
This book is about aspect-oriented software development (AOSD), a set of emerging
technologies that seeks new modularizations of software systems. AOSD allows multi-
ple concerns to be separately expressed but nevertheless be automatically unified into
working systems. We intend this book to be an overview of these technologies for the
computer professional interested in learning about state-of-the-art developments.

In general, programming is about realizing a set of requirements in an opera-
tional software system. One has a (perhaps evolving) set of properties desired of a
system, and proceeds to develop that system to achieve those properties. Software
engineering is the accumulated set of processes, methodologies, and tools to ease
that evolutionary process, including techniques for figuring out what we want to
build and mechanisms for yielding a higher-quality resulting system.

A recurrent theme of software engineering (and engineering in general) is that
of modularization: “separation and localization of concerns.” That is, we have “con-
cerns”—things we care about—in engineering any system. These concerns range
from high-level, user-visible requirements like reliability and security to low-level
implementation issues like caching and synchronization. Ideally, separating con-
cerns in engineering simplifies system development by allowing the development of
specialized expertise and by producing an overall more comprehensible arrangement
of elements.

Traditional software development has focused on decomposing systems into
units of primary functionality, recognizing the other issues of concern, and leaving it
to programmers both to code modules corresponding to the primary functionality
and to make sure that all other issues of concern are addressed in the code wherever
appropriate. Sometimes these other concerns can be packaged into modules of

Chapter 1

Introduction

1

film138001_ch01.qxd 8/24/04 8:29 PM Page 1

behavior themselves (e.g., subroutines, methods, or procedures). However, often the
degree of shared context or the cost of contextual change (for example, the cost of a
subprogram call) necessitates intermixing (crosscutting) the instructions for the pri-
mary functionality and the other concerns. In any case, conventional development
requires programmers to keep in mind all the things that need to be done, how to
deal with each issue, the problems associated with the possible interactions, and the
execution of the right behavior at the right time.

Spreading out the responsibility for invoking the code for multiple concerns to
all programmers produces a more brittle system. Each programmer who has to do
something right is one more person who can make a mistake; each spot where some-
thing needs to be done is a potential maintenance mishap. The distribution of the
code for realizing a concern becomes especially critical as the requirements for that
concern evolve—a system maintainer must find and correctly update a variety of
(likely poorly identified) situations.

We use the term aspect-oriented programming (AOP) to describe the activity of
programming with multiple crosscutting concerns or aspects. The general modus
operandi of programming AOSD systems is to let system developers express the
behavior for each concern in its own module. Such a system must also include some
directions for how the different concerns are to be knitted together into a working
system (for example, to which program entities each separate concern applies) and a
mechanism for actually producing a working system from these elements. For exam-
ple, many AOSD systems provide a way to say, “High security is achieved by doing X.
Reliability is achieved by doing Y. I want high security in the following places in the
code and reliability on these operations.” The AOSD system then produces an object
that invokes the high security and reliability codes appropriately.

Concern-level illustrations of the application of AOP techniques include replica-
tion, configuration, debugging, mobility, program instrumentation, security, code
movement, and synchronization. AOP is only beginning to penetrate commercial
applications, but interesting prototypes have been demonstrated in areas such as
application servers, operating systems kernels, real-time distributed event channels,
distributed middleware, distributed quality-of-service, multi-agent system architec-
tures, object databases, domain-specific visual modeling, collaboration, workflow,
e-commerce, software visualization, engineering design, and data processing.

1.1 BOOK ORGANIZATION
Just like object-oriented programming, aspect technology started with aspect-
oriented programming languages. Currently, several aspect-oriented languages are
in widespread availability, and researchers are continually inventing new ones. Part 1

2 Chapter 1 Introduction

film138001_ch01.qxd 8/24/04 8:29 PM Page 2

of this book, “Languages and Foundations,” examines this area, including descrip-
tions of not only proposed AOP languages but also programming models based on
aspect ideas and chapters discussing the fundamental and historical nature of AOP.

Just as object-oriented programming led to the development of a large class of
object-oriented development methodologies, AOP has encouraged a nascent set of
software engineering technologies. Part 2, “Software Engineering,” examines these
issues, include methodologies for dealing with aspects, modeling techniques (often
based on the ideas of the Unified Modeling Language, UML), and testing technology
for assessing the effectiveness of aspect approaches.

Of course, the ultimate aim of programming is to develop software systems. In
Part 3, “Applications,” we present descriptions of the application of aspect technology
to particular software problems, including examples that range from the systems to
application levels.

Each part of the book includes an introduction to that area and chapters by con-
tributors describing their own work. We invited each contributor to either create an
original chapter, targeted at the advanced programmer, or to nominate reprinting an
existing paper meeting those criteria. Several of our contributors chose to meld the
two approaches, revising existing work in light of new experience and the intended
audience.

AOSD is a rapidly evolving area. This format has enabled us to present the reader
with a wider overview, a more current set of work, and a clearer sense of the diversity
of opinions than a synopsis of different research or an in-depth study of one particular
research direction would have provided.

1.2 COMMON TERMINOLOGY
Certain common terminology and themes pervade these papers. Different authors
have variations on the meaning they assign to these ideas. This is a symptom of intel-
lectual youth and ferment. They use certain terms freely. Thus, it is helpful to begin
with a brief glossary of common AOSD concepts.

Concerns. Any engineering process has many things about which it cares. These
range from high-level requirements (“The system shall be manageable”) to low-
level implementation issues (“Remote values shall be cached”). Some concerns
are localized to a particular place in the emerging system (“When the M key is
pressed, the following menu shall pop up”), some refer to measurable properties
of the system as a whole (“Response time shall be less than a second”), others are
aesthetic (“Programmers shall use meaningful variable names”), and others
involve systematic behavior (“All database changes shall be logged”). Generically,

1.2 Common Terminology 3

film138001_ch01.qxd 8/24/04 8:29 PM Page 3

we call all these concerns, though AOSD technology is particularly directed at the
last, systematic class.

Crosscutting concerns. Software development addresses concerns, both concerns
at the user/requirements levels and at the design/implementation level. Often,
the implementation of one concern must be scattered throughout the rest of an
implementation. We say that such a concern is crosscutting. Note that what is
crosscutting is a function of both the particular decomposition of a system and
the underlying support environment. A particular concern might crosscut in one
view of an architecture while being localized in another; a particular environ-
ment might invisibly support a concern (for example, security) that needs to be
explicitly addressed in another.

