
27

C H A P T E R 2
Standards and Technologies

THIS chapter describes current, universally accepted Web Service standards and
the J2EE platform’s support for these standards. The Web services computing para-
digm enables applications and services running on different platforms to easily com-
municate and interoperate with each other. To be so widely accepted, the paradigm
must give service implementors flexibility in their implementation approach. Just as
important, each such implementation must be assured that it can work with another
implementation. Proven technologies facilitate Web service development, and these
sorts of accepted standards enable interoperability.

2.1 Overview of Web Service Standards

Standards differ from technologies. Standards are a collection of specifications,
rules, and guidelines formulated and accepted by the leading market participants.
While these rules and guidelines prescribe a common way to achieve the standard’s
stated goal, they do not prescribe implementation details. Individual participants
devise their own implementations of an accepted standard according to the stan-
dard’s guidelines and rules. These various implementations of a standard by differ-
ent vendors give rise to a variety of technologies. However, despite the
implementation detail differences, the technologies can work together if they have
been developed according to the standard’s specifications.

For Web services to be successful, the Web service standards must be widely
accepted. To enable such wide acceptance, the standards used for Web services

DWS.book Page 27 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies28

and the technologies that implement those standards should meet the following
criteria:

• A Web service should be able to service requests from any client regardless of
the platform on which the client is implemented.

• A client should be able to find and use any Web service regardless of the ser-
vice’s implementation details or the platform on which it runs.

Standards establish a base of commonality and enable Web services to
achieve wide acceptance and interoperability. Standards cover areas such as:

• Common markup language for communication—To begin with, service
providers, who make services available, and service requestors, who use ser-
vices, must be able to communicate with each other. Communication mandates
the use of a common terminology, or language, through which providers and
requestors talk to one another. A common markup language facilitates commu-
nication between providers and requestors, as each party is able to read and un-
derstand the exchanged information based on the embedded markup tags.
Although providers and requestors can communicate using interpreters or
translators, using interpreters or translators is impractical because such inter-
mediary agents are inefficient and not cost effective. Web services use eXten-
sible Markup Language (XML) for the common markup language.

• Common message format for exchanging information—Although estab-
lishing a common markup language is important, by itself it is not sufficient for
two parties (specifically, the service providers and service requestors) to prop-
erly communicate. For effective communication, the parties must be able to ex-
change messages according to an agreed-upon format. By having such a
format, parties who are unknown to each other can communicate effectively.
Simple Object Access Protocol (SOAP) provides a common message format
for Web services.

• Common service specification formats—In addition to common message
formats and markup language, there must be a common format that all service
providers can use to specify service details, such as the service type, how to ac-
cess the service, and so forth. A standard mechanism for specifying service de-
tails enables providers to specify their services so that any requestor can
understand and use them. For example, Web Services Description Language
(WSDL) provides Web services with common specification formats.

DWS.book Page 28 Thursday, April 29, 2004 3:32 PM

Overview of Web Service Standards 29

• Common means for service lookup—In the same way that providers need a
common way to specify service details, service requestors must have a com-
mon way to look up and obtain details of a service. This is accomplished by
having common, well-known locations where providers can register their ser-
vice specifications and where requestors know to go to find services. By hav-
ing these common, well-known locations and a standard way to access them,
services can be universally accessed by all providers and requestors. Universal
Description, Discovery, and Integration (UDDI) specification defines a com-
mon means for looking up Web services.

Although they do not exhaustively discuss these basic standards, the next sec-
tions provide enough information about the standards to enable further discussion
about the J2EE technologies that implement them. For complete details, see the
reference section at the end of this chapter. In addition to these basic standards,
more complex Web services that implement enterprise-level processes need stan-
dards for security, transactions, process flow control, and so forth.

2.1.1 Extensible Markup Language

The eXtensible Markup Language (XML), a standard accepted throughout the
industry, enables service providers and requestors to communicate with each other
in a common language. XML is not dependent on a proprietary platform or technol-
ogy, and messages in XML can be communicated over the Internet using standard
Internet protocols such as HTTP. Because XML is a product of the World Wide Web
Consortium (W3C) body, changes to it will be supported by all leading players. This
ensures that as XML evolves, Web services can also evolve without backward com-
patibility concerns.

XML is a simple, flexible, text-based markup language. XML data is marked
using tags enclosed in angled brackets. The tags contain the meaning of the data
they mark. Such markup allows different systems to easily exchange data with
each other. This differs from tag usage in HTML, which is oriented to displaying
data. Unlike HTML, display is not inherent in XML. Code Example 2.1 shows the
code from an XML document representing an individual’s contact information.

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<ContactInformation>

 <Name>John Doe</Name>

 <Address>

 <Street>4140 Network Circle</Street>

DWS.book Page 29 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies30

 <City>Santa Clara</City>

 <State>California</State>

 <Country>USA</Country>

 </Address>

 <HomePhone>123-456-7890</HomePhone>

 <EMail>j2eeblueprints@sun.com</EMail>

</ContactInformation>

Code Example 2.1 XML Document Example

A Document Type Definition (DTD) or XML Schema Definition (XSD)
describes the structure of an XML document. It has information on the tags the
corresponding XML document can have, the order of those tags, and so forth. An
XML document can be validated against its DTD or its XSD. Validating an XML
document ensures that the document follows the structure defined in its DTD or
XSD and that it has no invalid XML tags. Thus, systems exchanging XML docu-
ments for some purpose can agree on a single DTD or XSD and validate all XML
documents received for that purpose against the agreed-upon DTD/XSD before
processing the document. Code Example 2.2 is the DTD for the XML document
in Code Example 2.1.

