

11

Chapter 2

L

ET

’

S

 G

ET

 S

TARTED

Many books would start off by giving you a lot of philosophy. This would be a
waste of precious paper at this point. Instead, I am going to guide you through
writing your first Cocoa application. Upon finishing, you will be excited and
confused…and ready for the philosophy.

Our first project will be a random number generator application. It will have two
buttons labeled

Seed random number generator with time

 and

Generate random
number

. There will be a text field that will display the generated number. This is
a simple example that involves taking user input and generating output. At times,
the description of what you are doing and why will seem, well, terse. Don’t
worry—we will explore all of this in more detail throughout this book. For now,
just play along.

Figure 2.1 shows what the completed application will look like.

In Xcode

Assuming you have installed the developer tools, you will find Xcode in

/Developer/Applications/

. Drag the application to the dock at the bottom of
your screen; you will be using it a lot. Launch Xcode.

Figure 2.1 Completed Application

Hillegass02.fm Page 11 Thursday, April 8, 2004 10:58 AM

12

C

HAPTER

 2

�

L

ET

’

S

 G

ET

 S

TARTED

As mentioned earlier, Xcode will keep track of all the resources that go into your
application. All these resources will be kept in a directory called the

project
directory

. The first step in developing a new application is to create a new project
directory with the default skeleton of an application.

Create a New Project

Under the

File

 menu, choose

New Project…

. When the panel appears (see Fig-
ure 2.2), choose the type of project you would like to create:

Cocoa Application

.
Notice that there are many other types of projects available as well.

In this book, we will discuss the following major types of projects:

Application:

 A program that creates windows.

Tool:

 A program that does not have a graphical user interface. Typically, a
tool is a command-line utility or a daemon that runs in the background.

Bundle or Framework:

 A directory of resources that can be used in an appli-
cation or tool. A bundle is dynamically loaded at runtime. An application
typically links against a framework at compile time.

Figure 2.2 Choose Project Type

Hillegass02.fm Page 12 Thursday, April 8, 2004 10:58 AM

I

N

 X

CODE

13

For the project name, type in

RandomApp

, as in Figure 2.3. Application names
are typically capitalized. You can also pick the directory into which your project
directory will be created. By default, your project directory will be created inside
your home directory. Click the

Finish

 button.

A project directory will be created for you, with the skeleton of an application
inside it. You will extend this skeleton into the source for a complete application
and then compile the source into a working application.

Looking at the new project in Xcode, you will see an outline view on the left side
of the window. Each item in the outline view represents one type of information
that might be useful to a programmer. Some items are files, others are messages
like compiler errors or find results. For now, you will be dealing with editing
files, so open the item that says

RandomApp

 to see folders that contain the files
that will be compiled into an application.

The skeleton of a project that was created for you will actually compile and run.
It has a menu and a window. Click on the toolbar item with the hammer and
green circle to build and run the project as shown in Figure 2.4.

Figure 2.3 Name Project

Hillegass02.fm Page 13 Thursday, April 8, 2004 10:58 AM

14

C

HAPTER

 2

�

L

ET

’

S

 G

ET

 S

TARTED

While the application is launching, you will see a bouncing icon in the dock. The
name of your application will then appear in the menu. This means that your
application is now active. The window for your application may be hidden by
another window. If you do not see your window, choose

Hide Others

 from the

RandomApp

 menu. You should see an empty window as shown in Figure 2.5.

Figure 2.4 Skeleton of a Project

Click to build
and run

Figure 2.5 Running the Project

Hillegass02.fm Page 14 Thursday, April 8, 2004 10:58 AM

I

N

 X

CODE

15

It doesn’t do much, but notice that it is already a fully functional application.
Printing even works. Quit RandomApp and return to Xcode.

The main Function

Select

main.m

 by single-clicking on it. If you double-click on the filename, it will
open in a new window. Because I deal with many files in a day, this tends to
overwhelm me rather quickly, so I use the single-window style. Click on the
Editor toolbar item to split the window and create an editor view. The code will
appear in the editor view (Figure 2.6).

You will almost never modify

main.m

 in an application project. The default

main()

 simply calls

NSApplicationMain()

, which in turn loads the user
interface objects from a

nib file

. Nib files are created with Interface Builder.
(Trivia: “NIB” stands for “NeXT Interface Builder”; “NS” stands for
“NeXTSTEP.”) Once your application has loaded the nib file, it simply waits for
the user to do something. When the user clicks or types, your code will be called
automatically. If you have never written an application with a graphical user
interface before, this change will be startling to you: The user is in control, and
your code simply reacts to what the user does.

