
7
The Controller

Introduction

At this point, we have several wrapper classes and the web service running. We are now
ready to write the main Controller class that will take the transaction request from the
web service, split it into individual requests, decide where each of the requests goes, and
compile and return the results.

We will look at a few major items in this chapter. First, we will discuss the
Controller component. This is the “traffic cop” that takes in the request sent from
the web service and directs it to the appropriate places. We will also examine the
RequestsProcessor component. In this class, the requests are broken apart and an
appropriate RequestHandler component is called for the particular request type. Finally,
we will look at the RequestHandlerFactory. This class has some nifty code to create
an instance of the appropriate handler class simply by having a name passed in.

Because we are going to allow clients to send in synchronous or asynchronous
requests, we will discuss the .NET System.Messaging namespace. We will illustrate how
to send asynchronous requests to the Microsoft Message Queuing system, and we will
look at the System.Reflection namespace to find the bit of magic that enables you to create
an instance of a request handler class on the fly by just supplying the class name.

Getting to the Controller

I like to follow this basic design tenet when designing web services:
Move as much processing logic out of the web service as possible.
In other words, when an HTTP request comes into the web service, do as little pro-

cessing in the web service itself as possible, and farm out all remaining logic to classes in
“the engine.” In this case, the engine begins with a class called Controller. Aside from
basic XML structural validation and user/session authorization, the vast bulk of the pro-
cessing occurs in or below this Controller class.

The reason for this approach was born out of experience. In the early days of the .NET
web service classes, I (and others) had trouble putting complex logic in the web service class-
es. To be fair, I also ran into problems with the Java Servlet components. Various combina-
tions of “stuff” caused the process to hang. In other cases, the results were not what I had
expected, and the debugging task was difficult. As a matter of habit, then, I have come to
move the more interesting logic out of the web service itself and to call helper classes instead.

Clark_ch07.qxd 8/19/04 6:12 PM Page 155

The Controller component is an example of a “point man” class—a class acting as
the lead in an entire chain of other classes—used to kick off the bulk of the actual process-
ing. This tends to make the code easier to read anyway and greatly reduces the debugging
complexity, because you then can write standalone tester programs that call this class.

The issues I noted previously with the web service classes likely have been fixed in
the .NET Framework. However, I will continue to use this approach of moving logic out,
because doing so brings clarity and easier debugging.

Figure 7-1 is a rather high-level sequence diagram of a request flow. It shows the
calling sequence from the initiation of a request through the calling of the Controller
component. This should put into perspective the context of the remainder of this section,
in which we discuss the Controller in more detail.

156 Chapter 7 The Controller

Figure 7-1 Getting to the Controller.

The Controller Structure

Surprisingly, the Controller class is named Controller. It takes in as its sole parame-
ter an XmlNode object and returns an EAIResponse object. By the time the Controller
gets the go-ahead to start processing the input via its process method, you should know a
few things:

• The input request was a well-formed XML message.

• If the request was a new login message, and the username and password
were valid.

• If the request was submitted for an existing session, that session was valid.

Clark_ch07.qxd 8/19/04 6:12 PM Page 156

Because we know each of these pieces of information here, it’s full steam ahead as we
enter the process method. The XmlNode object is simply a representation of the request
string the originator submitted. We expect this to be in the following format:

<EAIRequest>
<SessionID>xyz-123-abc-987</SessionID>
<Requests>

<Request Name=”DoThis”>
<Needed>info</Needed>

</Request>
</Requests>

</EAIRequest>

The Controller class has a default, blank constructor. It then has a single public
method, named process.We look at a couple of private helper methods in a moment.

From a high level, the Controller component is really responsible for only a few,
albeit important tasks:

• Converting an XmlNode object into an EAIRequest object

• Determining whether the request is synchronous or asynchronous

• Sending an EAIRequest object to MessageQueue for asynchronous
requests

• Creating a RequestsProcessor object for synchronous requests

• Firing off the actual Requests to the RequestsProcessor

• Compiling status info and creating and returning an EAIResponse object

Figure 7-2 is a sequence diagram of a simple synchronous request coming into the
Controller.

Getting to the Controller 157

The Controller doesn’t actually see login requests. They are handled
by the web service itself.

Clark_ch07.qxd 8/19/04 6:12 PM Page 157

The Controller first creates a new EAIResponse object that will be returned from the
process call. It then converts the incoming XmlNode object, representing the original
request, into an EAIRequest object. This is a helper object that contains various informa-
tion and objects that make it much easier to process the request. Among the EAIRequest
members is a Requests object that contains Request objects. These Request objects
each represent a single <Request> block from the incoming request.

After the EAIRequest object has been created, Controller checks to see if the request
is synchronous or asynchronous. For our purposes, a synchronous request is specified in the
incoming message by the originator, and it means that the caller expects the request to be
handled while he waits. In other words, the caller expects a response to the request that con-
tains status information about all Request block processing for requests sent in. For example,
a request specified for asynchronous processing would have the following structure:

<EAIRequest>
<SessionID>123-xyz-987-abc</SessionID>
<Requests Asynch=”true”>

<Request Name=”First”> ... </Request>
...

<Request Name=”Last”> ... </Request>
</Requests>

</EAIRequest>

To make matters a bit more confusing (but flexible), the caller can also specify that he
wants processing to either continue on in the face of Requests returning an error or to
FailOnFirstError. Failing on first error means that processing stops the first time a
Request block returns an error. This is accomplished by the optional XML attribute
FailOnFirstError on the Requests element. If the attribute is not present,
FailOnFirstError is set to false. For example, if you were submitting a bunch of
Request blocks in a Requests block and you wanted the processing to halt the first time
any Request returned an error, you would send in something like the following:

158 Chapter 7 The Controller

Figure 7-2 Controller synchronous request processing.