<!ELEMENT ContactInformation (Name, Address, HomePhone, EMail)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Address (Street, City, State, Country)>

<!ELEMENT Street (#PCDATA)>

<!ELEMENT City (#PCDATA)>

<!ELEMENT State (#PCDATA)>

<!ELEMENT Country (#PCDATA)>

<!ELEMENT HomePhone (#PCDATA)>

<!ELEMENT EMail (#PCDATA)>

Code Example 2.2 Document Type Definition

Unfortunately, DTDs are an inadequate way to define XML document for-
mats. For example, DTDs provide no real facility to express data types or complex
structural relationships. XML schema definitions standardize the format defini-

DWS.book Page 30 Thursday, April 29, 2004 3:32 PM

Overview of Web Service Standards 31

tions of XML documents. Code Example 2.4 shows the XSD schema for the
sample XML document in Code Example 2.3.

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<ContactInformation

xmlns="http://simple.example.com/CInfoXmlDoc"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://simple.example.com/CInfoXmlDoc

file:./CInfoXmlDoc.xsd">

 <Name>John doe</Name>

 <Address>

 <Street>4140 Network Circle</Street>

 <City>Santa Clara</City>

 <State>California</State>

 <Country>USA</Country>

 </Address>

 <HomePhone>123-456-7890</HomePhone>

 <EMail>j2eeblueprints@sun.com</EMail>

</ContactInformation>

Code Example 2.3 XML Document

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://simple.example.com/CInfoXmlDoc"

xmlns=" http://simple.example.com/CInfoXmlDoc"

elementFormDefault="qualified">

<xsd:element name="ContactInformation">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Name" type="xsd:string" />

<xsd:element name="Address">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Street"

type="xsd:string" />

<xsd:element name="City"

type="xsd:string" />

DWS.book Page 31 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies32

<xsd:element name="State"

type="xsd:string" />

<xsd:element name="Country"

type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="HomePhone" type="xsd:string" />

<xsd:element name="EMail" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Code Example 2.4 XSD Schema

When considering XML schemas, it is important to understand the concept of
XML namespaces. To enable using the same name with different meanings in dif-
ferent contexts, XML schemas may define a namespace. A namespace is a set of
unique names that are defined for a particular context and that conform to rules
specific for the namespace. Since a namespace is specific to a particular context,
each namespace is unrelated to any other namespace. Thus, the same name can be
used in different namespaces without causing a duplicate name conflict. XML
documents, which conform to an XML schema and have multiple elements and
attributes, often rely on namespaces to avoid a collision in tag or attribute names
or to be able to use the same tag or attribute name in different contexts.

Technically speaking, an XML namespace defines a collection of names and
is identified by a URI reference. (Notice in Code Example 2.4 the code
xmlns="http://simple.example.com/CInfoXmlDoc". Code such as this indicates
that the XML schema defines a namespace for the various elements and attributes
in the document.) Names in the namespace can be used as element types or
attributes in an XML document. The combination of URI and element type or
attribute name comprises a unique universal name that avoids collisions.

For example, in Code Example 2.4, there is a namespace that defines the
ContactInformation document’s element types, such as Name and Address. These
element types are unique within the contact information context. If the document
included another namespace context, such as BankInformation that defined its
own Name and Address element types, these two namespaces would be separate

DWS.book Page 32 Thursday, April 29, 2004 3:32 PM

Overview of Web Service Standards 33

and distinct. That is, a Name and Address used in the context of BankInformation
would not conflict with a name and address used in the context of
ContactInformation.

2.1.2 Simple Object Access Protocol

XML solves the need for a common language, and the Simple Object Access Proto-
col (SOAP) fills the need for a common messaging format. SOAP enables objects
not known to one another to communicate; that is, to exchange messages. SOAP, a
wire protocol similar to Internet Inter-ORB Protocol (IIOP) and Java Remote
Method Protocol (JRMP), is a text-based protocol that uses an XML-based data
encoding format and HTTP/SMTP to transport messages. SOAP is independent of
both the programming language and the operational platform, and it does not require
any specific technology at its endpoints, making it completely agnostic to vendors,
platforms, and technologies. Its text format also makes SOAP a firewall-friendly
protocol. Moreover, SOAP is backed by leading industrial players and can be
expected to have universal support.

To enable message exchanges, SOAP defines an envelope, which contains a
SOAP body, within which the message is included, and an optional SOAP-
specific header. The whole envelope—body plus header—is one complete XML
document. (See Figure 2.1.)

Figure 2.1 SOAP Message Structure

S o a p E n v e l o p e

S O A P H e a d e r

H e a d e r E n t r y

S O A P B o d y

B o d y E n t r y

B o d y E n t r y

H e a d e r E n t r y

DWS.book Page 33 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies34

The header entries may contain information of use to recipients, and these
header entries may also be of use to intermediate processors since they enable
advanced features. The body, which contains the message contents, is consumed
by the recipient. SOAP is agnostic about the message contents; the only restriction
is that the message be in XML format.