Code tangling. In conventional environments, implementing crosscutting con-
cerns usually results in code tangling—the code for concerns becomes intermixed.
Ideally, software engineering principles instruct us to modularize our system soft-
ware in such a way that (1) each module is cohesive in terms of the concerns it
implements and (2) interfaces between modules are simple. Software that com-
plies with these principles tends to be easier to produce, more naturally distributed
among different programmers, easier to verify and test, and easier to maintain,
reuse, and evolve to future requirements. Crosscutting works against modulariza-
tion. Code for crosscutting concerns finds itself scattered through multiple
modules; changes to that code now require changing all the places it touches, and
(perhaps more importantly and less obviously) all changes to the system must con-
form to the requirements of the crosscutting concern. That is, if certain actions
require, say, a security or accounting action, then in maintaining the code, we
must consider how every change interacts with security and accounting.

Aspects. An aspect is a modular unit designed to implement a concern. An aspect
definition may contain some code (or advice, which follows) and the instructions
on where, when, and how to invoke it. Depending on the aspect language, aspects
can be constructed hierarchically, and the language may provide separate mecha-
nisms for defining an aspect and specifying its interaction with an underlying
system.

Join points. Join points are well-defined places in the structure or execution flow of
a program where additional behavior can be attached. A join point model (the
kinds of joint points allowed) provides the common frame of reference to enable
the definition of the structure of aspects. The most common elements of a join
point model are method calls, though aspect languages have also defined join
points for a variety of other circumstances, including field definition, access, and
modification, exceptions, and execution events and states. For example, if an AOP

4 Chapter 1 Introduction

film138001_ch01.qxd 8/24/04 8:29 PM Page 4

language has method calls in its join point model, a programmer may designate
additional code to be run on particular method calls.

Advice. Advice is the behavior to execute at a join point. For example, this might be
the security code to do authentication and access control. Many aspect languages
provide mechanisms to run advice before, after, instead of, or around join points
of interest. Advice is oblivious in that there is no explicit notation at the joint
point that the advice is to be run here—the programmer of the original base code
may be oblivious to the evolving requirements. This contrasts with conventional
programming languages, where the most common concern modularization
mechanism, the subprogram, must be explicitly called.

Pointcut designator. A pointcut designator describes a set of join points. This is an
important feature of AOP because it provides a quantification mechanism—a way
to talk about doing something at many places in a program with a single state-
ment. A programmer may designate all the join points in a program where, for
example, a security code should be invoked. This eliminates the need to refer to
each join point explicitly and thereby reduces the likelihood that any aspect code
would be incorrectly invoked.

Composition. Abstractly, the idea of bringing together separately created software
elements is composition. Different languages provide a variety of composition tech-
niques, including subprogram invocation, inheritance, and generic instantiation.
An important software engineering issue in the composition of components is the
guarantees and mechanisms that a language provides to make sure that elements
being composed “fit together.” This allows warning of incompatibilities during
system development, rather than being surprised by them during system execu-
tion. Common mechanisms for such guarantees include type checking the
signatures of subprogram calls and the interface mechanism of languages like Java.

Weaving. Weaving is the process of composing core functionality modules with
aspects, thereby yielding a working system. Various AOP languages have defined
several mechanisms for weaving, including statically compiling the advice
together with base code, dynamically inserting aspects when loading code, and
modifying the system interpreter to execute aspects.

Wrapping, before and after. One of the most common AOP techniques is to pro-
vide method calls as (sometimes the only) join points and to allow the advice to
run either before, after, or around the method call. This notion can be general-
ized into the idea of wrapping—providing a filter or container around a
component, which mediates communications to that component and enforces
the desired aspects.

1.2 Common Terminology 5

film138001_ch01.qxd 8/24/04 8:29 PM Page 5

Statics and dynamics. The terms static and dynamic appear in some of the follow-
ing discussions. In general, static elements are ones that can be determined
before the program begins execution, typically at compile time; dynamic things
happen at execution. A weaving process can be either static or dynamic, depend-
ing on whether it relies on a compilation or loading mechanism (static) or
run-time monitoring (dynamic) for its realization. Somewhat orthogonally, an
AOP language can be characterized as having static or dynamic join points,
depending on whether the places that aspects are to be invoked are dependent
purely on the compile-time structure of the original code or the run-time events
of program execution.

The tyranny of the dominant decomposition. The previous discussion spoke of
aspects as something to be imposed on a “base” program. However, one can
make a perfectly coherent argument that all code elements should be treated as
equals and that the best way to build AOSD systems is by providing a language
for weaving together such elements. Some of the systems discussed in this book
adopt that point of view. A key subtext of that discussion is whether aspect
behavior can be imposed on aspects themselves. Doing so makes the contractual
assertions of aspects more complete at the cost of complicating the underlying
implementations.

1.3 HISTORICAL CONTEXT
The history of programming has been a slow and steady climb from the depths of
direct manipulation of the underlying machines to linguistic structures for expressing
higher-level abstractions. Progress in programming languages and design methods
has always been driven by the invention of structures that provide additional modular-
ity. Subroutines assembled the behavior of unstructured machine instructions,
structured programming argued for semantic meaning for these subroutines, abstract
data types recognized the unity of data and behavior, and object-orientation (OO) gen-
eralized this to multiplicity of related data and behaviors.

The current state-of-the-art in programming is object-oriented (OO) technology.
With objects, the programmer is supposed to think of the universe as a set of
instances of particular classes that provide methods, expressed as imperative pro-
grams, to describe the behavior of all the objects of a class.

Object-orientation has many virtues, particularly in comparison to its predeces-
sors. Objects provide modularization. The notion of sending messages to objects
helps concentrate the programmer’s thinking and aids understanding code.
Inheritance mechanisms in object systems provide a way both to ascribe related
behaviors to multiple classes and to make exceptions to that prescription.