Clark_ch07.qxd 8/19/04 6:12 PM Page 158

<EAIRequest>
<SessionID>123-xyz-987-abc</SessionID>
<Requests FailOnFirstError=”true”>

<Request Name=”First”> ... </Request>
...

<Request Name=”Last”> ... </Request>
</Requests>

</EAIRequest>

Therefore, you have four ways in which to combine the preceding two attributes. They are
shown in Table 7-1.

Table 7-1 FailOnFirstError and Asynch request attributes

FailOnFirstError = TRUE FailOnFirstError = FALSE

Synchronous Processing starts from Controller Processing starts from Controller
and returns when the first error is and continues on with each
encountered processing a Request Request block being processed,
block. Therefore, not all requests even if one or more Request blocks
might even have processing attempted. return an error.

Asynchronous Processing starts from the Microsoft Processing starts from the MSMQ
Message Queuing (MSMQ) and returns and continues with each Request
when the first error is encountered block being processed, even if one
processing a Request block. or more Request blocks return
Therefore, not all requests might even an error.
have processing attempted.

Listing 7-1: Controller.cs DiscussionController.cs

using System;
using System.Xml;
using System.Messaging;
using System.Collections;

using EAIFramework.Messages;
using EAIFramework.Util;
using EAIFramework.Handler;

namespace EAIFramework.Controller
{
/// <summary>
/// EAIFramework.Controller.Controller
/// This class is responsible for taking in an XmlNode object
/// and converting it to an EAIRequest object. Then each
/// Request block in the incoming EAIRequest message is
/// processed in either a synchronous or asynchronous
/// fashion, as specified in the incoming message.
/// </summary>
public class Controller
{

public Controller(){}//end constructor

Getting to the Controller 159

Clark_ch07.qxd 8/19/04 6:12 PM Page 159

Listing 7-2 shows the process method that will do the bulk of the work.

Listing 7-2: Controller.cs process Method

public EAIResponse process(XmlNode req)
{
Logger.log(Logger.INFO,”-------------------------”);
Logger.log(Logger.INFO,”Entering Controller “);
Logger.log(Logger.INFO,”with str: “ +req.OuterXml);
Logger.log(Logger.INFO,”-------------------------”);
TrnxLogProxy tlp = new TrnxLogProxy();

EAIFramework.Messages.EAIResponse resp =
new EAIFramework.Messages.EAIResponse();

resp.OverallStatusCode=StatusCodes.OK;
resp.OverallStatus = StatusCodes.Descriptions(

StatusCodes.OK);

// Create the EAIRequest object
Logger.log(Logger.INFO,
“Controller: Going to create new EAIRequest”);

EAIRequest eaiReq =
CreateRequest(req);

resp.TransactionID=eaiReq.TransactionID;
resp.SessionID=eaiReq.SessionID;
resp.OriginalXML=req.OuterXml;

if(! eaiReq.Synchronous)
{
Logger.log(Logger.INFO,

“THIS IS AN ASYNCHRONOUS TRNX!”);
resp = this.processAsynchRequests(eaiReq);
// Now save and return the response to the caller

int nRows = tlp.SaveResponse(resp.ToString(),
resp.TransactionID);

return resp;
}//end Asynch request.

Logger.log(Logger.INFO,
“THIS IS A SYNCHRONOUS TRNX!”);

//--
// The rest of this method is handling
// a SYNCHRONOUS request
//--
// Set up a place to compile the results of
// the <Request> processing. There will be
// one Component (in Components) for each
// Request (in Requests). This will come back in the
// ArrayList rreqs, below.

RequestsProcessor processor = new RequestsProcessor(
eaiReq);

ArrayList rreqs = processor.process();

160 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:12 PM Page 160

if(!(eaiReq.SessionID.Equals(“”)))
resp.RequestingUsername = eaiReq.SessionID;

else
resp.RequestingUsername =

eaiReq.RequestingUsername;

// Populate the EAIResponse object with
// the results of the processing

// Obscure the Password, if it’s there
try{req.SelectSingleNode(
“/EAIRequest/RequestingPassword”).
InnerText = “*****”;}

catch(Exception exc){}

resp.RequestResponses = (RequestResponse[])
rreqs.ToArray(
new RequestResponse().GetType());

tlp.UpdateTransaction(resp);
int nRespRows = tlp.SaveResponse(resp.ToString(),
resp.TransactionID);

return resp;
}//end process()

The process method performs, or at least kicks off, the heavy lifting of Request pro-
cessing. It starts off by doing some diagnostic logging and then creates a TrnxLogProxy
object. This is used later to update the transaction in the database.

Next, a new EAIResponse object, named resp, is created that you use to return to
the caller all the status information gathered from the various steps needed to process each
Request block. By default, you set the response object as showing success (OK).

The first of the private helper methods, CreateRequest(), is called. It takes in the
XmlNode object and returns a populated EAIRequest object. This object can then be used
to easily gain access to the various parts of the input request. We take a look at
CreateRequest() in a moment.

After CreateRequest() is called, the main branching for synchronous or asynchro-
nous processing takes place. If the request is not to be handled in a synchronous manner
(that is, if it’s asynchronous), you call the private helper method
processAsynchRequests(). This also is discussed in a moment. This basically sends
the request to a message queue that watches for asynchronous requests. Before you leave,
you save off the response to the database.