Figure 2.6 main() Function

Click to get editor

Hillegass02.fm Page 15 Thursday, April 8, 2004 10:58 AM

16

C

HAPTER

 2

�

L

ET

’

S

 G

ET

 S

TARTED

In Interface Builder

In the outline view under

Resources

, you will find a nib file called

MainMenu.nib

. Double-click on it to open the nib in Interface Builder. Lots of
windows will appear, so this is a good time to hide your other applications. In the
Interface Builder menu, you will find

Hide Others

.

Interface Builder allows you to create and edit user interface objects (like
windows and buttons) and save those objects into a file. You can also create
instances of your custom classes and make connections between those instances
and the standard user interface objects. When users interact with the user
interface objects, the connections you have made between them and your custom
classes will cause your code to be executed.

The Standard Palettes

The palette window (Figure 2.7) is where you will find user interface widgets
that can be dragged into your interface. For example, if you want a button, you
can drag it from the palette window. Notice the row of buttons at the top of the
palette window. As you click the buttons, the various palettes will appear. In
Chapter 27, you will learn to create your own palettes.

Figure 2.7 Palette Window

Hillegass02.fm Page 16 Thursday, April 8, 2004 10:58 AM

I

N

 I

NTERFACE

 B

UILDER

17

The Blank Window

The blank window (Figure 2.8) represents an instance of the

NSWindow

 class that
is inside your nib file.

As you drop objects from the palettes onto the window, they will be added to the
nib file. After you have created instances of these objects and edited their
attributes, saving the nib file is like “freeze-drying” the objects into the file.
When the application is run, the nib file will be read and the objects will be
revived. The cool kids say, “The objects are

archived

 into the nib file by Interface
Builder and

unarchived

 when the application is run.”

Lay Out the Interface

I am going to walk you through it, but keep in mind that your goal is to create a
user interface that looks like Figure 2.9.

Figure 2.8 Blank Window

Figure 2.9 Completed Interface

Hillegass02.fm Page 17 Thursday, April 8, 2004 10:58 AM

18

C

HAPTER

 2

�

L

ET

’

S

 G

ET

 S

TARTED

Drag a button from the palette window (as shown in Figure 2.10) and drop it
onto the blank window.

Double-click on the button to change its title to

Seed random number generator
with time

.

Drag another button out, and relabel it

Generate random number

. Drag out the
text field that says

System Font Text

 (as shown in Figure 2.11) and drop it on the
window.

Make the window smaller.

The text field should be as wide as possible. Drag the left and right sides of the
text field toward the sides of the window. Notice that blue lines appear when you
are close to the edge of the window. These guides are intended to help you
conform to Apple’s GUI guidelines (Figure 2.12).

Figure 2.10 Dragging a Button

Figure 2.11 Dragging a Text Field

Hillegass02.fm Page 18 Thursday, April 8, 2004 10:58 AM

I

N

 I

NTERFACE

 B

UILDER

19

To make the text field center its contents, you will need to use the Info Panel
(also known as the “Inspector”). Select the text field, and choose

Show Info

 from
the

Tools

 menu. Click on the center justify button (Figure 2.13).

The Doc Window

In your nib file, some objects (like buttons) are visible, and others (like your
custom controller objects) are invisible. The icons that represent the invisible
objects appear in the doc window (Figure 2.14).

Figure 2.12 Resize Text Field

Figure 2.13 Center Justify Text Field

Click to center justify

Figure 2.14 The Doc Window

Hillegass02.fm Page 19 Thursday, April 8, 2004 10:58 AM

20 CHAPTER 2 � LET’S GET STARTED

In the doc window (the one entitled MainMenu.nib), you will see icons
representing the main menu and the window. First Responder is a fictional object,
but it is a very useful fiction. It will be fully explained in Chapter 18. File’s Owner
in this nib is the NSApplication object for your application. The
NSApplication object takes events from the event queue and forwards them to
the appropriate window. We will discuss File’s Owner in depth in Chapter 9.

Create a Class

The doc window also has a simple class browser that you can use to create a
skeleton of your custom class. Click on the Classes tab and select NSObject
(Figure 2.15). In the Classes menu, choose Subclass NSObject. Rename the new
class Foo. Interface Builder now knows that you intend to create a subclass of
NSObject called Foo. NSObject is the root class for the entire Objective-C class
hierarchy. That is, all objects in the framework are descendants of NSObject.

Class names, by convention, are capitalized.