6 Chapter 1 Introduction

film138001_ch01.qxd 8/24/04 8:29 PM Page 6

Objects are not the last word in programming organization. This book is about an
emerging candidate for the next step in this progression, aspect-oriented software
development. Aspects introduce new linguistic mechanisms to modularize the imple-
mentation of concerns. Each of the earlier steps (with the minor exception of
multiple inheritance in OO systems) focused on centralizing on a primary concern.
AO, like its predecessors, is about recognizing that software systems are built with
respect to many concerns and that programming languages, environments, and
methodologies must support modularization mechanisms that honor these concur-
rent concerns. AO is technology for extending the kinds of concerns that can be
separately and efficiently modularized.

1.3 Historical Context 7

film138001_ch01.qxd 8/24/04 8:29 PM Page 7

In this chapter, we report upon our experiences using AspectJ to secure application
software in a manageable way. Our case studies illustrate the effectiveness of AOP
technology and show encouraging results. However, we also highlight some chal-
lenges to be addressed in the further development of aspect-oriented software
development technology.

27.1 INTRODUCTION
Invariably, developing a real-life application demands that we consider both func-
tional (i.e., related to the application business logic) and non-functional
requirements. Separating the development of different requirements has important
advantages in system evolution: As such requirements originate from different con-
cerns (and very often from different stake-holders), they may cause different
reiterations over various parts of the software life cycle. Successful separation of con-
cerns thus leads to ease of development, maintenance, and potential reuse.
State-of-the-art software techniques already support separating concerns, for
instance, by using method structuring, clean object-oriented programming, and
design patterns. However, these techniques are insufficient for more complex modu-
larization problems. A major cause for this limitation is the inherently forced focus of
these techniques on one view of the problem; they lack the ability to approach the
problem from different viewpoints simultaneously. The net result is that conventional
modularization techniques are unable to fully separate crosscutting concerns.

Aspect-oriented programming (AOP) is an approach that provides more
advanced modularization techniques. The main characteristic of this technology is

Chapter 27

Developing Secure Applications
Through Aspect-Oriented
Programming

BART DE WIN, WOUTER JOOSEN, AND FRANK PIESSENS

633

film138001_ch27.qxd 8/27/04 6:37 PM Page 633

the ability to specify both the behavior of one individual concern and the way this
behavior is related to other concerns (the binding). In fact, AOP has become a general
term to denote several approaches to providing such development functionality. One
prominent tool in this space is AspectJ [19]. AspectJ extends Java with mechanisms
for expressing advanced modularization capabilities. In AspectJ, a unit of modulariza-
tion is called an aspect, and a unit of binding is a pointcut.

This chapter reports the experience of developing security solutions for applica-
tion software using AspectJ. We highlight both the advantages of aspect technology and
remaining open challenges. The chapter is structured as follows: Section 27.2 briefly
introduces the domain of application security. Section 27.3 covers two of the several
case studies that we have developed. Section 27.4 evaluates AOP technology on the
basis of our experience. We compare our work with alternative approaches to engineer-
ing application-specific security in Section 27.5, and we conclude in Section 27.6.

27.2 THE DOMAIN OF APPLICATION-LEVEL SECURITY
A classical and increasingly popular example of a non-functional concern is security.
Security is a broad domain; we focus our research on the engineering of application-
level1 security requirements including authentication, auditing, authorization,
confidentiality, integrity and non-repudiation. Security is a challenging application
domain, particularly since many security experts are uneasy about trying to isolate
security-related concerns. The primary reason for this discomfort is that security is a
pervasive concern in software systems. Indeed, separating security-related concerns
such as access control is difficult to achieve with state-of-the-art software engineer-
ing techniques.

A major cause of this pervasiveness is the structural difference between applica-
tion logic and security logic. For example, the code to write relevant events to an
audit log or the code that realizes an access control model is often spread among
many classes. Attempts to modularize security concerns have been ongoing for
many years. While the community has succeeded in modularizing the implementa-
tion of security mechanisms, where and when to call a given security mechanism in
an application has not been adequately addressed. Furthermore, the crosscutting
nature of security relates not only to the diversity of specific places where security
mechanisms are to be called but also to the context of calls: Some security mecha-
nisms require information that is not localized in the application. For instance,
consider communication encryption within an application: the keys to be used for
this purpose are typically linked to a user or principal that is somehow represented

634 Chapter 27 Developing Secure Applications Through AOP

1. As opposed to physical security and network layer security.

film138001_ch27.qxd 8/27/04 6:37 PM Page 634

in the application. Key selection often depends on the specific communication chan-
nel and hence requires connection or host information. Initialization vectors and
other security state information is often contained in the security mechanism itself.
Finally, the actual data to protect may be scattered over several locations in the
application.

Application-level security is an appealing but also a difficult candidate for validat-
ing AOP techniques because of its inherent complexity. In this validation, it is
important to assess the flexibility for reuse and maintenance that a proposed mecha-
nism provides. Given the prevailing heterogeneity of application domains and
environments, there is a clear need to reuse security solutions. The extra importance
of maintenance may require some further explanation. The Common Criteria [6] and
their predecessors argue for considering security from the start of the system devel-
opment process. However, history shows that for systems of moderate to high
complexity, the idea of building a secure system from scratch is utopian.
Unanticipated threats always arise during the lifetime of the system, both because the
initial threat analysis was incomplete and because the environment in which the soft-
ware operates changes. Some form of patching or updating the system is always
necessary. Moreover, building a very secure system from the start makes an applica-
tion complex and expensive, often beyond the economic resources of the developing
organization.

27.3 AN EXPERIENCE REPORT
The goal of this section is to describe how AOP can be used to implement application
security. We describe two case studies of security aspects. The first is a didactical
example that illustrates the approach; the second applies that approach to a real-life
application, a server for file transfer. We conclude with a discussion that generalizes
these ideas in a reusable security aspect framework.

27.3.1 A Personal Information Management System

Our first example describes a Personal Information Management (PIM) system. A PIM
system backs up the human memory by keeping track of personal information,
including a person’s agenda, contact information of friends and business contacts, the
tasks he has to fulfill, and so forth. A Palm Pilot is a PIM. In this case study, we focus
on the important requirement of access control.