On the other hand, if this request is to be handled in a synchronous manner, a new
RequestsProcessor object is created. The RequestsProcessor class, discussed later
in this chapter, encapsulates all the functionality necessary to actually process a bunch of
requests. You could have written the code for this processing here in the Controller
class. However, because the request is sent off to a message queue for asynchronous pro-
cessing, you can call the same RequestsProcessor class from both the Controller
class and the message queue. This leaves you with a single chunk of code, making
maintenance and enhancements easier and more reliable.

Getting to the Controller 161

Clark_ch07.qxd 8/19/04 6:12 PM Page 161

The process method of the RequestsProcessor class is called next, and you get
back an ArrayList of RequestResponse objects. There should be one for each
processed Request. When FailOnFirstError is false, you should see a
RequestResponse object for each Request. If FailOnFirstError is true, you might
see fewer RequestResponse objects than Requests, if one of the Requests fails.

When the RequestsProcessor returns its results, Controller updates the
EAIResponse object that will be sent back. You’ll recall that the T_TransactionLog table
has a column to hold either SubmittingUser or SessionID, because both will never come in
at the same time. Controller sets the RequestingUsername member to the value of
either a SubmittingUsername or a SessionID, whichever is present. It then sets the
Password field to a series of asterisks, if password has a value. This just masks the pass-
word in the response message. It’s true that, for now, you should never see requests with a
username and password hit the Controller. However, to be prepared for a time when
you need to send login requests to the Controller, the information will be presented
back to the user as he would expect it to be. Finally, the response object is populated with
the remainder of the interesting information, including the TransactionID, SessionID,
OriginalXML string, and RequestResponse status objects returned by the
RequestsProcessor.

To finish out the Controller.process method, the TrnxLogProxy object that
was created near the start of the method is called on two different methods. First, the
UpdateTransaction() method is called. This takes in the newly-created response object
and does an UPDATE command on the row in the T_TransactionLog table that has the
TransactionID held in the response object. It at least changes the Status and StatusCode
columns.

All that’s left to do is return the EAIResponse object to the caller. For now, the only
component calling the Controller class is the web service. It then returns to the original
caller a string representation of the response object that you just sent back.

Private Helper Methods
Now let’s take a look at the private helper methods in the Controller class that the
process method called. The longest of these methods is the CreateRequest() method,
shown in Listing 7-3. It takes in an XmlNode object and returns an EAIRequest object.

Listing 7-3: The CreateRequest() Method

/// <summary>
/// This is a helper method for the
/// process() method that hides all
/// the logic to build the EAIRequest
/// object from the input XmlNode
/// object
/// </summary>
/// <param name=”req”>The input XmlNode object</param>
/// <returns>EAIRequest object</returns>
private EAIRequest CreateRequest(XmlNode req)
{
EAIRequest rRet = new EAIRequest();

162 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 162

rRet.OriginalXML = req.OuterXml;
try {
rRet.RequestingUsername =
req.SelectSingleNode(
“/EAIRequest/RequestingUsername”)
.InnerText;

} catch (Exception exc) {
Logger.log(Logger.INFO,
“CreateReq: Couldn’t read RequestingUsername: “
+ exc.Message);

rRet.RequestingUsername=””;
}

try{
rRet.TransactionID =
Int32.Parse(
req.SelectSingleNode(
“/EAIRequest/TrnxID”).InnerText);

} catch (Exception exc) {
Logger.log(Logger.INFO,

“CreateReq: Couldn’t read TrnxID: “ +
exc.Message);

rRet.TransactionID = -1;
}

try{
rRet.OverallStatus =
req.SelectSingleNode(
“/EAIRequest/OverallStatus”)
.InnerText;

} catch (Exception exc) {
Logger.log(Logger.INFO,

“CreateReq: Couldn’t read OverallStatus: “ +
exc.Message);

}

try {
Logger.log(Logger.INFO,

“CreateReq: Going to get StatusCode now...”);
string sSC = req.SelectSingleNode(
“/EAIRequest/OverallStatusCode”).InnerText;

if((sSC==null) || sSC.Equals(“”))
sSC=”0”;

Logger.log(Logger.INFO,
“CreateReq: Just got StatusCode: “ + sSC);

int nSC = Int32.Parse(sSC);
Logger.log(Logger.INFO,
“CreateReq: Just converted int to: “ +
nSC.ToString());

rRet.OverallStatusCode = nSC;
Logger.log(Logger.INFO,
“CreateReq: Stuck in OverallStatusCode.”);

} catch(Exception exc) {
Logger.log(Logger.INFO,

Getting to the Controller 163

Clark_ch07.qxd 8/19/04 6:13 PM Page 163

“CreateReq: Couldn’t read OverallStatusCode: “
+ exc.Message);

}//end catch

try {
Logger.log(Logger.INFO,
“CreateReq: Going to get SessionID now...”);

string ssn = req.SelectSingleNode(
“/EAIRequest/SessionID”)
.InnerText;

rRet.SessionID = ssn;
Logger.log(Logger.INFO,
“CreateReq: Stuck in SessionID “ + ssn);

} catch(Exception exc) {
Logger.log(Logger.INFO,
“CreateReq: Couldn’t read SessionID: “ +
exc.Message);

rRet.SessionID = “”;
}//end catch
//rRet.Started =
// new DateTime(req.SelectSingleNode(
// “/EAIRequest/Started”).InnerText);