Code Example 2.5 shows a simple but complete example of a SOAP request
for obtaining a stock quote.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="SoapEnvelopeURI"

SOAP-ENV:encodingStyle="SoapEncodingURI">

 <SOAP-ENV:Header>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <m:GetLastTradePrice xmlns:m="ServiceURI">

 <tickerSymbol>SUNW</tickerSymbol>

 </m:GetLastTradePrice>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Code Example 2.5 Example SOAP Request

This example shows how a SOAP message is encoded using XML and illus-
trates some SOAP elements and attributes. All SOAP messages must have an
Envelope element and must define two namespaces: One namespace connotes the
SOAP envelope (xmlns:SOAP-ENV) and the other indicates the SOAP encoding
(SOAP-ENV:encodingStyle). SOAP messages without proper namespace specifi-
cation are considered invalid messages. The encodingStyle attribute is important,
as it is used to specify serialization rules for the SOAP message. Moreover, there
can be no DTD referrals from within SOAP messages.

While optional, the Header element when used should be the first immediate
child after the Envelope. The Header element provides a way to extend the SOAP
message by specifying additional information such as authentication and transac-
tions. Specifying this additional information as part of the Header tells the
message recipient how to handle the message.

There are many attributes that can be used in the SOAP Header element. For
example, the actor attribute of the Header element enables a SOAP message to be
passed through intermediate processes enroute to its ultimate destination. When
the actor attribute is absent, the recipient is the final destination of the SOAP

DWS.book Page 34 Thursday, April 29, 2004 3:32 PM

Overview of Web Service Standards 35

message. Similarly, many other attributes may be used. However, this chapter
does not address these details.

The Body element, which must be present in all SOAP messages, must follow
immediately after the Header element, if it is present. Otherwise, the Body element
must follow immediately after the start of the Envelope element. The Body con-
tains the specification of the actual request (such as method calls). The Fault
element in the SOAP Body enables error handling for message requests.

Note that this chapter does not discuss details of Header elements, attributes,
and other additional features, such as SOAP with attachments and binding HTTP,
although they are part of the SOAP standard. Interested readers should refer to the
SOAP specifications.

2.1.3 Registry Standards

The Universal Description, Discovery, and Integration (UDDI) specification defines
a standard way for registering, deregistering, and looking up Web services. UDDI is
a standards-based specification for Web service registration, description, and dis-
covery. Similar to a telephone system’s yellow pages, a UDDI registry’s sole
purpose is to enable providers to register their services and requestors to find ser-
vices. Once a requestor finds a service, the registry has no more role to play between
the requestor and the provider.

Figure 2.2 shows how UDDI enables dynamic description, discovery, and
integration of Web services. A Web service provider registers its services with the
UDDI registry. A Web service requestor looks up required services in the UDDI
registry and, when it finds a service, the requestor binds directly with the provider
to use the service.

Figure 2.2 Role of a Registry in a Web Service

Web
Service
Provider

UDDI
Registry

Web
Service
Requestor

3. Binds with
and uses the
services of

1. Registers its
services with

2. Finds services with

DWS.book Page 35 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies36

The UDDI specification defines an XML schema for SOAP messages and
APIs for applications wanting to use the registry. A provider registering a Web
service with UDDI must furnish business, service, binding, and technical informa-
tion about the service. This information is stored in a common format that consists
of three parts:

1. White pages—describe general business information such as name, descrip-
tion, phone numbers, and so forth

2. Yellow pages—describe the business in terms of standard taxonomies. This in-
formation should follow standard industrial categorizations so that services can
be located by industry, category, or geographical location.

3. Green pages—list the service, binding, and service-specific technical
information

The UDDI specification includes two categories of APIs for accessing UDDI
services from applications:

1. Inquiry APIs—enable lookup and browsing of registry information

2. Publishers APIs—allow applications to register services with the registry

UDDI APIs behave in a synchronous manner. In addition, to ensure that a
Web service provider or requestor can use the registry, UDDI uses SOAP as the
base protocol. Note that UDDI is a specification for a registry, not a repository. As
a registry it functions like a catalog, allowing requestors to find available services.
A registry is not a repository because it does not contain the services itself.

2.1.4 Web Services Description Language

The Web Services Description Language (WSDL) defines a standard way for speci-
fying the details of a Web service. It is a general-purpose XML schema that can be
used to specify details of Web service interfaces, bindings, and other deployment
details. By having such a standard way to specify details of a service, clients who
have no prior knowledge of the service can still use that Web service.

DWS.book Page 36 Thursday, April 29, 2004 3:32 PM

Overview of Web Service Standards 37

Figure 2.3 WSDL Service Description

WSDL specifies a grammar that describes Web services as a collection of
communication endpoints, called ports. The data being exchanged are specified as
part of messages. Every type of action allowed at an endpoint is considered an
operation. Collections of operations possible on an endpoint are grouped together
into port types. The messages, operations, and port types are all abstract defini-
tions, which means the definitions do not carry deployment-specific details to
enable their reuse.