Figure 27-1 shows the class diagram of a simplified PIM system. PIMSystem is
the heart of the model. Through this class, the system can represent and manage

27.3 An Experience Report 635

film138001_ch27.qxd 8/27/04 6:37 PM Page 635

These rules are not complex. However, an object-oriented implementation of this
access control model into the PIM context is not straightforward. First, every
PIMUnit must be associated with its owner. This can be achieved by inserting an
owner attribute into the PIMUnit class, initialized when the unit is created. Then,
since access control requires that the real identity of the person responsible for initi-
ating an operation is known, an authentication mechanism must be added to the
model. We chose to do this in the general PIMSystem class. Finally, for the actual
authorization checks, most operations in the four unit classes must be modified: The
signature of the operations must be altered to pass identity information from
PIMSystem to the authorization checks. As a result, the initial model has to be
changed into a model, as shown in Figure 27-2, where the items in bold represent the
places that require changes (both structural and behavioral). Crosscutting is
epidemic.

636 Chapter 27 Developing Secure Applications Through AOP

Figure 27-1 PIM system class diagram.

PIMUnit

view()

Appointment

date
time
topic
attendees

schedule()
move()

Contact

name
address
telephone

create()

Task

description
duedate
progress
priority

create()
setProgress()
setPriority()

PIMSystem

calendar
tasklist
contactlist

initialize()
view()
add()
remove()

Person

Name
SSN

three different types of information (or PIMUnits): appointments, contacts, and
tasks. Besides a common operation represented in the abstract PIMUnit class, each
information type requires different fields and operations. Finally, different Persons
may perform operations on the system. Implementing access control in this system
requires defining both the access control model and the mechanism for enforcing it.
In our example, the owner-based access control model has the following rules:

� The owner (i.e., creator) of a PIMUnit can invoke all operations on that unit.

� Contacts are only accessible to their owner.

� All other accesses to PIMUnits are restricted to just viewing.

film138001_ch27.qxd 8/27/04 6:37 PM Page 636

27.3 An Experience Report 637

PIMUnit

view()

Appointment

date
time
topic
attendees

schedule()
move()

Contact

name
address
telephone

create()

Task

description
duedate
progress
priority

create()
setProgress()
setPriority()

PIMSystem

calendar
tasklist
contactlist

initialize()
view()
add()
remove()
login()

Person

Name
SSN

owner

Figure 27-2 PIM system modifications for access control.

Listing 27-1 shows the implementation of the same access control functionality
using AspectJ. The first aspect, Ownermanagement, is responsible for storage
and initialization of the PIM unit owners. To this end, an instance of the aspect is
associated (created) with every PIMUnit object. Every unit will be decorated with an
owner attribute that is initialized by the after advice when the unit is created. The
Authentication aspect is used to authenticate persons and replaces the login()
method that was introduced in the object-oriented implementation of access control.
An attribute is included in this aspect that represents the current user, and an opera-
tion initializes this attribute.2 Finally, the Authorization aspect implements the
actual access control. Here, an around advice verifies the equality of the owner of the
unit that is currently being accessed and the current user as identified through
authentication and acts accordingly. In this aspect, the restrictedAccess point-
cut specifies the places for enforcing this verification.

The aspect approach as proposed previously could be considered equivalent to a
regular object-oriented implementation, but at first sight it might seem more com-
plex and thus less attractive. However, the integral modularization as described here
has a number of essential advantages. First, coping with changes, especially unantici-
pated ones, is easier because all relevant code is gathered into one place. Second, the
proper modularization simplifies scaling when the size of the application increases.
This example is not extensive enough to demonstrate this, but for real-life systems,

2. For this aspect, several implementation scenarios are possible. In this example, we
chose to support only non-simultaneous system interaction by making the currentUser
static and thus system-wide. Other strategies, such as simultaneous access of persons,
are discussed in [11]. The chosen strategy could also be implemented by associating the
aspect with a perthis() statement to the PIMSystem class.

film138001_ch27.qxd 8/27/04 6:37 PM Page 637

the difference will be considerable. Third, because of the proper modularization,
developers can concentrate on the real core of the problem without having to worry
about side issues such as code consistency. Finally, the complete separation of con-
cerns improves the understanding of which security measures are implemented and
where and when they are activated. These advantages will be clarified in the following
paragraphs.

638 Chapter 27 Developing Secure Applications Through AOP

Listing 27-1 Access control aspect implementation

aspect OwnerManagement perthis(this(PIMUnit)){
String owner ; //one per PIMUnit object
after(): execution(Appointment.schedule(..)) ||

execution(Contact.create(..)) ||
execution(Task.create(..)){

owner = Authentication.getUser() ;
}

}

aspect Authentication(){
static String currentUser ; //one per system
static String getUser(){
if(currentUser == null) currentUser = <login> ;
return currentUser ;

}
}

aspect Authorization(){
pointcut restrictedAccess():
execution(* Appointment.move(..)) ||
execution(* Contact.view(..)) ||
execution(* Task.setProgress(..)) ||
execution(* Task.setPriority(..)) ;

void around() : restrictedAccess(){
Object currentUnit = thisJoinPoint.getThis() ;
String unitOwner = OwnerManagement.aspectOf(currentUnit).owner;
String user = Authentication.getUser() ;
if(! unitOwner.equals(user))
System.out.println("Access Denied !") ;
else proceed() ;

}
}

film138001_ch27.qxd 8/27/04 6:37 PM Page 638

Consider a possible evolution of the PIM system. Suppose it is used by a company
where different participating roles are defined, such as secretaries, managers, and so
forth. The original design needs to be changed to reflect the different roles (which can
be done by subclassing Person with several classes). In such an environment, the
access control subsystem might also require an update. For example, secretaries may
require full access to all information of their managers. This new requirement affects
all access control checks. In the object-oriented security solution, these operations
are dispersed among several classes (PIMUnit, Appointment, Task, and
Contact). This extension requires considerable effort by the software maintainer,
along with the possibility of introducing maintenance mistakes. For our aspect
implementation, however, the only required change is the modification of the condi-
tion of the “if-statement” within the Authorization advice so that it includes this
new access rule. The changes required to support this extension are more localized.

This example of changing the access control model clearly demonstrates the flex-
ibility gained by the advanced modularization capabilities of aspect-oriented
programming. Similarly, other models can be supported equally elegantly. For
instance, an ACL (Access Control List) based model would allow the owner to define
fine-grained rules for the access rights of each person. In addition, different informa-
tion confidentiality levels (such as public, confidential, and top-secret) could extend
the access control model in order to further restrict information access in the system
based on the user’s clearance level. The AOP approach can even support a capability-
based model, where one can delegate access privileges to others. All these models can
be supported without requiring invasive changes in the core application software or
unwarranted changes in the aspect implementation.

