
9

Chapter 2

Refactoring

In this chapter I offer a few thoughts on what refactoring is and what you need
to do to be good at it. This chapter is best read in accompaniment with the
chapter “Principles in Refactoring” [F].

What Is Refactoring?

A refactoring is a “behavior-preserving transformation” or, as Martin Fowler
defines it, “a change made to the internal structure of software to make it easier
to understand and cheaper to modify without changing its observable behav-
ior” [F, 53].

The process of refactoring involves the removal of duplication, the simplifi-
cation of complex logic, and the clarification of unclear code. When you refac-
tor, you relentlessly poke and prod your code to improve its design. Such
improvements may involve something as small as changing a variable name or
as large as unifying two hierarchies.

To refactor safely, you must either manually test that your changes didn’t
break anything or run automated tests. You will have more courage to refactor
and be more willing to try experimental designs if you can quickly run auto-
mated tests to confirm that your code still works.

Refactoring in small steps helps prevent the introduction of defects. Most
refactorings take seconds or minutes to perform. Some large refactorings can
require a sustained effort for days, weeks, or months until a transformation has
been completed. Even such large refactorings are implemented in small steps.

It’s best to refactor continuously, rather than in phases. When you see code
that needs improvement, improve it. On the other hand, if your manager needs
you to finish a feature before a demo that just got scheduled for tomorrow, finish
the feature and refactor later. Business is well served by continuous refactoring,
yet the practice of refactoring must coexist harmoniously with business priorities.

Kerievsky_book.fm Page 9 Thursday, July 8, 2004 12:12 PM

10 CHAPTER 2 REFACTORING

What Motivates Us to Refactor?

While we refactor code for many reasons, the following motivations are among
the most common.

• Make it easier to add new code.
When we add a new feature to a system, we have a choice: we can quickly
program the feature without regard to how well it fits with an existing
design, or we can modify the existing design so it can easily and gracefully
accommodate the new feature. If we go with the former approach, we
incur design debt (see Design Debt, 15), which can be paid down later by
refactoring. If we go with the latter approach, we analyze what will need
to change to best accommodate the new feature and then make whatever
changes are necessary. Neither approach is better than the other. If you
have little time, it may make more sense to quickly add the feature and
refactor later. If you have more time or you perceive that you’ll go faster
by paving the way for the feature prior to programming it, by all means
refactor before adding the feature.

• Improve the design of existing code.
By continuously improving the design of code, we make it easier and easier
to work with. This is in sharp contrast to what typically happens: little
refactoring and a great deal of attention paid to expediently adding new
features. Continuous refactoring involves constantly sniffing for coding
smells (see Chapter 4, 37) and removing smells immediately after (or soon
after) finding them. If you get into the hygienic habit of refactoring contin-
uously, you’ll find that it is easier to extend and maintain code. You may
even enjoy your job more.

• Gain a better understanding of code.
Sometimes we look at code and have no idea what it does or how it works.
Even if someone could stand next to us and explain the code, the next per-
son to look at it could also be totally confused. Is it best to write a com-
ment for such code? No. If the code isn’t clear, it’s an odor that needs to be
removed by refactoring, not by deodorizing the code with a comment.

When we refactor such code, it is usually best to do so in the presence
of someone who fully understands the code. If that person isn’t available,
see if he or she can help explain the code by e-mail, chat, or phone. Failing
that, refactor only what you truly understand. In the end, your efforts will
make it easier for everyone to understand the code.

Kerievsky_book.fm Page 10 Thursday, July 8, 2004 12:12 PM

MANY EYES 11

• Make coding less annoying.
I’ve often wondered what propels me to refactor code. Sure, I can say that
I refactor to remove duplication, to simplify or clarify the code. But what
actually propels me to refactor? Emotions. I often refactor simply to make
code less annoying to work with.

For example, I once joined a project that had some significant design
debt. In particular, there was one enormous class with way too many
responsibilities. Because much of what we did involved changing this enor-
mous class, every time we checked in code (which was often, since we
practiced continuous integration), we would have to deal with a complex
merge involving the enormous class. As a result, everyone took longer than
necessary to integrate code. This was very annoying. So another program-
mer and I set off on a three-week odyssey to break apart the enormous
class into smaller classes. It was hard work that just had to be done. When
we finished this work, integrating code took far less time and the overall
programming experience was much more pleasant.