Next, you will add instance variables and methods to your class. Instance
variables that are pointers to other objects are called outlets. Methods that can be
triggered by user interface objects are called actions. If you select the Foo class
and bring up the inspector (use the Show Info menu item to activate the
inspector), you will see that your class doesn’t have any outlets or actions yet
(Figure 2.16).

Scroll to the far left
to select NSObject

Figure 2.15 Foo Is a Subclass of NSObject

Hillegass02.fm Page 20 Thursday, April 8, 2004 10:58 AM

IN INTERFACE BUILDER 21

To add an outlet, select the Outlets tab and click Add. Rename the new outlet
textField. You can set the type of the pointer in a pop-up. Here textField will be
a pointer to an NSTextField object. Set its type using the pop-up as shown in
Figure 2.17.

To add an action, select the Actions tab and click Add. Rename the new action
seed. (When you press Enter, it will add a colon to the end of the action name.
Thus seed: is the actual name of the method that will be created.) Add a second
action, and name it generate: (Figure 2.18).

Figure 2.16 View Outlets and Actions

Figure 2.17 Create an Outlet

Hillegass02.fm Page 21 Thursday, April 8, 2004 10:58 AM

22 CHAPTER 2 � LET’S GET STARTED

By convention, the names of methods and instance variables start with lowercase
letters. If the name would be multiple words in English, each new word is
capitalized—for example, favoriteColor.

Now you will create the files for the class Foo. In Objective-C, every class is
defined by two files: a header file and an implementation file. The header file,
also known as the interface file, declares the instance variables and methods your
class will have. The implementation file actually defines what those methods do.

Under the Classes menu, choose Create files for Foo… (Figure 2.19).

A save panel will appear. The default location (your project directory) is perfect.
Save Foo.h (the header file) and Foo.m (the implementation file) there. Note that
the files are being added to your RandomApp project (Figure 2.20).

Figure 2.18 Create Two Actions

Figure 2.19 Create Files

Hillegass02.fm Page 22 Thursday, April 8, 2004 10:58 AM

IN INTERFACE BUILDER 23

Create an Instance

Next, you will create an instance of the class Foo in your nib file. Select Foo in the
class browser and choose Instantiate Foo from the Classes menu (Figure 2.21).

Interface Builder will take you back to the Instances tab, where you will see a
symbol representing your instance of Foo (Figure 2.22).

Figure 2.20 Choose a Location for the Files

Figure 2.21 Create an Instance of Foo

Hillegass02.fm Page 23 Thursday, April 8, 2004 10:58 AM

24 CHAPTER 2 � LET’S GET STARTED

Make Connections

A lot of object-oriented programming has to do with which objects need to know
about which other objects. Now you are going to introduce some objects to each
other. Cocoa programmers would say, “We are now going to set the outlets of
our objects.” To introduce one object to another, you will control-drag from the
object that needs to know to the object it needs to know about. The object diagram in
Figure 2.23 shows which objects need to be connected in your example.

You will set Foo’s textField instance variable to point to the NSTextField
object on the window that currently says System Font Text. Control-drag from
the symbol that represents your instance of Foo to the text field. The inspector
panel will then appear. Choose textField in the view on the left, and click
Connect. You should see a dot appear next to textField (Figure 2.24).

Figure 2.22 An Instance of Foo

Figure 2.23 Object Diagram

Hillegass02.fm Page 24 Thursday, April 8, 2004 10:58 AM

IN INTERFACE BUILDER 25

This step is all about pointers: You have just set the pointer textField in your
Foo object to point to the text field.

Now you will set the Seed button’s target outlet to point to your instance of
Foo. Furthermore, you want the button to trigger Foo’s seed: method. Control-
drag from the button to your instance of Foo. Choose the Target/Action tab in
the inspector and select seed:. Click the Connect button to complete the
connection (or double-click the word seed:). You should see a dot appear next to
seed: (Figure 2.25).

Figure 2.24 Set the textField Outlet

Figure 2.25 Set the Target and Action of the Seed Button

Hillegass02.fm Page 25 Thursday, April 8, 2004 10:58 AM

26 CHAPTER 2 � LET’S GET STARTED

Similarly, you will set the Generate button’s target instance variable to point to
your instance of Foo and set its action to the generate: method. Control-drag
from the button to Foo. Choose generate: in the Target/Action view. Double-
click on the action name (generate:) to complete the connection. Note the
appearance of the dot (Figure 2.26).

You are done with Interface Builder, so save the file and hide the application.
Click on the Xcode icon in the dock to bring Xcode to the front.

Back in Xcode

In Xcode, you will see that Foo.h and Foo.m have been added to the project.
Most programmers would put these files under the Classes group (Figure 2.27).
Drag the files into the Classes group if they aren’t there already.