27.3.2 An FTP Server

Our second case study deals with the security requirements of jFTPd [17], a server
that (partially) implements the well-known File Transfer Protocol (FTP). The imple-
mentation includes several security measures, most of which are imposed by the
specification of the protocol. This case study only discusses access control, which is
user-based. Users authenticate with a (user name and) password, once per connec-
tion, and then the current connection is linked with this user. FTP commands are
executed only after proper authorization.

In the implementation of the FTP, FTPHandler is the central class in the model
that takes care of incoming connection setup requests. For every request,
FTPHandler instantiates an FTPConnection object and assigns the incoming
connection to it. From this point onwards, the latter acts as the primary contact point
for the connection, which means that it is responsible for reading and answering all
incoming FTP requests on the connection. It has a central input operation that

27.3 An Experience Report 639

film138001_ch27.qxd 8/27/04 6:37 PM Page 639

delegates each command input to an appropriate suboperation depending on the spe-
cific request. At the end of an FTP session, the connection is closed, and the
connection object is destroyed.

A user-based access control model can be successfully implemented using AOP
technology. We briefly sketch the aspect structure and strategy used.3 FTP security is
session-oriented—the credentials presented at login are used throughout the entire
session. Therefore, similar to the OwnerManagement aspect of the previous example,
an FTPSession aspect is associated with the FTPConnection class and holds the
information from the authentication phase. Furthermore, a second aspect,
FTPConnectionSecurity, performs two important tasks: In the authentication
phase, it checks username/password combinations (and fills in the outcome in the
FTPSession aspect), and in the various FTP commands of the FTPConnection
class, it performs the actual access control. Finally, the aspect implementation
includes two other aspects for dealing with the representation and initialization of
some other security parameters that are not relevant to this discussion. Through the
aspect implementation, a complete separation of security-related code is achieved
from the initial implementation of the FTP server. In other words, we are able to deploy
the FTP server with or without weaving in (i.e., bind and activate) the security aspects.

27.3.3 Toward a Framework of Aspects

The deployment of the aspects described in the previous examples depends heavily
on the type and implementation of the actual application. For instance, the
Authorization aspect of Section 27.1 can only be used for PIMUnit classes, not for
FTPConnections. Also, the explicit choice to have system-wide personal authentica-
tion in the first case study limits the applicability of that specific aspect. In general, it
seems hard to define a single set of aspects that is applicable in a broad range of applica-
tions. However, just as Java classes can be made abstract to represent generic behavior,
one would like the ability to implement generic aspects that can be reused in several
cases. A closer look at the previous aspects reveals two obstacles that hinder their reuse.

� First, the design of (and the mechanisms used within) the specific aspects differs
among different cases. An illustration of this is the fact that the number of
aspects differs in the two case studies presented in this chapter, although they
both cover access control.

� The second obstacle is related to the explicit deployment statements in the defin-
ition of an aspect. As an example, aspects that crosscut with PIMUnits cannot be
applied to FTPConnections.

640 Chapter 27 Developing Secure Applications Through AOP

3. A more elaborate discussion on this case study is presented in [8].

film138001_ch27.qxd 8/27/04 6:37 PM Page 640

The key to resolving the first problem is identifying the generic domain concepts
and their mutual dependencies while ignoring the particular implementation details
of the underlying application. In the two case studies, three common concepts can be
identified: (1) an authentication concept that stores information about the subject ini-
tiating an access attempt and that guarantees the correct identity of the subject, (2) a
resource concept that models resource-specific information required for access con-
trol, and (3) an authorization concept that implements the access controls for every
attempt to access the resource, possibly based on subject and resource information. In
the first case study, the three aspects map nicely onto the previous concepts (notice
that OwnerManagement implements the resource concept). In the second case study,
both discussed aspects (FTPSession and FTPConnectionSecurity) actually rep-
resent distinct parts of the authentication concept and hence should be merged. The
authorization concept maps directly; the resource concept has not been used. In short,
it is fair to state that the technology does not stop us from generating reusable results.

To address the second problem, AspectJ supports abstract definitions of point-
cuts. Specific pointcuts can be instantiated afterwards in an extended aspect. Using
this mechanism, it is possible to build a general aspect and redefine the abstract
pointcuts based on a specific application.

Combining the two solutions discussed here results in aspect code as shown in
Listing 27-2. While the intellectual effort of this generalization phase is nontrivial, it
allows the reuse of the core structure of the security aspects. A qualified person prop-
erly designs security solutions once. Later, aspect inheritance enables reuse.
Furthermore, by continuing this exercise for other security requirements (such as
confidentiality, non-repudiation, etc.), a combination of security aspects can be built
that form the basis of an aspect framework for security. This framework consists of
core structures modeling security requirements, concrete mechanism implementa-
tions for these requirements, and abstract pointcuts that must be extended for
specific applications. In Listing 27-2, the concrete mechanisms still require an imple-
mentation at the places represented by “<. . .>”. A more elaborate discussion on this
security framework can be found in [31].

Listing 27-2 Generalized aspects for access control

abstract aspect Authentication perthis(entities){
abstract pointcut entities() ;
abstract pointcut authenticationPlace() ;
private String id ;
after(): authenticationPlace(){
id = <authenticate user> ;

}
}

27.3 An Experience Report 641

film138001_ch27.qxd 8/27/04 6:37 PM Page 641

abstract aspect ResourceInformation perthis(resources) {
abstract pointcut resources ;
...

}

abstract aspect Authorization{
abstract pointcut serviceRequest() ;
void around(): serviceRequest(){
<check access>

}
}

27.4 DISCUSSION

27.4.1 A Positive Experience

Optimizing the separation between application and security logic is an important
objective. Our experience with aspect-oriented programming confirms that this tech-
nology enables us to achieve this goal. Several smaller case studies made us confident
about the potential of this technology, but the actual implementation of the FTP
server lifted our confidence. This is not a toy application. Nevertheless, we were able
to fully extract security-related code, producing an isolated basic application. This
was done despite the fact that the FTP server was not our own code.