XmlNode reqs = req.SelectSingleNode(
“/EAIRequest/Requests”);

XmlAttribute async = reqs.Attributes[“Asynch”];
if(async != null) {
if(async.InnerText.Equals(“true”))
rRet.Synchronous = false;

else
rRet.Synchronous = true;

}//End if Asynch != null
else
rRet.Synchronous = true;

XmlAttribute fof = reqs.
Attributes[“FailOnFirstError”];

if(fof != null) {
if(fof.InnerText.Equals(“true”))
rRet.FailOnFirstError = true;

else
rRet.FailOnFirstError = false;

}//End if FailOnFirstError != null
else
rRet.FailOnFirstError = false;

// Now build the Requests object
XmlNodeList xnl = req.SelectNodes(

“/EAIRequest/Requests/Request”);
Requests r = new Requests();
if(xnl.Count>0)
{
int nReqNum = 0;
foreach(XmlNode xn in xnl)
{

164 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 164

Request rr = new Request(xn.OuterXml);
rr.TrnxID = rRet.TransactionID;
rr.Iteration = nReqNum++;
r.add(rr);

}//end foreach
rRet.Requests = r;

}//end if there are any requests
rRet.Requests = r;

return rRet;
}//end CreateRequest()

The CreateRequest() method begins by instantiating a new EAIRequest that will be
returned to the caller. It then steps through, member by member; pulls out the information
from the XmlNode object sent in; and populates the appropriate member of the request
object. Working with the XML is the same as done previously, with the possible exception
of pulling in an attribute. You will want to check for a couple of different attributes,
including FailOnFirstError and Asynch.

I will now walk through pulling out a particular XML element, to make sure you
understand what is going on in the code. You’ll notice that very similar code repeats sever-
al times, getting different XML elements. I will then walk through pulling out an XML
attribute. It also repeats for subsequent attributes later in the method.

First, let’s look at the code to pull out the RequestingUsername element (see
Listing 7-4). The statement is placed in a try/catch block, because the
SelectSingleNode() method can throw an exception. The code populates the
RequestingUsername member of the rRet (EAIRequest) object, which is a string.
It is populated with the InnerText—in other words, the value between the XML
element tags—for the element matching the XPath search string of
/EAIRequest/RequestingUsername. Let’s take a look at the code that actually
does the XPath search now.

Listing 7-4: XPath Example

try{
// First get the XmlNode object for the XPath search
// of “/EAIRequest/RequestingUsername”.
// This XPath search should find the XML Element at the
// following spot:
//
// <EAIRequest>
// <RequestingUsername>theUser</RequestingUsername>
// ...other interesting XML goodies here...
// </EAIRequest>

System.XML.XmlNode xnReqUser = req.SelectSingleNode(
“/EAIRequest/RequestingUsername”);

// Now that we have the XmlNode for the RequestingUsername,

// get the value for that element. In this case, strUser
// would be set to equal “theUser”.
string strUser = xnReqUser.InnerText;

Getting to the Controller 165

Clark_ch07.qxd 8/19/04 6:13 PM Page 165

// Finally, populate the RequestingUsername member with the

// value we got for strUser.
rRet.RequestingUsername = strUser;

}
catch(Exception exc)
{

// error processing here...
}

166 Chapter 7 The Controller

As you might notice with most of the code in this project, I like to split most
operations into separate statements. Over the years, I have found that it’s much
quicker to debug problems if the statements are separated than if you have many
methods chained together in a single statement. I also tend to break that rule if I
have become particularly comfortable with a series of calls. Crunching through an
XmlNode is just one of those occasions. I will also concede that code looks
“cooler” if it’s all smushed into one line, but I long ago (and quite happily, I might
add) traded worrying about looking cool for simplifying my life. Splitting multiple
calls into separate lines is one such simplification.

The catch block traps any errors, including the case in which the element doesn’t exist. If
this is the case, the response RequestingUsername is set to a blank string. The same
holds true for several other bits of information, including the TransactionID,
OverallStatus, OverallStatusCode, and so on. Each of these works the same way.

Midway through this method is the code to pull out the Request XML nodes. Here
is where you hit the first of the XML attributes, Asynch. You tell the system to process
this transaction asynchronously by sending in the attribute Asynch with a value of true
on the Requests XML element. For example, the tag would look like this:

... <Requests Asynch=”true”>...</Requests>...

The default is to handle requests synchronously so that if the attribute is left off or is set to
a value of false, you set the EAIRequest member Synchronous to true. Otherwise,
you set the Synchronous member to false, meaning that you want the incoming trans-
action to be processed in an asynchronous fashion.

To get the Asynch attribute, you first get the XmlNode for the Requests block by
using the statement SelectSingleNode(“/EAIRequest/Requests”), exactly as you
did earlier for other pieces of information. The next statement, however, is where you cre-
ate an XmlAttribute object. This is accomplished with the following statement:

XmlAttribute async = reqs.Attributes[“Asynch”];

This is another case in which the .NET Framework enables you to specify an array
item by name rather than by an index number. This is a very handy little trick that saves
many lines of code by hiding the logic necessary to search through the array of items for a
particular entry.