Figure 2.26 Set the Target and Action of the Generate Button

Hillegass02.fm Page 26 Thursday, April 8, 2004 10:58 AM

BACK IN XCODE 27

If this is the first time that you are seeing Objective-C code, you may be alarmed
to discover that it looks quite different from C++ or Java code. The syntax may
be different, but the underlying concepts are the same. For example, in Java a
class would be declared like this:

import com.megacorp.Bar;
import com.megacorp.Baz;

public class Rex extends Bar implements Baz {
...methods and instance variables...
}

This says, “The class Rex inherits from the class Bar and implements the
methods declared in the Baz interface.”

The analogous class in Objective-C would be declared like this:

#import <megacorp/Bar.h>
#import <megacorp/Baz.h>

@interface Rex : Bar <Baz> {
...instance variables...
}
...methods...
@end

Figure 2.27 The New Class in Xcode

Hillegass02.fm Page 27 Thursday, April 8, 2004 10:58 AM

28 CHAPTER 2 � LET’S GET STARTED

If you know Java, Objective-C really isn’t so strange. Note that like Java,
Objective-C allows only single inheritance; that is, a class has only one
superclass.

Types and Constants in Objective-C

Objective-C programmers use a few types that are not found in the rest of the C
world.

� id is a pointer to any type of object.
� BOOL is the same as char, but is used as a Boolean value.

YES is 1.
NO is 0.

� IBOutlet is a macro that evaluates to nothing. Ignore it. (IBOutlet is a
hint to Interface Builder when it reads the declaration of a class from a
.h file.)

� IBAction is the same as void. It also acts as a hint to Interface Builder.
� nil is the same as NULL. We use nil instead of NULL for pointers to

objects.

Look at the Header File

Click on Foo.h. Study it for a moment. You should see that it declares Foo to be
a subclass of NSObject. Instance variables are declared inside the curly braces.

#import <Cocoa/Cocoa.h>

@interface Foo : NSObject
{
 IBOutlet NSTextField *textField;
}
- (IBAction)generate:(id)sender;
- (IBAction)seed:(id)sender;
@end

#import is similar to the C preprocessor’s #include. However, #import ensures
that the file is included only once.

Notice that the declaration of the class starts with @interface. The @ symbol is
not used in the C programming language. To minimize conflicts between C code
and Objective-C code, Objective-C keywords are prefixed by @. Here are a few
other Objective-C keywords: @end, @implementation, @class, @selector, and
@encode.

Hillegass02.fm Page 28 Thursday, April 8, 2004 10:58 AM

BACK IN XCODE 29

In general, you will find entering code easier if you turn on syntax-aware
indention. In Xcode’s Preferences, select the Indentation pane. Check the box
labeled Syntax-aware indenting, as shown in Figure 2.28.

Edit the Implementation File

Now look at Foo.m. It contains the implementations of the methods. In C++ or
Java, you might implement a method something like this:

public void increment(Object sender) {
 count++;
 textField.setIntValue(count);
}

In English, you would say, “increment is a public instance method that takes one
argument that is an object. The method doesn’t return anything. The method
increments the count instance variable and then sends the message
setIntValue() to the textField object with count as an argument.”

In Objective-C, the analogous method would look like this:

- (void)increment:(id)sender
{
 count++;
 [textField setIntValue:count];
}

Figure 2.28 The New Class in Xcode

Hillegass02.fm Page 29 Thursday, April 8, 2004 10:58 AM

30 CHAPTER 2 � LET’S GET STARTED

Objective-C is a very simple language. It has no visibility specifiers: All methods
are public, and all instance variables are protected. (Actually, there are visibility
specifiers for instance variables, but they are rarely used. The default is
protected, and that works nicely.)

In Chapter 3, we will explore Objective-C in all its beauty. For now, just copy the
methods:

#import "Foo.h"

@implementation Foo

- (IBAction)generate:(id)sender
{
 // Generate a number between 1 and 100 inclusive
 int generated;
 generated = (random() % 100) + 1;

 // Ask the text field to change what it is displaying
 [textField setIntValue:generated];
}

- (IBAction)seed:(id)sender
{
 // Seed the random number generator with the time
 srandom(time(NULL));
 [textField setStringValue:@"Generator seeded"];
}

@end

(Remember that IBAction is the same as void. Neither method returns
anything.)

Because Objective-C is C with a few extensions, you can call functions (such as
random() and srandom()) from the standard C and Unix libraries.