AOP has two important advantages for security. Compared to the well-known
technique of modularizing the security mechanism, AOP allows us to raise the level
of separation by explicitly focusing on the binding between application and security
infrastructure. As a result, the average application developer is no longer involved
with security (i.e., he no longer has to invoke security mechanisms himself). This job
can be left completely to a focused security expert. A second key advantage relates to
the security policy rather than to the infrastructure. Using AOP, the overview of the
actual security deployment policy (i.e., defining which mechanisms are used and
where they are used) is gathered into a few configuration files. Consequently, com-
pared to object-oriented security engineering, a security expert can more easily verify
whether a required security policy is valid within a concrete application.

Some practical limitations of the current tools limit the success of our approach.
During different case studies, we experienced some technological restrictions
with (version 1.1 of) AspectJ, including limitations of the mechanism to select join
points, as well as some essential restrictions in the generalization phase toward the
framework. To briefly sketch the first problem, a pointcut is conceptually equivalent

642 Chapter 27 Developing Secure Applications Through AOP

film138001_ch27.qxd 8/27/04 6:37 PM Page 642

to a query on an abstract syntax tree representation of the program. The AspectJ tool
provides a set of keywords to describe pointcuts. Unfortunately, some queries (e.g.,
all the classes that override one or more methods of their parent classes) cannot be
expressed using this keyword set, which leads to the construction of less elegant
workarounds. Regarding the second problem, aspects, and in particular pointcuts,
can be made abstract, but they can only be reused in child aspects of the abstract
aspect in which they were defined. In our opinion, the primary cause of this restric-
tion is the forced combination of the specification of behavior and composition logic.
Since AspectJ aspects are not fully polymorphic, aspect reuse is hard to achieve. We
refer to [10, 12, 31] for a more in-depth discussion of these problems. Some of the
restrictions we encountered (e.g., the first one) are due to the current implementa-
tion of the tool, while others (the second one) are more fundamental issues that are
inherent to the basic concepts behind the tool. As AOP is an active research area, this
is what one should expect. Case studies, as included in this chapter, should drive the
environments to the next stage. Instead of focusing on specifics related to AspectJ,
we will focus in the next paragraphs on the requirements for the AOP domain as a
whole.

27.4.2 Requirements for AOP Environments
Define the optimal design process. AOP is a new programming paradigm building on

established paradigms such as object-oriented programming. Unfortunately, this hin-
ders the average programmer trying to become productive. Conceptually clean and
understandable design processes can help alleviate this problem. Obviously, the
rapidly changing character of the AOP technology as it is today does not simplify
the development of such clean processes. Even with the existence of such processes,
the implementation of security aspects still requires detailed knowledge of the secu-
rity infrastructure. Apart from enabling improved modularization, AOP technology
does not help here.

Watch performance. With AOP, the modules of a program are composed into an executable
artifact. Many tools currently transform an aspect-based program into a classical
(class-based) object-oriented program. This results in extra methods and extra
method invocations relative to the equivalent handcrafted program. Moreover, execu-
tion of a transformed program often requires extra run-time libraries. Development
and language support often involve a trade-off between efficiency and ease of use.
Historically, the transition from procedural to object-oriented programming involved
the same trade-off. The important issue here is that these languages or tools disable
some of the optimization capabilities of the programmer and replace them with a
more expressive programming model. While we did not experience unacceptable

27.4 Discussion 643

film138001_ch27.qxd 8/27/04 6:37 PM Page 643

penalties when testing and deploying the aspect-based FTP server, we stress the rele-
vance of this subject matter in the long run, as technology and tools mature.

For AspectJ in particular, the definition of advice on security-sensitive methods
results in the insertion by the AspectJ compiler of one or more extra calls. For
instance, a before advice is implemented using a method proxy, which requires extra
indirection. Therefore, the generated code is less efficient and introduces more over-
head than a direct implementation. Unfortunately, this is the price of generality.
Building a less general aspect and a more complex combination tool could improve
this situation.

Support testing and debugging. Debugging involves code assessment and correction. In
a typical design process, all sorts of tests (black box, white box, stress, and so
forth) are used to validate modules. Likewise, when using AOP, the programmer
should have the ability to test aspects. This testing must include both the behavior
of the aspect, which is part of the security infrastructure, and the binding within
different environments (the security policy). Testing aspect behavior is comparable
to but different from traditional object testing. Testing the binding is difficult. It
must include both information about the deployment environment (type informa-
tion and possibly context information) and specific application binding information
(specific state transferred between different aspects). Today, research on aspect test-
ing is in a very early state, and practical tools are non-existent. Locating erroneous
code is complicated by the fact that the running code does not correspond to the
written code. Fortunately, current AOP research also focuses on tools that provide
a clear visualization of the run-time interaction between aspects and the core
application.

Toward trusted code. From a security viewpoint, the explicit separation and consequent
composition of security aspects and application objects raise the extra risk of intro-
ducing new security holes. In particular, the specific combination mechanisms used
in the tool and the tool itself must be part of the trusted computing base, and there-
fore, they are a primary target for attacks. Let us consider the case of authorization: It
should not be possible for a client to directly invoke the end-functionality of a server,
circumventing the authorization policy. In this respect, security demands absolute
guarantees that the combination process (a.k.a. weaving) cannot be bypassed. At the
moment, it is not clear how such guarantees can or will be enforced. This is an impor-
tant topic for further research.

Specifically, in the context of AspectJ, the output of the actual tool cannot be
trusted because the original functionality, without the new aspect code, is simply
moved into a new method with a special name. Clever attackers knowing the modus
operandi of the tool can exploit the code very easily. As explicitly stated by the tool
manual, this problem only arises if not all source code is under the control of the

644 Chapter 27 Developing Secure Applications Through AOP

film138001_ch27.qxd 8/27/04 6:37 PM Page 644

AspectJ compiler. Unfortunately, for practical real-world situations, such as large
development processes or dynamic modification of an application, this requirement
is often impossible to fulfill.

27.5 RELATED WORK
We first consider alternative ways to add security to an application. Broadly speaking,
one can distinguish between the use of component libraries for security and other
work that focuses on the security binding.