Clark_ch07.qxd 8/19/04 6:13 PM Page 166

All you need to do now to get the value of the attribute is to look at the InnerText
member, just like you did for XmlNode objects. Check to see if the InnerText equals
true for the Asynch attribute. If so, set the rRet.Synchronous member to false, indi-
cating that this transaction should be processed asynchronously. If the value sent in was
not true for the Asynch attribute, set the rRet.Synchronous member to true. The
other possibility for the Asynch attribute is that it wasn’t sent in at all. The else block
traps the situation in which the async (XmlAttribute) object is null. This means that the
attribute wasn’t sent in, so you set the rRet.Synchronous member to true, because
synchronous processing is the default.

At this point, you immediately step into another section of code that checks for the
FailOnFirstError attribute. It is processed in exactly the same manner as the Async
attribute, but it sets the rRet.FailOnFirstError member. This member is used in the
RequestsProcessor object to see whether to continue processing if a particular request
returns something other than true.

The processAsynchRequests() Method
We end the discussion of the Controller class by taking a look at the
processAsynchRequests() method. Until now, we have essentially ignored the asyn-
chronous processing of transactions. Well, no more!

Asynchronous transaction processing occurs as follows:

1. An EAIRequest object is created and sent to the
processAsynchRequests() method.

2. A Message object is created, along with a MessageQueue object.

3. The Message is sent to the MessageQueue.

4. If no errors are caught, meaning that the message was sent, a success
EAIResponse object is returned to the caller.

5. Otherwise, an error EAIResponse object is returned.

6. Special code monitoring the MessageQueue takes the incoming request
object and processes the individual Request blocks.

Figure 7-3 shows a sequence diagram of a successful asynchronous transaction flowing
through the system. It is very similar to the synchronous transaction diagram in
Figure 7-2, but instead of creating and calling an instance of RequestsProcessor,
it uses a private helper method to send a Message object to a MessageQueue.

Getting to the Controller 167

Clark_ch07.qxd 8/19/04 6:13 PM Page 167

Figure 7-3 Asynchronous request flow sequence diagram.

168 Chapter 7 The Controller

To keep it all together, we first look at the processAysnchRequests() method and then
talk about using the message queues. You’ll notice that creating a Message object and
sending it to a message queue is quite easy and straightforward with .NET. You accom-
plish what previously was fairly complex processing with just a couple lines of code (see
Listing 7-5).

Listing 7-5: processAsynchRequests() Method

/// <summary>
/// This method takes in an EAIRequest object and
/// fires off the request to the RequestsQueueName
/// MSMQ listener. It will then immediately return
/// </summary>
/// <param name=”req”></param>
/// <returns>EAIResponse</returns>
protected EAIResponse processAsynchRequests(
EAIRequest req)

{
EAIResponse resp = new EAIResponse();
resp.SessionID = req.SessionID;
resp.TransactionID = req.TransactionID;
ConfigData cdata = new ConfigData();
string strQueName = cdata.getConfigSetting(
“RequestsQueueName”);

MessageQueue mq;
try
{
Logger.log(Logger.INFO,
“Controller: Going to check que: “ +
strQueName);

if(!MessageQueue.Exists(strQueName)){

Clark_ch07.qxd 8/19/04 6:13 PM Page 168

MessageQueue.Create(strQueName);
}//end if

}
catch(Exception exc)
{

Logger.log(Logger.ERROR,
“Controller: ERROR calling MessageQueue.” +
“Exists(): “ + exc.Message);

}//end catch
mq = new System.Messaging.MessageQueue(strQueName);
mq.DefaultPropertiesToSend.Recoverable = true;
XmlMessageFormatter xmf = (XmlMessageFormatter)mq.Formatter;
xmf.TargetTypes = new Type[]{typeof(EAIRequest)};
mq.Formatter = xmf;

System.Messaging.Message msg = new
System.Messaging.Message(req);

msg.Formatter = new XmlMessageFormatter(
new Type[]{typeof(EAIRequest)});

try
{
mq.Send(msg);
resp.OverallStatusCode = 1;
resp.OverallStatus = StatusCodes.Descriptions(
resp.OverallStatusCode);

resp.Description = “Requests submitted to “ +
strQueName;

}//end try
catch(Exception exc)
{
resp.OverallStatusCode = 50;
resp.OverallStatus = StatusCodes.Descriptions(
resp.OverallStatusCode);

resp.Description = exc.Message;
}//end catch

return resp;
}//end processAsynchRequests()

}//end class
}//end namespace

Here’s how that code breaks down. processAsynchRequests() takes in an
EAIRequest object that was created earlier in the Controller. It returns an
EAIResponse object, so the first thing it does is create an instance of this object and pop-
ulate a few of the members.

The name of the message queue that will accept transaction requests—that is, the
overall incoming request represented by the EAIRequest object—is identified in the con-
fig file by RequestsQueueName. Therefore, you create a ConfigData object, get the
value for RequestsQueueName, and store it in a member called strQueueName.

Getting to the Controller 169

Clark_ch07.qxd 8/19/04 6:13 PM Page 169

As the first of the real message queue processing steps, you check to see if the partic-
ular message queue exists. If it doesn’t, it is created. You do the check by calling the static
method Exists() on the MessageQueue class.

The MessageQueue and Message classes are in the System.Messaging namespace.
This namespace is kept in a library that must be added to your Visual Studio .NET project.
In the Solution Explorer window in your project, right-click the References item and select
Add Reference. On the .NET tab of the dialog box that pops up, scroll down to find the
System.Messaging.dll entry. Select this and click Select. You’ll see the System.Messaging
entry appear in the Selected Components box at the bottom of the dialog box; click OK.
You should then be put back in the VS.NET project. System.Messaging should be listed in
the References section of the Solution Explorer.