The protocol and data format specifications for a particular port type are spec-
ified as a binding. A port is defined by associating a network address with a reus-
able binding, and a collection of ports define a service. In addition, WSDL
specifies a common binding mechanism to bring together all protocol and data
formats with an abstract message, operation, or endpoint. See Figure 2.3.

Code Example 2.6 shows a WSDL document for a weather Web service that
returns a given city’s weather information. The Web service, which uses SOAP as
the communication protocol, expects to receive the city name as String type data
and sends String type data as its response.

<?xml version="1.0" encoding="UTF-8"?>

<definitions name="WeatherWebService"

targetNamespace="urn:WeatherWebService"

xmlns:tns="urn:WeatherWebService"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Service

Endpoint 1 Endpoint 2 Endpoint 3 Endpoint 4

Binding 3Binding 2Binding 1

Web Service
Interface

DWS.book Page 37 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies38

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">

<types/>

<message name="WeatherService_getWeather">

<part name="String_1" type="xsd:string"/>

</message>

<message name="WeatherService_getWeatherResponse">

<part name="result" type="xsd:string"/>

</message>

<portType name="WeatherService">

<operation name="getWeather" parameterOrder="String_1">

<input message="tns:WeatherService_getWeather"/>

<output

message="tns:WeatherService_getWeatherResponse"/>

</operation>

</portType>

<binding name="WeatherServiceBinding"

type="tns:WeatherService">

<operation name="getWeather">

<input>

<soap:body use="literal"

namespace="urn:WeatherWebService"/>

</input>

<output>

<soap:body use="literal"

namespace="urn:WeatherWebService"/>

</output>

<soap:operation soapAction=""/></operation>

<soap:binding

transport="http://schemas.xmlsoap.org/soap/http"

style="rpc"/>

</binding>

<service name="WeatherWebService">

<port name="WeatherServicePort"

binding="tns:WeatherServiceBinding">

<soap:address

location="http://mycompany.com/weatherservice"/>

</port>

DWS.book Page 38 Thursday, April 29, 2004 3:32 PM

Overview of Web Service Standards 39

</service>

</definitions>

Code Example 2.6 WSDL Document for Weather Web Service

A complete WSDL document consists of a set of definitions starting with a
root definitions element followed by six individual element definitions—types,
message, portType, binding, port, and service—that describe the services.

• The types element defines the data types contained in messages exchanged as
part of the service. Data types can be simple, complex, derived, or array types.
Types, either schema definitions or references, that are referred to in a WSDL
document’s message element are defined in the WSDL document’s type
element.

• The message element defines the messages that the Web service exchanges. A
WSDL document has a message element for each message that is exchanged,
and the message element contains the data types associated with the message.

• The portType element specifies, in an abstract manner, operations and messag-
es that are part of the Web service. A WSDL document has one or more
portType definitions for each Web service it defines.

• The binding element binds the abstract port type, and its messages and opera-
tions, to a transport protocol and to message formats.

• The service and port elements together define the name of the Web service
and, by providing a single address for binding, assign an individual endpoint
for the service. A port can have only one address. The service element groups
related ports together and, through its name attribute, provides a logical name
for the service.

This description is for a simple WSDL document. Each element definition has
various attributes and WSDL has additional features, such as fault handling.
WSDL also specifies how to bind directly with HTTP/MIME, SMTP/MIME, and
so forth, but these are beyond the scope of the current discussion. For more
details, see the WSDL specification available at http://www.w3c.org/TR/wsdl.

DWS.book Page 39 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies40

2.1.5 Emerging Standards

So far we have examined existing standards, which meet the needs of simple Web
services. Organizations that cross various industries have been formed to create and
promote cross-platform standards. The Web Services Interoperability Organization
(WS-I) is one such group. WS-I has published a WS-I Basic Profile that defines a
set of cross-platform standards, such as those just examined, to promote and ensure
interoperability. But other standards are required to address issues for Web services
that handle complex business processes. These issues include strict security require-
ments, business processes interacting with other business processes and having
long-lived transactions or transactions that span multiple business processes, or
business processes nested within other processes. These business processes must
also execute properly even when run on different platforms. Various standards
bodies and organizations such as WS-I are currently working on these standards.
Since these standards are still being defined and it is not yet clear which standards
will be accepted as universal, we do not go into the details of emerging standards.

Now that we have examined the Web service standards, let’s go on to see how
J2EE supports these accepted standards.

2.2 J2EE: The Integrated Platform for Web Services

Starting with the J2EE 1.4 platform, with its main focus on Web services, the exist-
ing Java-XML technologies are integrated into a consolidated platform in a standard
way, thereby allowing applications to be exposed as Web services through a
SOAP/HTTP interface. The next sections briefly describe the Web service-specific
additions made in the J2EE 1.4 platform. (Chapter 1 includes an overview of the
J2EE 1.4 platform. See the J2EE 1.4 specification listed in “References and
Resources” on page xx for complete information on the platform.)

This section is intended to give you an overview of the various Web service-
specific additions in the J2EE platform. The next three chapters cover how to use
these technologies in detail.