Over the past few years, several security libraries have been developed to enable
the implementation of application-specific security requirements. For example, Sun
has released JCA/JCE with basic security primitives, JAAS [20] for authentication and
authorization, and JSSE for secured network communication. Other examples
include Pluggable Authentication Modules (PAM) [26] and GSS API [21]. We consider
them as component libraries: They successfully capture the domain logic into sepa-
rate modules, enabling flexible component selection and interchange. Unfortunately,
the use of component libraries does not improve the control over the inherent cross-
cutting nature of security.

Ongoing research (e.g., Naccio [13], Ariel [24], and PolicyMaker [3]) addresses a
declarative description of security properties for application software. Such security-
specific language would be especially valuable to define the binding between
application and security mechanisms. In this work, the core challenge is to create the
right security abstractions once and for all. We have chosen to focus on a general-
purpose aspect-oriented language, and we believe that security abstractions will
remain an evolving challenge for the foreseeable future.

Next, we consider related work from a different angle by discussing alternative
software engineering techniques to deal with crosscutting concerns. From the view-
point of software architectures, several approaches have addressed increased
independence between application logic and security logic.

By using a number of object-oriented design patterns [16], many security archi-
tectures try to be independent of an application structure. This can be achieved to
some extent. Also, various security-specific patterns have been proposed [27]. The
drawback of this approach is that the structure of the solution becomes more com-
plex and harder to understand. This additional complexity is hard to accept in light of
security validation requirements.

Meta-level architectures [4, 25, 29] enable the separate implementation of appli-
cation and security functionality [1, 33]. They offer a complete reification of the
execution of the application: The events of sending a message, starting the execution,

27.5 Related Work 645

film138001_ch27.qxd 8/27/04 6:37 PM Page 645

or creating objects all get reified into first class entities. As the meta-program has
control over these reified entities, it can affect the execution of the core application.
In comparison to aspect-oriented programming, this mechanism is in many ways
more powerful, but it is also a much heavier burden for the software engineer.
Moreover, the development of meta-programs for security is more complex because
the programmer is forced to think in terms of meta-entities only indirectly related to
the application. Like security patterns, meta-level architectures complicate the secu-
rity validation process.

Other approaches, such as the CORBA Security Service [2, 23], Microsoft .NET
[22], JBoss [30], and others [9, 14, 15], use the basic idea of introducing an intercep-
tor between clients and services, in order to perform access control, for example.
They are similar to meta-level architectures in that they intervene in the communica-
tion between client and service, but the intervention is less generic (and as such more
simplified): the interceptors are mere decorators to the services. In straightforward
situations, they can be specified fairly easily, possibly through declarative description.
However, when more and more application state needs to be taken into account, writ-
ing decorators becomes extremely hard.

Transformations in AspectJ happen on the level of source code, and similar
results were achieved in AOSF [28, 32]. Other tools are available that work on the
level of bytecode [5, 18]. This has the advantage that aspects can be added even when
no source code is available for the application. The disadvantage is that on the level of
bytecode, a lot of the application logic is already lost. Reconstructing this logic is
hard, and producing correct descriptions of how a series of bytecodes has to be
changed to implement authentication is even harder. Needless to say, validating and
debugging the result will be challenging. We believe that with the current state-of-
the-art, an approach that manipulates source code is important to enable the rapid
evolution of various stages in the technology. This will be important in order to
experiment with AOP environments of growing maturity, while capturing new
requirements as experience grows.

27.6 CONCLUSION
In this chapter, we have discussed our experiences in using aspect-oriented program-
ming to develop security components for distributed applications. We believe that we
have illustrated the effectiveness of AOP technology with two application-level secu-
rity problems, which resulted in examples that are beyond toy-level demonstrations
of the technology at hand. In the long run, however, it is clear that support at the
level of development processes and environments will be essential for aspect-based
technology to become widespread.

646 Chapter 27 Developing Secure Applications Through AOP

film138001_ch27.qxd 8/27/04 6:37 PM Page 646

We believe that security greatly benefits from enhanced modularization with
aspects. The key advantages in this context are the full separation of business and
security logic, which allows security experts to concentrate on their core business,
and the centralization of the security policy that raises policy verification to a higher
level. A recent doctoral thesis [7] discusses the feasibility, merits, and drawbacks of
using aspect-oriented software development for application-level security in more
detail.

Finally, it is also fair to state that by only focusing on security, we have not cov-
ered the challenge of combining aspects that result from complementary, relatively
unrelated concerns. The use of the technology in such a context, where advanced
aspect compositions is clearly required, is the focus of ongoing and future work.

ACKNOWLEDGMENTS
The authors would like to thank Eddy Truyen, Bart De Decker, and the other mem-
bers of the DistriNet research group for the interesting and inspiring discussions in
the context of this work. Furthermore, the Department of Computer Science at the
K. U. Leuven deserves our gratitude for giving us the opportunity to conduct this
research. Finally, we would like to thank the editors for their useful comments and
suggestions for improvements.

REFERENCES

1. ANCONA, M., CAZZOLA, W., AND FERNANDEZ, E. B. 1999. Reflective authorization sys-
tems: Possibilities, benefits, and drawbacks. In Secure Internet programming:
Security Issues for Mobile and Distributed Objects, J. Vitek and C. Jensen, Eds.
LNCS, vol. 1603. Springer-Verlag, Berlin, 35–49.

2. BEZNOSOV, K. 2000. Engineering access control for distributed enterprise applica-
tions. Ph.D. thesis, Florida International University, Miami, Florida.

3. BLAZE, M., FEIGENBAUM, J., AND LACY, J. 1996. Decentralized trust management. In
1996 Symp. Security and Privacy, (Oakland, California). IEEE, 164–173.

4. CHIBA, S. 1995. A metaobject protocol for C++. In 10th Conf. Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), (Austin). ACM,
285–299.

5. COHEN, G., CHASE, J., AND KAMINSKY, D. 1998. Automatic program transformation
with JOIE. In 1998 Annual Technical Symposium (New Orleans). USENIX,
167–178.

References 647

film138001_ch27.qxd 8/27/04 6:37 PM Page 647

6. COMMON CRITERIA. 1999. Common criteria for information technology
security evaluation, version 2.1. Tech. rep., Common Criteria. http://www.
commoncriteria.org.