Figure 7-4 shows the Add Reference dialog box, with the .NET library for
System.Messaging selected. You can now include the Messaging namespace in your vari-
ous components in the project with the following line:

using System.Messaging;

170 Chapter 7 The Controller

Figure 7-4 Add Reference dialog box.

Now you create a MessageQueue object for the queue and set the Formatter to handle
our EAIRequest object (more on this in a moment). Finally, the message, which contains
the EAIRequest object, is sent to the message queue for processing. If you don’t get an
error sending the message, the response object to be sent back to the caller is set with an
OK status and is returned. If an error was encountered sending the message, you update the
response object appropriately in the catch block and return the response object. It’s

Clark_ch07.qxd 8/19/04 6:13 PM Page 170

important to keep in mind that the status, either OK or an error, is not reflective of the sta-
tus of the request processing, in this case. It merely indicates whether the submission to
the message queue was successful. The caller gets back the generated TransactionID in the
response, which can be used later to query about the status of the actual processing.

Thus ends the asynch processing—well, okay, the sending of the request. The code to
pick up the message and to process the requests is discussed later in this chapter. However,
this is another area in which the .NET Framework has made very powerful functionality
extremely easy to use. This is great for software developers, because they really don’t have
much code to write. It’s not so great news for book authors hoping to make their code look
impressive.

System.Messaging Namespace

This seems like a good spot to take a brief detour to discuss the System.Messaging name-
space. All of the classes needed to interact with the Microsoft Message Queuing (MSMQ)
system are found here. The MSMQ is message-oriented middleware (MOM) that allows
for the robust, asynchronous communication between programs. Classes in this namespace
give the functionality to connect to, monitor, administer, send messages to, receive mes-
sages from, and peek into messages in a message queue. Clients of message queues need
not be on the same physical box as the message queue. When a MessageQueue object is
instantiated, an IP can be supplied to indicate where to find the queue. Indeed, the destina-
tion machine that is the intended recipient of the message needn’t even be running when
the message is sent.

A message queue is a construct running on a machine that listens for and accepts mes-
sages. Each individual message queue has a specific name and is addressed by that name.
That’s why in the code shown in Listing 7.5, we created the MessageQueue object by
passing in the strQueueName value to the constructor.

Basically, the message queue is a hopper into which messages are thrown. These mes-
sages accumulate, regardless of whether any code is in place to handle the messages. If
and when code is ready to handle messages for a particular message queue, the code takes
one message at a time and processes the message. In this case, code is in place to process
the EAIRequest object sent to the queue through a RequestsProcessor instance.
Messages are taken from the queue in a first in, first out (FIFO) manner, by default. This is
accomplished by using one of the Receive() methods. Receive() is an overloaded
method; we examine its use when we look at the code later in this chapter, in the Reading
Messages section, to monitor the queue and process the requests.

It is also possible to set a priority on messages as they are sent into the message
queue. If a message is sent in with a higher priority, it takes precedence over other mes-
sages and is retrieved before those messages that have been in the queue longer but that
have a lower priority. Priorities are set on the Priority member of a Message object.
The acceptable values for priorities are enumerated in the static member
System.Messaging.MessagePriority and have the following names:

System.Messaging Namespace 171

Clark_ch07.qxd 8/19/04 6:13 PM Page 171

• Highest

• Very High

• High

• Above Normal

• Normal

• Low

• Very Low

• Lowest

For example, if you wanted a particular message to have the highest priority possible, you
would issue the following command on the Message instance before it was sent into the
message queue:

msg.Priority = System.Messaging.MessagePriority.Highest

To take this a bit further, let’s say that you support a set of requests that allow an adminis-
trator to suspend a certain request type (we’ll cover this later). Maybe a particular subsys-
tem is down and you want to hold all transactions until you know that it’s back up. In this
case, you would want these types of requests to be processed as soon as possible to reduce
the number of requests already queued up that will fire (and fail). This is a perfect exam-
ple of a request type that should get bumped up to a much higher priority.

Message Queue Types

Two main types of message queues exist: system and user-defined. System message
queues are used, as you might guess, by the operating system. Various events can be sent
to one of the system message queues. User-defined message queues can be of two types:
public and private.

Public message queues are available to all systems connected to the network. These
queues are published and can be replicated across the network.

Private message queues, on the other hand, are not published across the network, so
access from another machine must be made explicitly with the full pathname of the queue.
They mainly are intended for use locally on the machine where the queue is running.

For our purposes here, we use private message queues. Because the web service will
be running on the same machine as the message queue, by default, it is a simple matter for
the EAIFramework engine to send a message to a private queue. The code could be easily
changed, however, to use a public queue.

Message queues also can be created to be either transactional or nontransactional. By
default, they are created as nontransactional. The code shown in Listing 7-5 creates a non-
transactional message queue. A transactional message queue expects every interaction with
it to be encapsulated in a transaction. The start of a transaction is signaled by a Begin
message to the message queue. It then expects some messages and, finally, either a
commit or rollback message.

172 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 172

If a message queue is created as transactional, all messages sent into it must be a part
of a transaction. If a message arrives that is not in a transaction, an exception is thrown.
Likewise, if a message queue is created as nontransactional and a message arrives as a part
of a transaction, an exception is thrown.

Transactions ensure that all the messages sent in as a part of a transaction are
processed successfully. If they are not, a rollback occurs that basically undoes all of the
work that was previously done as a part of the transaction in question.