DWS.book Page 40 Thursday, April 29, 2004 3:32 PM

J2EE: The Integrated Platform for Web Services 41

2.2.1 Java APIs for XML Processing

JavaTM APIs for XML Processing (JAXP) is a vendor-neutral set of lightweight
APIs for parsing or processing XML documents. Because XML is the common lan-
guage enabling Web services, an XML parser is a necessity to process the mes-
sages—the XML documents—exchanged among Web services. Figure 2.4 depicts
how the JAXP API abstracts the parser implementations from the user application.

Keep in mind that the JAXP API is not new to the J2EE 1.4 platform. It has
been part of the earlier versions of both the J2EE and JavaTM 2 Standard Edition
(J2SETM) platforms. In the J2EE 1.4 platform implementation, JAXP has added
support for XML schemas.

Although it has its own reference implementation, JAXP allows JAXP speci-
fication-conforming parsers from other vendors to be plugged in. JAXP falls back
to parsing an XML document using its own implementation if no other implemen-
tation is provided. JAXP processes XML documents using the SAX or DOM
models, and it permits use of XSLT engines during the document processing.
(XSLT, which stands for eXtensible Stylesheet Language Transformation, is used
for transforming XML documents from one format to another.)

The main JAXP APIs are available through the javax.xml.parsers package,
which provides two vendor-agnostic factory interfaces—one interface for SAX
processing and another for DOM processing. These factory interfaces allow the
use of other JAXP implementations.

Figure 2.4 Using JAXP to Abstract Parser Implementations from User Application

User
Application

JAXP API

JAXP
Reference

Implementation

Vendor
Implementation

DWS.book Page 41 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies42

Figure 2.5 SAX- and DOM-Based XML Parser APIs

Figure 2.5 shows how the SAX and DOM parsers function. SAX processes
documents serially, converting the elements of an XML document into a series of
events. Each particular element generates one event, with unique events represent-
ing various parts of the document. User-supplied event handlers handle the events
and take appropriate actions. SAX processing is fast because of its serial access
and small memory storage requirements. Code Example 2.7 shows how to use the
JAXP APIs and SAX to process an XML document.

public class AnAppThatUsesSAXForXMLProcessing

extends DefaultHandler {

public void someMethodWhichReadsXMLDocument() {

// Get a SAX PArser Factory and set validation to true

SAXParserFactory spf = SAXParserFactory.newInstance();

spf.setValidating(true);

// Create a JAXP SAXParser

SAXParser saxParser = spf.newSAXParser();

// Get the encapsulated SAX XMLReader

xmlReader = saxParser.getXMLReader();

// Set the ContentHandler of the XMLReader

XML
Document

SAX
Parser

Event
Handlers

Input
Creates
Events

XML
Document

DOM
Parser

Input
Creates
Tree

DWS.book Page 42 Thursday, April 29, 2004 3:32 PM

J2EE: The Integrated Platform for Web Services 43

xmlReader.setContentHandler(this);

// Tell the XMLReader to parse the XML document

xmlReader.parse(XMLDocumentName);

}

}

Code Example 2.7 Using SAX to Process an XML Document

DOM processing creates a tree from the elements in the XML document.
Although this requires more memory (to store the tree), this feature allows
random access to document content and enables splitting of documents into frag-
ments, which makes it easier to code DOM processing. DOM facilitates creations,
changes, or additions to incoming XML documents. Code Example 2.8 shows
how to use the JAXP APIs and DOM to process an XML document.

public class AnAppThatUsesDOMForXMLProcessing {

public void someMethodWhichReadsXMLDocument() {

// Step 1: create a DocumentBuilderFactory

DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

dbf.setValidating(true);

// Step 2: create a DocumentBuilder that satisfies

// the constraints specified by the DocumentBuilderFactory

db = dbf.newDocumentBuilder();

// Step 3: parse the input file

Document doc = db.parse(XMLDocumentFile);

// Parse the tree created - node by node

}

}

Code Example 2.8 Using DOM to Process an XML Document

DWS.book Page 43 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies44

2.2.2 JavaTM API for XML-Based RPC

JavaTM API for XML-based RPC (JAX-RPC) supports XML-based RPC for Java
and J2EE platforms. It enables a traditional client-server remote procedure call
(RPC) mechanism using an XML-based protocol. JAX-RPC enables Java technol-
ogy developers to develop SOAP-based interoperable and portable Web services.
Developers use the JAX-RPC programming model to develop SOAP-based Web
service endpoints, along with their corresponding WSDL descriptions, and clients.
A JAX-RPC-based Web service implementation can interact with clients that are not
based on Java. Similarly, a JAX-RPC-based client can interact with a non-Java-
based Web service implementation.

For typical Web service scenarios, using JAX-RPC reduces complexity for
developers by:

• Standardizing the creation of SOAP requests and responses

• Standardizing marshalling and unmarshalling of parameters and other runtime
and deployment-specific details

• Removing these SOAP creation and marshalling/unmarshalling tasks from a
developer’s responsibilities by providing these functions in a library or a tool

• Providing standardized support for different mapping scenarios, including
XML to Java, Java to XML, WSDL-to-Java, and Java-to-WSDL mappings

JAX-RPC also defines standard mappings between WSDL/XML and Java,
which enables it to support a rich type set. However, developers may use types
that do not have standard type mappings. JAX-RPC defines a set of APIs for an
extensible type mapping framework that developers can use for types with no
standard type mappings. With these APIs, it is possible to develop and implement
pluggable serializers and de-serializers for an extensible mapping. Figure 2.6
shows the high-level architecture of the JAX-RPC implementation.