Many Eyes

When the Declaration of Independence was still a draft, Benjamin Franklin, sit-
ting beside Thomas Jefferson, revised Jefferson’s wording of “We hold these truths
to be sacred and undeniable” to the now-famous phrase, “We hold these truths to
be self-evident.” According to biographer Walter Isaacson, Jefferson was dis-
traught by Franklin’s edits. So Franklin, aware of his friend’s state, sought to
console Jefferson by telling him the tale of his friend John Thompson.

John had just started out in the hat-making business and wanted a sign for
his shop. He composed his sign like so:

Before using the new sign, John decided to show it to some friends to seek
their feedback. The first friend thought that the word “hatter” was repetitive
and unnecessary because it was followed by the words “makes . . . hats,” which
showed that John was a hatter. The word “hatter” was struck out. The next
friend observed that the word “makes” could be removed because his customers

John Thompson, hatter, makes
and sells hats for ready money.

Kerievsky_book.fm Page 11 Thursday, July 8, 2004 12:12 PM

12 CHAPTER 2 REFACTORING

would not care who made the hats. So “makes” was struck out. A third friend
said he thought the words “for ready money” were useless, as it was not the cus-
tom to sell hats on credit. People were expected to purchase hats with money. So
those words were omitted.

The sign now read, “John Thompson sells hats.”
“Sells hats!” said his next friend. “Why, nobody will expect you to give them

away. What then is the use of that word?” “Sells” was stricken. At this point
there was no use for the word “hats” since a picture of one was painted on the
sign. So the sign was ultimately reduced to:

In his book Simple and Direct, Jacques Barzun explains that all good writing
is based upon revision [Barzun, 227]. Revision, he points out, means to re-see.
John Thompson’s sign was gradually revised by his friends, who helped him
remove duplicate words, simplify his language, and clarify his intent. Jefferson’s
words were revised by Franklin, who saw a simpler, better way to express Jef-
ferson’s intent. In both cases, having many eyes revise one individual’s work
helped produce dramatic improvements.

The same is true of code. To get the best refactoring results, you’ll want the
help of many eyes. This is one reason why extreme programming suggests the
practices of pair-programming and collective code ownership [Beck, XP].

Human-Readable Code

Every now and then I run across a piece of code that so impresses me, I spend
the next several months and years telling people about it. Such was the case
when I studied a piece of code written by Ward Cunningham. If you don’t know
Ward, you may know one of his many excellent innovations. Ward pioneered
Class-Responsibility-Collaboration (CRC) cards, the Wiki Web (a simple, fast,
read/write Web site), extreme programming (XP), and the FIT testing frame-
work (http://fit.c2.com).

The code I was studying came from a fictional payroll system that was meant
for use in a refactoring workshop. As one of the workshop instructors, I needed
to study this code prior to teaching. I began by looking over the test code. The

John Thompson

Kerievsky_book.fm Page 12 Thursday, July 8, 2004 12:12 PM

KEEPING IT CLEAN 13

first test method I studied checked a payroll amount based on a date. What
immediately struck my eye was the date. The code said:

november(20, 2005)

This code called the following method:

public void Date november(int day, int year)

I was surprised and delighted. Even in a piece of test code, Ward had taken
the trouble to produce a thoroughly human-readable method. If he had not
cared to produce code that was simple and easy to understand, he could have
written this:

java.util.Calendar c = java.util.Calendar.getInstance();
c.set(2005, java.util.Calendar.NOVEMBER, 20);
c.getTime();

While the above code produces the same date, it doesn’t do what Ward’s
november() method does, which:

• Reads like spoken language

• Separates important code from distracting code

Now here’s a very different story. It involves a method called w44(). I discov-
ered the w44() function in a heap of Turbo Pascal spaghetti code that passed for
a loan risk calculator for a large Wall Street bank. I spent the first three weeks
of my professional programming career exploring this morass of code. I eventu-
ally figured out that 44 is the ASCII symbol for a comma, and “w” stands for
“with.” So w44() was the programmer’s way of communicating that his routine
returned a number, formatted as a string with commas. How intuitive! Either
the programmer was shooting for big-time job security or he just didn’t have a
way with names.