For example, if you wanted to send in two messages and ensure that both were
successfully processed, you could build the following structure to send the appropriate
messages:

MessageQueueTransaction trnx = new MessageQueueTransaction();
MessageQueue myQ = new MessageQueue(@”.\private$\secrets”);
trnx.Begin();
try
{
myQ.Send(“Message Number 1”, trnx);
myQ.Send(“Message Number 2”, trnx);
trnx.Commit();

}
catch
{
trnx.Abort();

}
finally
{
myQ.Close();

}

By using the try/catch/finally structure, you can, with minimal code, send messages
and then either commit the operations or roll them back via the Abort() method. When
either the work is done or it has been aborted because of some error, the Close()
method closes the MessageQueue instance.

For the main Requests MessageQueue, we are not using a transactional message
queue, because each request being sent in is contained in a single message. It would be
perfectly reasonable, however, to create and use a transactional message queue for subse-
quent Request processing, in some cases. If you know that a particular set of Request
types will be coming in and can be processed asynchronously, and if they all need to be
cranked through successfully en mass, you could have the main Requests message queue
processing send individual Request blocks to another transactional message queue.

Until now, the transactions described have been internal (to the message queue) trans-
actions, meaning that they are limited only to MSMQ activities. External transactions also
exist that can interact with other systems that can also take part in the transaction. These
other systems include databases, such as SQL Server and Oracle. External message queue
transactions are part of a specific technology called Microsoft Distributed Transaction
Coordinator (MS DTC). This technology enables you to treat database calls as integral
parts of a transaction. If a database call fails, the DTC transaction can roll back all previ-
ous databases, as well as MSMQ steps. Although a discussion of external transactions is
beyond the scope of this book, they are a very powerful feature and are worthy of further
study as your needs arise.

System.Messaging Namespace 173

Clark_ch07.qxd 8/19/04 6:13 PM Page 173

Recoverable Messages

One final word on types of messages is in order here before we get to sending and receiv-
ing. By default, the entire MSMQ message flow is an in-memory operation. This means
that a message is created on a client, sent to the destination message queue, and stored
until code is ready to accept and process the message, all in memory. Although it is very
fast, this method of message delivery holds certain risks. If the sender machine is taken
down for some reason before the message is sent to the destination machine, or if the des-
tination machine accepts the message into its message queue and then fails before it can
process the message, the message is lost entirely.

This is not normally a good thing. We would like a way to ensure that a message that
we send will be delivered even if one of the machines goes down. This could easily be
remedied by saving the message to disk while it is in transit and sitting in the queue wait-
ing for processing. And that’s just what the smart people at Microsoft did.

For any particular message, you can set the Recoverable member of the message to
true, indicating that you would like this message to be recovered if a catastrophic event
befalls one of the machines during the message’s merry trip down the pipe. The following
line of code sets the Recoverable member on a previously instantiated Message object
named msg:

msg.Recoverable = true;

This approach requires that each individual Message object set the Recoverable
member. You can also set a member on a MessageQueue indicating that all messages
should be recoverable. This is the approach we take here. This is accomplished by issuing
the following command on a message queue object named msgQue:

msgQue.DefaultPropertiesToSend.Recoverable = true;

Sending a Message

To send a message to a message queue, you create a System.Messaging.Message
object. This message object contains the contents that you want sent to the queue. When a
message is sent to a queue, a subclass of the System.Messaging.IMessageFormatter
class is specified. The formatter streams the incoming object (EAIRequest, in this case)
into the Message object. Then on the other side, the code that retrieves the message from
the message queue also uses a formatter object to stream the contents of the Message
object, housed in the Body member, into an instance of whatever object was originally
streamed into the message.

174 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 174

We make use of this service here to handle asynchronous request processing. Certain
requests sent into the EAIFramework either will not need to be handled on the spot or
might take far too long to process for a web service to wait for (keeping the HTTP con-
nection open to the caller so that it can send an HTTP response). These are ideal candi-
dates for asynchronous processing. Because a unique identifier is generated when the
initial request is sent in, you can send that ID back to the caller and then not worry about
when the actual processing is done. The monitor code attached to the message queue takes
care of updating the transaction log when a transaction is processed.

Examining Message Queues

You can see what message queues are running and see what messages are waiting in the
queue, as well as manage queues, by using the Computer Management tool. To access it,
right-click My Computer on the Windows 2000 desktop, and click Manage. You’ll see the
Computer Management dialog box pop up. From this screen, you can manage most of the
software component configurations on the machine.

On the left side of the screen, expand the Services and Applications item, if it isn’t
already expanded. You should see several entries under it, including Microsoft SQL
Servers and Services. Expand the item named Message Queuing. This is your interface to
access the MSMQ service. Figure 7-6 shows the Computer Management dialog box with
an arrow pointing to the Message Queuing item.

System.Messaging Namespace 175

Figure 7-5 Overall message queue flow.

As you can see in Figure 7-5, a client creates and sends a Message object to the
message queue. These messages are accepted and stored in the MessageQueue. When a
process is available, the messages are sent to the registered monitor code for processing.

Clark_ch07.qxd 8/19/04 6:13 PM Page 175

Now expand the Private Queues item. An example of this screen is shown in Figure 7-7.
This shows you all private queues running on the machine.

176 Chapter 7 The Controller

Figure 7-6 Computer Management screen.

Figure 7-7 MSMQ private queue.

Clark_ch07.qxd 8/19/04 6:13 PM Page 176

If you select one of these queues, you’ll see two entries appear on the right side of the
screen. Queue Messages is the item in which any currently queued messages are stored.
You can double-click any queued message and examine the body, as well as its other prop-
erties. Figure 7-8 shows the message dialog box, with the Body tab active.