A client application can make a request to a Web service in one of three ways.
Chapter 5 contains detailed descriptions of these client access approaches.

1. Invoking methods on generated stubs—Based on the contents of a WSDL de-
scription of a service, tools can be used to generate stubs. These generated
stubs are configured with all necessary information about the Web service and
its endpoint. The client application uses the stubs to invoke remote methods
available in the Web service endpoint.

DWS.book Page 44 Thursday, April 29, 2004 3:32 PM

J2EE: The Integrated Platform for Web Services 45

Figure 2.6 JAX-RPC Architecture

2. Using a dynamic proxy—A dynamic proxy supports a Web service endpoint.
When this mode is used, there is no need to create endpoint-specific stubs for
the client.

3. Using a dynamic invocation interface (DII)—In this mode, operations on target
service endpoints are accessed dynamically based on an in-memory model of
the WSDL description of the service.

No matter which mode is used, the client application’s request passes through
the client-side JAX-RPC runtime. The runtime maps the request’s Java types to
XML and forms a corresponding SOAP message for the request. It then sends the
SOAP message across the network to the server.

On the server side, the JAX-RPC runtime receives the SOAP message for the
request. The server-side runtime applies the XML to Java mappings, then maps
the request to the corresponding Java method call, along with its parameters.

Web Service

Stubs Ties/

Client-Side

WSDL

Skeleton

JAX-RPC
API

JAX-RPC
API

RPC Runtime
Server-Side

RPC Runtime

Client Application

SOAPSOAP

HTTPHTTP
Network

Endpoint

DWS.book Page 45 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies46

Note that a client of a JAX-RPC service may be a non-Java client. Also, JAX-
RPC can interoperate with any Web service, whether that service is based on JAX-
RPC or not. Also note that developers need only deal with JAX-RPC APIs; all the
details for handling SOAP happen under the hood.

JAX-RPC supports three modes of operation:

1. Synchronous request–response mode—After a remote method is invoked, the
service client’s thread blocks until a return value or exception is returned.

2. One-way RPC mode—After a remote method is invoked, the client’s thread is
not blocked and continues processing. No return value or exception is expected
on this call.

3. Non-blocking RPC invocation mode—A client invokes a remote procedure
and continues in its thread without blocking. Later, the client processes the re-
mote method return by performing a blocked receive call or by polling for the
return value.

In addition, JAX-RPC, by specifying a standard way to plug in SOAP
message handlers, allows both pre- and post-processing of SOAP requests and
responses. These message handlers can intercept incoming SOAP requests and
outgoing SOAP responses, allowing the service to do additional processing. See
the JAX-RPC specification (listed in “References and Resources” on page xx) for
more information on JAX-RPC.

Code Example 2.9 is an example of a JAX-RPC service interface for a simple
service that provides weather information for a city.

public interface WeatherService extends Remote {

public String getWeather(String city) throws RemoteException;

}

Code Example 2.9 JAX-RPC Service Endpoint Interface Example

Code Example 2.10 shows the implementation of the weather service inter-
face using a Web component.

public class WeatherServiceImpl implements

WeatherService, ServiceLifecycle {

DWS.book Page 46 Thursday, April 29, 2004 3:32 PM

J2EE: The Integrated Platform for Web Services 47

public void init(Object context) throws JAXRPCException {}

public String getWeather(String city) {

return ("Early morning fog clearing midday; “ +

 “over all great day expected in " + city);

}

public void destroy() {}

}

Code Example 2.10 JAX-RPC Service Implementation

Code Example 2.11 shows how a client, using JAX-RPC to access this
weather service.

.....

Context ic = new InitialContext();

Service svc = (Service)

ic.lookup("java:comp/env/service/WeatherService");

WeatherSvcIntf port = (WeatherSvcIntf)

svc.getPort(WeatherSvcIntf.class);

String info = port.getWeather(“New York”);

.....

Code Example 2.11 A Java/J2EE Client Accessing the Weather Service

These examples illustrate that a developer has to code very little configuration
and deployment information. The JAX-RPC implementation handles the details
of creating a SOAP request, handling the SOAP response, and so forth, thereby
relieving the developer of these complexities.

2.2.3 JavaTM API for XML Registries

JavaTM API for XML Registries (JAXR), a Java API for accessing business regis-
tries, has a flexible architecture that supports UDDI, and other registry specifica-
tions (such as ebXML). Figure 2.7 illustrates the JAXR architecture.

DWS.book Page 47 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies48

Figure 2.7 JAXR Architecture

A JAXR client, which can be a stand-alone Java application or a J2EE compo-
nent, uses an implementation of the JAXR API provided by a JAXR provider to
access business registries. A JAXR provider consists of two parts: a registry-
specific JAXR provider, which provides a registry-specific implementation of the
API, and a JAXR pluggable provider, which implements those features of the API
that are independent of the type of registry. The pluggable provider hides the
details of registry-specific providers from clients.

The registry-specific provider plugs into the pluggable provider, and acts on
requests and responses between the client and the target registry. The registry-
specific provider converts client requests into a form understood by the target reg-
istry and sends the requests to the registry provider using registry-specific proto-
cols. It converts responses from the registry provider from a registry-specific
format to a JAXR response, then passes the response to the client.

