
62. "Frame " + (frame+1) +
63. ", roll " + (roll+1) +
64. ", pins left " + pinsleft +
65. ". How many hit?");
66. inputline = bufrd.readLine();
67. try {
68. hitpins =
69. Integer.parseInt(inputline);
70. } catch (NumberFormatException e) {
71. continue;
72. }
73. if ((hitpins >= 0) &&
74. (hitpins <= pinsleft)) {
75. break;
76. }
77. }
78.
79. rolls[nextroll] = hitpins;
80. frames[frame].rollindex[roll] =
81. nextroll;
82.
83. // If all pins down and this is not an
84. // extra roll, set it to add bonus rolls
85. int frametot = frames[frame].getTotal();
86. if ((frametot == 10) &&
87. (extrarolls == false)) {
88. for (int t = roll+1; t < 3; t++) {
89. frames[frame].rollindex[i] =
90. nextroll + (i - roll);
91. }
92. }
93. ++nextroll;
94. pinsleft -= hitpins;
95.
96. // two rolls, pins left, frame over
97. if ((roll == 1) &&
98. (frametot < 10)) {
99. continue nextframe;

100. }
101.
102. // all pins knocked down...
103. if (frametot == 10) {
104. if (frame < (MAXFRAMES-1)) {
105. continue nextframe;
106. } else {
107. // ...and last frame

barr138002_ch05.fm Page 164 Thursday, August 19, 2004 3:04 PM

 Compute Bowling Scores

165

108. extrarolls = true;
109. }
110. }
111. if (extrarolls && (pinsleft == 0)) {
112. // new pins if needed
113. pinsleft = 10;
114. }
115. }
116. }
117.
118. int total = 0;
119. for (i = 0; i < MAXFRAMES; i++) {
120. total += frames[i].getTotal();
121. }
122. System.out.println("Game total is " + total);
123. }
124. }

Suggestions

1. Because the Frame class is nested within the Bowling class, it makes
sense to understand it first. What exactly is the meaning of the
rollindex[] array?

2. Verify that the comments on lines 59, 83–84, and 96 match the code
that follows them.

3. The loop that starts on line 57 terminates when roll reaches 3.
Under what conditions will the loop iterate with roll equal to 2?

4. The loop on lines 88–90 is probably the most visually confusing part
in the code. How many times will the loop iterate if the bowler has
just rolled a spare? What if the bowler has just rolled a strike?

Hints

1. Walk through the loop that starts on line 57, assuming frame is 0,
nextroll is 0, and extrarolls is false, and that the user specifies
that 10 pins are hit on the first roll. Continue until frame is
incremented.

2. Walk through the loop that starts on line 57, assuming frame is
MAXFRAMES-1, nextroll is frame*2, extrarolls is false, and the
user specifies that 10, 10, and 4 pins are knocked down by successive
rolls. Continue until the loop that starts on line 57 finishes iterating.

barr138002_ch05.fm Page 165 Thursday, August 19, 2004 3:04 PM

Chapter 5 • Java

166

Explanation of the Bug

The code on lines 88–90, to set up the addition of the bonus rolls to a
frame total, in the event that a spare or strike was rolled

 for (int t = roll+1; t < 3; t++) {
 frames[frame].rollindex[i] =
 nextroll + (i - roll);

has a B.variable error in it. Unlike the other minor loops in the code,
which use the loop variable i, this one uses t, but the code within the
loop still uses i, which in this case, will have the value MAXROLLS, left
over from the initialization loop that terminated at line 46. This causes
an ArrayIndexOutOfBoundsException if a player rolls a spare or
strike.

barr138002_ch05.fm Page 166 Thursday, August 19, 2004 3:04 PM