Martin Fowler said it best:

Any fool can write code that a computer can understand. Good programmers
write code that humans can understand. [F, 15]

Keeping It Clean

Keeping code clean is a lot like keeping a room clean. Once your room becomes
a mess, it becomes harder to clean. The worse the mess becomes, the less you
want to clean it.

Kerievsky_book.fm Page 13 Thursday, July 8, 2004 12:12 PM

14 CHAPTER 2 REFACTORING

Suppose you do one giant cleanup of your room. Now what? If you want
your room to remain clean, you can’t leave things on the floor (like those socks)
or allow books, magazines, glasses, or toys to pile up on tables. You must prac-
tice continuous hygiene.

Have you ever been in this situation? I have. If I can keep my room clean for
several weeks, continuous hygiene starts to become a habit. Then I don’t have to
think so hard about whether I should throw my socks on the floor or deposit
them in the laundry hamper. My habit propels me to put the socks in the hamper.

Unfortunately, new habits often run the risk of being compromised by old
habits. One day you’re too tired to pick your clothes up off the floor. Then sev-
eral books get knocked off a shelf by a certain toddler. Before you know it, your
room is a mess again.

To keep code clean, we must continuously remove duplication and simplify
and clarify code. We must not tolerate messes in code, and we must not backslide
into bad habits. Clean code leads to better design, which leads to faster develop-
ment, which leads to happy customers and programmers. Keep your code clean.

Small Steps

Once upon a time a young, bright programmer was attending an intensive test-
ing and refactoring workshop I was teaching. Everyone in this class was partic-
ipating in a coding challenge that involved refactoring code with nearly all of
the coding smells (see Chapter 4, 37) described in this book and in Refactoring
[F]. During this challenge, pairs of programmers must discover a smell, find a
refactoring for the smell, and demonstrate the refactoring by programming it
on a projector while the rest of the classes watches.

At about five minutes before noon, the class had been refactoring for nearly
an hour. Since lunch had already been brought into the room, I asked if anyone
had a small refactoring they’d like to complete before we broke for lunch. The
young programmer raised his hand and said he had a small refactoring in mind.
Without mentioning a specific smell or associated refactoring, this fellow
described a rather large problem in the code and explained what he intended to
do to fix it. A few students expressed their doubt that such a problem could be
fixed in only five minutes, but the programmer insisted that he could complete
the work, so we all agreed to let him and his pair partner try it.

Five minutes pass very quickly when you’re refactoring something that is
complicated.

Kerievsky_book.fm Page 14 Thursday, July 8, 2004 12:12 PM

DESIGN DEBT 15

The programmer and his partner found that after moving and altering some
code, many of the unit tests were now failing. Failing unit tests show up as a big
red bar in the unit-testing tool, which looks awfully big and red when it is being
projected onto a large screen. As the programmers attempted to fix the broken
unit tests, one by one people began to leave so they could eat lunch at a nearby
table. Fifteen minutes later I took a break too. As I stood in the lunch line, I
watched the programming action on the projector.

Twenty minutes into their work, the big red bar still hadn’t turned green
(which signals that all tests are passing). At that point the young programmer
and his partner got up to get some food. Then they quickly returned to the com-
puter. Many of us watched as one programmer attempted to eat his lunch with
one hand while continuing to refactor with the other. Meanwhile, the minutes
were ticking by.

At ten minutes to one (nearly fifty-five minutes after beginning their refactor-
ing), the big red bar turned green. The refactoring was complete. As the class
reassembled, I asked everyone what had gone wrong. The young programmer
provided the answer: he had not taken small steps. By combining several refac-
torings into a single, large step, he thought he would go faster; but just the
opposite was true. Each big step generated failures in the unit tests, which took
a good deal of time to fix, not to mention that some of the fixes needed to be
undone during later steps.

Many of us have had similar experiences—we take steps that are too large
and then struggle for minutes, hours, or even days to get back to a green bar.
The better I get at refactoring, the more I proceed by taking very small, safe
steps. In fact, the green bar has become a gyroscope, a device that helps me stay
on course. If the bar stays red for too long—more than a few minutes—I know
that I’m not taking small enough steps. Then I backtrack and begin again. I
nearly always find smaller, simpler steps I can take that will get me to my goal
faster than if I’d taken bigger steps.