Build and Run

Your application is now finished. To build and run the application, click on the
hammer/green circle toolbar item (Figure 2.29). If your app is already running,
the toolbar item will be disabled; quit your app before trying to run it again.

If your code has an error, the compiler’s message indicating a problem will
appear at the view in the upper-right corner. If you click on the message, the
erroneous line of code will be selected in the view on the lower right. In
Figure 2.29, the programmer has forgotten a semicolon.

Hillegass02.fm Page 30 Thursday, April 8, 2004 10:58 AM

BACK IN XCODE 31

Launch your application. Click the buttons and see the generated random
numbers. Congratulations—you have a working Cocoa application.

awakeFromNib

Notice that your application is flawed: When the application first starts, instead
of anything interesting, the words System Font Text appear in the text field. Let’s
fix that problem. You will make the text field display the time and date that the
application started.

The nib file is a collection of objects that have been archived. When the program
is launched, the objects are brought back to life before the application handles
any events from the user. Notice that this mechanism is a bit unusual—most
GUI builders generate source code that lays out the user interface. Instead,
Interface Builder allows the developer to edit the state of the objects in the
interface and save that state to a file.

After being brought to life but before any events are handled, all objects are
automatically sent the message awakeFromNib. You will add an awakeFromNib
method that will initialize the text field’s value.

Click to build
and run

Figure 2.29 Compiling

Hillegass02.fm Page 31 Thursday, April 8, 2004 10:58 AM

32 CHAPTER 2 � LET’S GET STARTED

Add the awakeFromNib method to Foo.m. For now, just type it in. You will
understand it later on. Briefly, you are creating an instance of NSCalendarDate
that represents the current time. Then you are telling the text field to set its
value to the new calendar date object:

- (void)awakeFromNib
{
 NSCalendarDate *now;
 now = [NSCalendarDate calendarDate];
 [textField setObjectValue:now];
}

The order in which the methods appear in the file is not important. Just make
sure that you add them after @implementation and before @end.

You will never have to call awakeFromNib; it gets called automatically. Simply
build and run your application again. You should now see the date and time
when the app runs (Figure 2.30).

In Cocoa, a lot of things (like awakeFromNib) get called automatically. Some of
the confusion that you may experience as you read this book will come from
trying to figure out which methods you have to call and which will get called for
you automatically. I’ll try to make the distinction clear.

Documentation

Before this chapter wraps up, you should know where to find the documentation,
as it may prove handy if you get stuck while doing an exercise later in the book.
The online developer documentation is kept in the directory /Developer/
Documentation/. The easiest way to get to it is by choosing Show Documentation
Window from Xcode’s Help menu (Figure 2.31).

Figure 2.30 Completed Application

Hillegass02.fm Page 32 Thursday, April 8, 2004 10:58 AM

WHAT HAVE YOU DONE? 33

What Have You Done?

You have now gone through the steps involved in creating a simple Cocoa
application:

� Create a new project.
� Lay out an interface.
� Create custom classes.
� Connect the interface to your custom class or classes.
� Add code to the custom classes.
� Compile.
� Test.

Let’s briefly discuss the chronology of an application: When the process is started,
it runs the NSApplicationMain function. The NSApplicationMain function
creates an instance of NSApplication. A global variable called NSApp points to that
instance of NSApplication. NSApp reads the main nib file and unarchives the
objects inside. The objects are all sent the message awakeFromNib. Then NSApp
checks for events. The timeline for these events appears in Figure 2.32.

Figure 2.31 The Documentation

Hillegass02.fm Page 33 Thursday, April 8, 2004 10:58 AM

34 CHAPTER 2 � LET’S GET STARTED

When the window server receives an event from the keyboard and mouse, it puts
the event data into the event queue for the appropriate application, as shown in
Figure 2.33. NSApp reads the event data from its queue and forwards it to a user
interface object (like a button), and your code gets triggered. If your code
changes the data in a view, the view is redisplayed. Then NSApp checks its event
queue for another event. This process of checking for events and reacting to
them constitutes the main event loop.

Figure 2.32 A Timeline

Hillegass02.fm Page 34 Thursday, April 8, 2004 10:58 AM

WHAT HAVE YOU DONE? 35

When the user chooses Quit from the menu, NSApp is sent the terminate:
message. This ends the process, and all your objects are destroyed.

Puzzled? Excited? Move on to the next chapter so we can fill in some blanks.

Figure 2.33 The Role of the Window Server

Hillegass02.fm Page 35 Thursday, April 8, 2004 10:58 AM

Hillegass02.fm Page 36 Thursday, April 8, 2004 10:58 AM