7. DE WIN, B. 2004. Engineering Application-level Security through Aspect-
Oriented Software Development. Ph.D. thesis, Katholieke Universiteit Leuven,
The Netherlands.

8. DE WIN, B., JOOSEN, W., AND PIESSENS, F. 2003. AOSD & security: A practical assess-
ment. In Software Engineering Properties of Languages for Aspect Technologies
(SPLAT), (Boston). http://www.daimi.au.dk/~eernst/splat03/papers/Bart_De_
Win.pdf.

9. DE WIN, B., VAN DEN BERGH, J., MATTHIJS, F., DE DECKER, B., AND JOOSEN, W. 2000.
A security architecture for electronic commerce applications. In Information
Security for Global Information Infrastructures, S. Qing and J. Eloff, Eds.
Kluwer Academic Publishers, Boston, 491–500.

10. DE WIN, B., VANHAUTE, B., AND DE DECKER, B. 2001. Towards an open weaving
process. In Workshop on Advanced Separation of Concerns in Object-Oriented
Systems (OOPSLA), (Tampa, Florida). http://www.cs.ubc.ca/~kdvolder/
Workshops/OOPSLA2001/submissions/07-dewin.pdf.

11. DE WIN, B., VANHAUTE, B., AND DE DECKER, B. 2002. How aspect-oriented program-
ming can help to build secure software. Informatica 26, 2, 141–149.

12. ERNST, E. AND LORENZ, D. H. 2003. Aspects and polymorphism in AspectJ. In 2nd
Int’l Conf. Aspect-Oriented Software Development (AOSD), (Boston), M. AkŞit,
Ed. ACM, 150–157.

13. EVANS, D. AND TWYMAN, A. 1999. Flexible policy-directed code safety. In Symp.
Security and Privacy, (Oakland, California). IEEE, 32–45.

14. FILMAN, R. E., BARRETT, S., LEE, D. D., AND LINDEN, T. 2002. Inserting ilities by
controlling communications. Comm. ACM 45, 1 (Jan.), 116–122.

15. FRASER, T., BADGER, L., and FELDMAN, M. 1999. Hardening COTS software with
generic software wrappers. In Symp. Security and Privacy, (Oakland, California).
IEEE, 2–16.

16. GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading,
Massachusetts.

17. JFTPD. jftpd, ftp server with remote administration. http://homepages.wmich.
edu/~p1bijjam/cs555 Project/.

648 Chapter 27 Developing Secure Applications Through AOP

film138001_ch27.qxd 8/27/04 6:37 PM Page 648

18. KELLER, R. AND HÖLZLE, U. 1998. Binary code adaptation. In ECOOP’98 Object-
Oriented Programming, 12th European Conference, E. Jul, Ed. LNCS, vol. 1445.
Springer-Verlag, Berlin, 307–329.

19. KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-M.,
AND IRWIN, J. 1997. Aspect-oriented programming. In ECOOP’97 Object-Oriented
Programming, 11th European Conference, M. Akşit and S. Matsuoka, Eds. LNCS,
vol. 1241. Springer-Verlag, Berlin, 220–242.

20. LAI, C., GONG, L., NADALIN, A., AND SCHEMERS, R. 1999. User authentication and
authorization in the Java platform. In 15th Annual Computer Security
Applications Conference, (Phoenix, Arizona). IEEE, 285–290.

21. LINN, J. 1997. RFC2078: Generic security service application program interface,
version 2. Tech. rep., IETF. http://www.ietf.org/rfc/rfc2078.txt.

22. LOWY, J. 2003. Decoupling Components by Injecting Custom Services into your
Object’s Interceptor Chain. In MSDN Magazine 03/03.

23. OBJECT MANAGEMENT GROUP. 2002. CORBA security service specification, version
1.8. http://www.omg.org.

24. PANDEY, R. AND HASHII, B. 1999. Providing Fine-Grained Access Control for Java
Programs. In ECOOP’99 Object-Oriented Programming, 13th European
Conference, R. Guerraaoui, Ed. LNCS, vol. 1628. Springer-Verlag, Berlin,
449–473.

25. ROBBEN, B., VANHAUTE, B., JOOSEN, W., AND VERBAETEN., P. 1999. Non-functional
policies. In Meta-Level Architectures and Reflection, P. Cointe, Ed. LNCS,
vol. 1616. Springer-Verlag, Berlin, 74–92.

26. SAMAR, V. AND LAI, C. 2003. Making login services independent of authentication
technologies. Tech. rep., Sun Microsystems, Inc. http://java.sun.com/security/
jaas/doc/pam.html.

27. SECURITY PATTERNS HOME PAGE. http://www.securitypatterns.org/.

28. SHAH, V. AND HILL, F. 2004. An Aspect-Oriented Security Framework:
Lessons Learned. In AOSD Technology for Application-level Security
(AOSDSEC), (Lancaster). http://www.cs.kuleuven.ac.be/~distrinet/events/
aosdsec/AOSDSEC04_Viren_Shah.pdf.

29. STROUD, R. AND WUE, Z. 1996. Using metaobject protocols to satisfy non-functional
requirements. In Advances in Object-Oriented Metalevel Architectures and
Reflection, C. Zimmermann, Ed. CRC Press, Boca Raton, Florida, 31–52.

References 649

film138001_ch27.qxd 8/27/04 6:37 PM Page 649

30. TAYLOR, L. 2002. Customized EJB Security in JBoss. http://www.javaworld.com/
javaworld/jw-02-2002/jw-0215-ejbsecurity.html.

31. VANHAUTE, B., DE WIN, B., AND DE DECKER, B. 2001. Building frameworks
in AspectJ. In Workshop on Advanced Separation of Concerns (ECOOP),
(Budapest). http://trese.cs.utwente.nl/Workshops/ecoop01asoc/papers/ VanHaute.
pdf.

32. VIEGA, J., BLOCH, J. T. AND CHANDRA, P. 2001. Applying Aspect-Oriented
Programming to Security. In Cutter IT Journal 14, 2, 31–39.

33. WELCH, I. AND STROUD, R. 2003. Re-engineering Security as a Crosscutting
Concern. In The Computer Journal 46, 5, 578–589.

650 Chapter 27 Developing Secure Applications Through AOP

film138001_ch27.qxd 8/27/04 6:37 PM Page 650