Refer to the JAXR specification for more information.

2.2.4 SOAP with Attachments API for JavaTM

SOAP with Attachments API for JavaTM (SAAJ), which enables developers to
produce and consume messages conforming to the SOAP 1.1 specification and
SOAP with Attachments note, provides an abstraction for handling SOAP messages

Registry
Browsers

Desktop
Applications

J2EE
Components

Diverse
Clients

JAXR
API

Diverse
Registries OtherUDDIebXML

DWS.book Page 48 Thursday, April 29, 2004 3:32 PM

J2EE: The Integrated Platform for Web Services 49

with attachments. Advanced developers can use SAAJ to have their applications
operate directly with SOAP messages. Attachments may be complete XML docu-
ments, XML fragments, or MIME-type attachments. In addition, SAAJ allows
developers to enable support for other MIME types. JAX technologies, such as
JAX-RPC, internally use SAAJ to hide SOAP complexities from developers.

SAAJ allows the following modes of message exchanges:

• Synchronous request-response messaging—the client sends a message and
then waits for the response

• One-way asynchronous messaging (also called fire and forget)—the client
sends a message and continues with its processing without waiting for a
response

Refer to the SAAJ specification for more information.

2.2.5 Web Service Technologies Integrated in J2EE Platform

Up to now, we have examined how the Java XML technologies support various Web
service standards. Now let’s see how the J2EE 1.4 platform combines these technol-
ogies into a standard platform that is portable and integrated. Not only are the Java
XML technologies integrated into the platform, the platform also defines Web
service-related responsibilities for existing Web and EJB containers, artifacts, and
port components. The J2EE 1.4 platform ensures portability by integrating the Java
XML technologies as extensions to existing J2EE containers, packaging formats,
deployment models, and runtime services.

A Web service on the J2EE 1.4 platform may be implemented as follows:

• Using a JAX-RPC service endpoint—The service implementation is a Java
class in the Web container. The service adheres to the Web container’s servlet
lifecycle and concurrency requirements.

• Using an EJB service endpoint—The service implementation is a stateless ses-
sion bean in an EJB container. The service adheres to the EJB container’s life-
cycle and concurrency requirements.

DWS.book Page 49 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies50

In either case, the service is made portable with the definition of a port com-
ponent, which provides the service’s outside view for Web service implementa-
tion. A port component consists of:

• A WSDL document describing the Web service that its clients can use

• A service endpoint interface defining the Web service’s methods that are avail-
able to clients

• A service implementation bean implementing the business logic of the meth-
ods defined in the service endpoint interface. The implementation may be ei-
ther a Java class in the Web container or a stateless session bean in the EJB
container.

Container-specific service interfaces, created by the J2EE container, provide
static stub and dynamic proxies for all ports. A client of a J2EE platform Web
service can be a Web service peer, a J2EE component, or a stand-alone applica-
tion. It is not required that the client be a Web service or application implemented
in Java.

How do clients use a J2EE platform Web service? Here is an example of a
J2EE component that is a client of some Web service. Such a client uses JNDI to
look up the service, then it accesses the Web service’s port using methods defined
in the javax.xml.rpc.Service interface. The client accesses the service’s func-
tionality using its service endpoint interface. A client that is a J2EE component
needs only consider that the Web service implementation is stateless. Thus, the
client cannot depend on the service holding state between successive service invo-
cations. A J2EE component client does not have to know any other details of the
Web service, such as how the service interface accesses the service, the service
implementation, how its stubs are generated, and so forth.

Recall (from Code Example 2.9 and Code Example 2.10) what a Web service
interface, such as the weather Web service, looks like when implemented as a
JAX-RPC service endpoint on a J2EE platform. In contrast, Code Example 2.12
shows the equivalent EJB service endpoint implementation for the same weather
service.

public class HelloService implements SessionBean {

private SessionContext sc;

public WeatherService(){}

DWS.book Page 50 Thursday, April 29, 2004 3:32 PM

J2EE: The Integrated Platform for Web Services 51

public void ejbCreate() {}

public String getWeather(String city) {

return ("Early morning fog clearing midday; “ +

 “over all great day expected in " + city);

}

public void setSessionContext(SessionContext sc) {

this.sc = sc;

}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

}

Code Example 2.12 EJB Service Endpoint Implementation for a Weather Service

Keep in mind that any client can use the code shown in Code Example 2.11 to
access this weather service. This holds true

• Regardless of whether the service is implemented as a JAX-RPC service end-
point or an EJB service endpoint

• Regardless of whether the client is a servlet, an enterprise bean, or a stand-
alone Java client

2.2.6 Support for WS-I Basic Profile

So far we have seen how the various Java technologies support Web service stan-
dards. We have also examined how these Java technologies have been integrated
into the J2EE platform in a standard way to ensure portability of Web service imple-
mentations across J2EE platforms. Since ensuring interoperability among heteroge-
neous platforms is a primary force for Web services, the J2EE platform supports the
WS-I Basic Profile.