Design Debt

If you ask your manager to let you spend time continuously refactoring your
code to “improve its design,” what do you think the response will be? Probably
“No” or an extended outburst of laughter or a harsh look. Keeping up with an
endless stream of feature requests and defect reports is hard enough! Who has
time for design improvements? What planet are you living on?

Kerievsky_book.fm Page 15 Thursday, July 8, 2004 12:12 PM

16 CHAPTER 2 REFACTORING

The technical language of refactoring doesn’t communicate effectively with
the vast majority of management. Instead, Ward Cunningham’s financial meta-
phor of design debt [F, 66] works infinitely better. Design debt occurs when you
don’t consistently do three things.

1. Remove duplication.

2. Simplify your code.

3. Clarify you code’s intent.

Few systems remain completely free of design debt. Wired as we are, humans
just don’t write perfect code the first time around. We naturally accumulate
design debt. So the question becomes, “When do you pay it down?”

Due to ignorance or a commitment to “not fix what ain’t broken,” many
programmers and teams spend little time paying down design debt. As a result,
they create a Big Ball of Mud [Foote and Yoder]. In financial terms, if you don’t
pay off a debt, you incur late fees. If you don’t pay your late fees, you incur
higher late fees. The more you don’t pay, the worse your fees and payments
become. Compound interest kicks in, and as time goes on, getting out of debt
becomes an impossible dream. So it is with design debt.

Discussing technical problems using the financial metaphor of design debt is
a proven way to get through to management. I routinely take out a credit card
and show it to managers when I’m speaking about design debt. I ask them,
“How many months in a row do you not pay down your debt?” While some
don’t always pay off their debt in full each month, nearly all don’t let debt accu-
mulate for long. Discussions like this help managers acknowledge the wisdom
of continuously paying down design debt.

Once management accepts the importance of continuous refactoring, the
organization’s entire way of building software can change. Suddenly, everyone
from executives to managers to programmers agrees that going too fast hurts
everyone. Programmers now have management’s blessing to refactor. Over
time, the small, hygienic acts of refactoring accumulate to make systems easier
and easier to extend and maintain. When that happens, everyone benefits,
including the makers, managers, and users of the software.

Evolving a New Architecture

There was once a company that had an older system, with the all-too-common
problems of poor design, instability, and difficult maintenance. The company

Kerievsky_book.fm Page 16 Thursday, July 8, 2004 12:12 PM

COMPOSITE AND TEST-DRIVEN REFACTORINGS 17

decided to refactor the system’s architecture rather than rewrite everything from
scratch.

Common code would be accessible from a new framework layer. Applica-
tions would use the framework layer for common services. This separation
would allow framework programmers to gradually improve underlying frame-
work code, with minimal impact on applications.

The company decided to form a framework team. Application teams would
rely on the framework team for common services.

While this plan sounds reasonable, it’s actually quite risky. If the framework
team members lose touch with application needs, they can easily build the
wrong code. If the application team members don’t get what they need, they
may bypass the framework to meet deadlines or slow down just to wait for
what they need. Bypassing the framework is a return to the legacy architecture,
while waiting for code is also a poor option.

Evolutionary design provides a better way. It suggests that you:

• Form one team

• Drive the framework from application needs

• Continuously improve applications and the framework by refactoring

With one team, the framework and the applications can’t fall out of align-
ment. With the framework driven by real application needs, only valuable
framework code gets produced. Continuous refactoring is essential to this pro-
cess, for it’s what keeps framework and application parts separate.

The company in this story decided to follow this evolutionary path, hiring
coaches to train and guide them. Despite initial concerns about not having one
team focus exclusively on framework development, the process resulted in con-
tinuous improvement in architecture, continuous delivery of high-quality appli-
cations, and evolution of a lean, general-purpose framework.

Refactoring is the essential ingredient here. It’s what allows the team to effec-
tively and efficiently evolve a new architecture.

Composite and Test-Driven Refactorings

Composite refactorings are high-level refactorings composed of low-level refac-
torings. Much of the work performed by low-level refactorings involves moving
code around. For example, Extract Method [F] moves code to a new method,
Pull Up Method [F] moves a method from a subclass to a superclass, Extract

Kerievsky_book.fm Page 17 Thursday, July 8, 2004 12:12 PM

18 CHAPTER 2 REFACTORING

Class [F] moves code to a new class, and Move Method [F] moves a method
from one class to another.

Nearly all of the refactorings in this book are composite refactorings. You
begin with a piece of code you want to change and then incrementally apply
various low-level refactorings until a desired change has occurred. Between
applying low-level refactorings, you run tests to confirm that modified code
continues to behave as expected. Testing is thus an integral part of composite
refactoring; if you don’t run tests, you’ll have a hard time applying low-level
refactorings with confidence.

Testing also plays an altogether different role in refactoring; it can be used to
rewrite and replace old code. A test-driven refactoring involves applying test-
driven development to produce replacement code and then swap out old code
for new code (while retaining and rerunning the old code’s tests).

Composite refactorings are used far more frequently than test-driven refac-
torings because a good deal of refactoring work simply involves relocating
existing code. When it isn’t possible to improve a design this way, test-driven
refactorings can help you produce a better design safely and effectively.

Substitute Algorithm [F] is a good example of a refactoring that is best
implemented using test-driven refactorings. It essentially involves completely
changing an existing algorithm for one that is simpler and clearer. How do you
produce the new algorithm? You can’t produce it by transforming the old algo-
rithm into the new one because your logic for the new algorithm is different.
You can program the new algorithm, substitute it for the old algorithm, and
then see if the tests pass. But if the tests don’t pass, you’re likely to find yourself
on a long date with a debugger. A better way to program the algorithm is to use
test-driven development. This tends to produce simple code, and it also pro-
duces tests that later allow you or others to confidently apply low-level or com-
posite refactorings.

Encapsulate Composite with Builder (96) is another example of a test-driven
refactoring. In this case, you want to make it easier for clients to build a Com-
posite by simplifying the build process. A Builder, which provides a simpler way
of building a Composite, is where you’d like to take the design. Yet if that
design is far different from the existing design, you will likely be unable to use
low-level or composite refactorings to produce the new design. Once again,
test-driven development provides an effective way to reimplement and replace
old code.

The refactoring Replace Implicit Tree with Composite (178) is both a com-
posite refactoring and a test-driven refactoring. Choosing how to implement
this refactoring depends on the nature of the code you encounter. In general, if
it’s difficult to implement the Extract Class [F] refactoring on the code, the test-

Kerievsky_book.fm Page 18 Thursday, July 8, 2004 12:12 PM

THE BENEFITS OF COMPOSITE REFACTORINGS 19

driven approach may be easier. Replace Implicit Tree with Composite (178)
includes an example that uses test-driven refactoring.

Move Embellishment to Decorator (144) is not a test-driven refactoring;
however, the example for this refactoring shows how test-driven refactoring is
used to move behavior from outside a framework to inside the framework. This
example involves moving code around, so you might think it would be more
convenient to use composite refactorings to implement it. In fact, because the
changes involve updating numerous classes, it turns out to be easier to use test-
driven development to make the design transformation.

In your practice of refactoring, you’re likely to use low-level and composite
refactorings most of the time. Just remember that the “reimplement and replace”
technique, as performed by using test-driven refactoring, is another useful way
to refactor. While it tends to be most helpful when you’re designing a new algo-
rithm or mechanism, it may also provide an easier path than applying low-level
or composite refactorings.

The Benefits of Composite Refactorings

The composite refactorings in this book, each of which targets a particular pat-
tern, have some of the following benefits.

• They describe an overall plan for a refactoring sequence.
The mechanics of a composite refactoring describe the sequence of low-
level refactorings you can apply to improve a design in a particular way.
Do you need such a sequence? If you already know the low-level refactor-
ings, you can certainly apply them in whatever order you see fit.

However, the refactoring sequences in this catalog may prove to be more
safe, effective, or efficient in improving your design than your own refac-
toring sequences are. I once followed certain low-level refactorings to refac-
tor to the State [DP] pattern. Then I learned a better, safer sequence. Then
someone suggested improvements to that sequence. By the time I got to the
fifth version of the sequence, I knew I had a much better way of refactoring
to the State pattern, and it was far different from my initial approach.