As already seen in “Emerging Standards” on page 40, WS-I is an organization
that spans industries and whose charter is to create and promote interoperability of
Web services. WS-I has published the WS-I Basic Profile, which dictates how a

DWS.book Page 51 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies52

set of Web service standards should be used together to ensure interoperability.
The WS-I Basic Profile covers:

• Messaging standards (such as SOAP)

• Description and discovery standards (such as UDDI)

• Security

By supporting the WS-I Basic Profile, the J2EE platform is assured of provid-
ing an interoperable and portable platform for the development of Web services.

2.3 Other Java-XML Technologies

Up to now, we have discussed the Web service-specific technologies that are a man-
datory part of the J2EE platform. As such, these technologies must be present in any
J2EE implementation from any vendor. Apart from these, there are other Java-XML
technologies that, while not a mandatory requirement of the J2EE platform, still
prove very useful for implementing Web services. While there are a number of such
technologies, we discuss here only those referenced throughout this book. One such
non-mandatory but useful Java-XML technology is the Java Architecture for XML
Binding (JAXB), which standardizes the representation of an XML document as an
in-memory object.

As we have already seen, when two parties communicate by passing XML
documents between them, the XML documents should follow some structure so
that the communicating parties can understand the contents of the documents.
XML document structure is defined using the standard schema facility for XML
documents. Of course, while developers can use a DOM or SAX parser to parse
such documents, it is much easier if the various parts of the XML documents are
mapped or bound to in-memory objects that truly represent the document’s
intended meaning, as per the schema definition. In addition to using these objects,
developers have access to the schema definitions as part of their logic. Such a
facility is commonly called an XML data-binding facility. JAXB provides a good
quality XML data-binding facility for the J2EE platform. Figure 2.8 shows the
overall architecture of the JAXB data-binding facility.

DWS.book Page 52 Thursday, April 29, 2004 3:32 PM

Other Java-XML Technologies 53

Figure 2.8 JAXB Architecture

JAXB consists of three main components:

• A binding compiler that creates Java classes (also called content classes) from
a given schema. Complex type definitions within the schema are mapped to
separate content classes, while simple types (such as attribute/element declara-
tions) are mapped to fields within a content class. Developers use get and set
methods (similar to JavaBeans get and set methods) to access and modify the
object contents.

• A binding framework that provides runtime services—such as marshalling,
unmarshalling, and validation—that can be performed on the contents classes.

• A binding language that describes binding of the schema to Java classes. This
language enables a developer to override the default binding rules, thereby
helping the developer to customize the content classes that are created by the
binding compiler.

For more details on JAXB, refer to the JAXB specification available through
the link provided in the next section.

Source
Schema

XML/Java
Customization
Binding
Declarations

Binding
Compiler

Schema-derived
interfaces,
factory methods

Package
javax.xml.bind

Implementation
classes, helper
classes, ...

Binding
framework
implementation

Application

Application Code

DWS.book Page 53 Thursday, April 29, 2004 3:32 PM

Chapter 2 Standards and Technologies54

Apart from JAXB, there are other emerging Java technologies that support
Web service standards in terms of long-lived transactions, business process work-
flow, and so forth. At the time of this writing, they have not been finalized and
hence will be dealt with in a future version of this book.

2.4 Conclusion

This chapter described the various Web service standards and the J2EE 1.4 platform
technologies that support those standards in a portable and interoperable manner. It
explained why such standards—including XML, SOAP, WSDL, and UDDI—are
beneficial to developers, and briefly described each standard. It showed how the
platform integrates existing Java and Web service/XML technologies to allow exist-
ing and new applications to be exposed as Web services.

In addition, this chapter described the different J2EE platform XML-related
APIs, including JAXP, JAXR, JAX-RPC, and SAAJ. It described these technolo-
gies from a high-level architectural point of view, and, where appropriate, illus-
trated their use with sample code. It also showed how to implement a Web service
on a J2EE platform using either a JAX-RPC or EJB service endpoint.

Table 2.1 summarizes the standards supported by the different J2EE platform
technologies.

Table 2.1 J2EE Platform Web Service Support

Technology Name Supporting Standard Purpose

JAXP XML schema Enables processing of XML docu-
ments in a vendor neutral way; sup-
ports SAX and DOM models

JAX-RPC SOAP Enables exchange of SOAP
requests and responses through an
API that hides the complex SOAP
details from the developers

JAXR UDDI, ebXML Enables accessing business regis-
tries with an API that supports any
type of registry specification

SAAJ SOAP with
Attachments

Enables exchange of document-
oriented XML messages using
Java APIs

DWS.book Page 54 Thursday, April 29, 2004 3:32 PM

Conclusion 55

Now that you have a good grasp of the Web services technologies, you are
ready to proceed with specific design and implementation issues. Chapter 3
describes how to design and implement an endpoint so that your application can
make its functionality available as a Web service.

J2EE for Web Ser-
vices

Integrates Java XML
technologies into the
J2EE platform; sup-
ports WS-I Basic
Profile

Enables development and deploy-
ment of portable and interoperable
Web services on the J2EE platform

JAXB (optional) Standard in-memory
representation of an
XML document

Provides an XML data-binding
facility for the J2EE platform

Table 2.1 J2EE Platform Web Service Support (continued)

Technology Name Supporting Standard Purpose

DWS.book Page 55 Thursday, April 29, 2004 3:32 PM