• They suggest nonobvious design directions.
Composite refactorings begin at a source and take you to a destination.
The destination may or may not be obvious, given your source. Much
depends on your familiarity with patterns, each of which defines a destina-
tion as well as the forces that suggest the need to go towards or to that

Kerievsky_book.fm Page 19 Thursday, July 8, 2004 12:12 PM

20 CHAPTER 2 REFACTORING

destination. The composite refactorings in this book make these nonobvi-
ous design directions clearer by describing real-world cases in which it
made sense to move in the direction of a pattern.

• They provide insights into implementing patterns.
Because there is no right way to implement a pattern (see There Are Many
Ways to Implement a Pattern, 26), it’s useful to consider alternative pat-
tern implementations. This is particularly true of patterns that solve differ-
ent kinds of design problems. For example, this book contains three
different refactorings to Composite [DP] and three different ways to refac-
tor to Visitor [DP]. How you refactor to these patterns and others will
vary depending on the initial problem you face. In recognition of that, the
refactoring sequences in this book vary in how they ultimately implement
a pattern.

Refactoring Tools

The early pioneers of refactoring tools—people like William Opdyke, Ralph
Johnson, John Brant, and Don Roberts—envisioned a world in which we could
look at code that needed a refactoring and simply ask a tool to perform the
refactoring for us. In the mid-1990s, John and Don built such a tool for Small-
talk. Software development hasn’t been the same since.

After the 1999 publication of Refactoring [F], Martin Fowler challenged tool
vendors to produce automated refactoring tools for mainstream languages such
as Java. These tool vendors responded, and before long, many programmers
throughout the world could execute automated refactorings from their inte-
grated development environments (IDEs). Over time, even die-hard users of
programming editors began transitioning to IDEs, largely due to automated
refactoring support.

As refactoring tools continue to implement low-level refactorings, like Extract
Method [F], Extract Class [F], and Pull Up Method [F], it becomes easier to trans-
form designs by executing sequences of automated refactorings. This has impor-
tant implications for pattern-directed refactorings because the mechanics for
these refactorings are composed of low-level refactorings. When tool vendors
automate the majority of low-level refactorings, they will automatically create
support for the refactorings in this book.

Using automated refactorings to move towards, to, or away from a pattern is
completely different from using a tool to generate pattern code. In general, I’ve
found that pattern code generators provide an excellent way to over-engineer

Kerievsky_book.fm Page 20 Thursday, July 8, 2004 12:12 PM

REFACTORING TOOLS 21

your code. In addition, they generate code that doesn’t contain tests, which fur-
ther limits your ability to refactor as and when needed. By contrast, refactoring
lets you discover small design improvements you can safely make to go towards,
to, or away from a pattern implementation.

Because refactoring is the act of performing behavior-preserving transforma-
tions, you might think that you would not need to run test code after you per-
form an automated refactoring. Well, you do, much of the time. You may have
complete confidence in your automated refactoring tool for some refactorings,
while you may not completely trust it for other refactorings. Many automated
refactorings prompt you to make choices; if you make the wrong choices, you
can easily cause your test code to stop running correctly (which is another way
to say that the automated refactoring you performed did add or remove some
behavior). In general, it’s useful to run all of your tests after refactoring to con-
firm that the code is behaving as you expect.

If you lack tests, can you trust automated refactoring tools to preserve
behavior in your code and not introduce unwanted behavior? You may be able
to trust many of the refactorings, while others, which may be just out of pro-
duction, are less stable or trustworthy. In general, if you lack test coverage for
your code, you really won’t have much success with refactoring, unless the tools
become substantially more intelligent.

Advances in automated refactorings can impact what steps you follow in the
mechanics of a refactoring. For example, a recent automation of Extract
Method [F] is so smart that if you extract a chunk of code from one method
and that same chunk of code exists in another method, both chunks of code
will be replaced by a call to the newly extracted method. That capability may
change how you approach the mechanics from a refactoring, given that some of
the work from multiple steps may be automated for you.

What is the future of refactoring tools? I hope that we see more automated
support for low-level refactorings, tools that suggest which refactorings could
help improve certain pieces of code, and tools that allow you to explore how
your design would look if several refactorings were applied together.

Kerievsky_book.fm Page 21 Thursday, July 8, 2004 12:12 PM

Kerievsky_book.fm Page 22 Thursday, July 8, 2004 12:12 PM