System.Messaging Namespace 177

Figure 7-8 Examining the body of a message.

One good way to test that your code is actually submitting messages to the queue is to not
have any queue-monitoring code running so that nothing is performing a Retrieve() on
the queue. When your client-side code submits messages to the queue, they stay in the
queue. You can then use this tool to ensure that the messages are indeed being queued up
in the correct message queue. You can also open the messages and examine their contents.

Formatters
For messages to flow smoothly in and out of message queues, meaning that both the
sender and receiver understand what the other is trying to say, you use a subclass of the
IMessageFormatter class. This class is used to serialize the object in the Body member
of the Message object.

Three formatters are supplied with the .NET Framework:

• ActiveXMessageFormatter

• BinaryMessageFormatter

• XmlMessageFormatter

Clark_ch07.qxd 8/19/04 6:13 PM Page 177

The default formatter is the XmlMessageFormatter, which suits our needs. For informa-
tion on the ActiveXMessageFormatter or the BinaryMessageFormatter, you can
explore MSDN.

The XmlMessageFormatter serializes and deserializes messages. It streams in and
out of the Body member of a message. Therefore, you can insert any object into the Body
of a message with the XmlMessageFormatter. You cannot, however, also use a default
XmlMessageFormatter to Retrieve() a message. To accomplish this, you must either
set the Formatter on the message that you want to get back and explicitly tell the message
what object to expect back, or set the Formatter on the MessageQueue. This is a cleaner
way of handling retrieving so that you have to specify only what kind of object(s) will be
returned once on the queue. After that, the appropriate conversion takes place and the
returned message contains the correct type of object.

If you want to set the formatter on a Message object to specify that you expect back
an EAIRequest object at retrieval time, you would execute the following statement:

msg.Formatter = new XmlMessageFormatter(
new Type[]{typeof(EAIRequest)});

If instead you want to set the default Formatter for the MessageQueue to be an
XmlMessageFormatter that uses the EAIRequest object, you would execute the
following statements:

mq = new System.Messaging.MessageQueue(strQueName);
XmlMessageFormatter xmf = (XmlMessageFormatter)mq.Formatter;
xmf.TargetTypes = new Type[]{typeof(EAIRequest)};
mq.Formatter = xmf;

When the message queue has been set up in this way, it renders the previous formatter set-
ting unnecessary. Now, when a message is retrieved from the queue, it uses an
XmlMessageFormatter object that speaks EAIRequest.

Reading Messages

Now that you have created a MessageQueue appropriately, sent a message to it, and veri-
fied that the message arrived and is being held in the correct queue, it’s time to read it in.
This is accomplished by connecting to the message queue in exactly the same manner as
explained earlier, and then calling the Receive() method of the MessageQueue instance.
This overloaded method pulls in the first message, based upon arrival time in the queue
and its priority, and returns it to the caller. It also removes the message from the queue. It
is then up to the calling code to process the message and take all necessary actions.

178 Chapter 7 The Controller

A second way to read a message is nondestructive. As with the Receive()
method, the Peek() method returns a Message object for a message but does
not remove the message from the message queue. Because we want to process the
incoming requests once, we call the Receive() method so that it removes the
request from the message queue.

Clark_ch07.qxd 8/19/04 6:13 PM Page 178

The simplest version of the Receive() method takes no arguments. When the call is issued,
it blocks until a message is available to be returned from the message queue. This means that
if a message never appears, the call to Receive()never returns. In most cases, this is not the
behavior you want. Fortunately, another version enables you to supply a TimeSpan object
that indicates how long the Receive() method should wait for a message. This call can
throw one of two exceptions. It can throw ArgumentException if the TimeSpan argument
sent in is invalid. In this case, the TimeSpan must be greater than zero.

It also can throw a MessageQueueException. This occurs when either there was a
problem accessing the message queue, or the specified amount of time passed without see-
ing a message to return. Therefore, you can create a processing loop that can do some kind
of work or check to see if it should exit in a while loop. For example, a processing
Receive() loop could look something like the following:

while(bKeepTrying)
{
try
{
msg=mq.Receive(new System.TimeSpan(0,0,5));
EAIFramework.Messages.EAIRequest req =
(EAIFramework.Messages.EAIRequest)msg.Body;

// do some processing here...
}
catch(MessageQueueException mqe)
{
// This is the message that the Receive() timeout
// throws. In this case, no message is ready
// to be read within 5 seconds of issuing the
// Receive() call.
Console.WriteLine(“Just caught a MsgQueExc: “ +
mqe.Message);

}//end catch
}//end while()

In fact, this is exactly the way we will watch the Requests message queue in the
RequestQueMonitor project, which we will discuss in the next section. This project con-
tains a Windows Form application with a few controls to make it easy to watch for mes-
sages and to process them. We shall discuss the most interesting aspects of the code here,
and I encourage you to take a look at the application.

RequestQueMonitor Project

The RequestQueMonitor application is a standalone Windows Form application that moni-
tors the Requests queue to which the Controller class sends an asynchronous mes-
sage. We want the asynchronous processing for the EAIFramework to happen in a
Windows service so that it takes advantage of the benefits of service features such as
restarts after a crash, and so on. For now, though, the RequestQueMonitor will serve that
purpose. The nice thing about running it as a Windows application is that you can watch
the processing flow happen. With the RequestQueMonitor running, you can submit an

RequestQueMonitor Project 179

Clark_ch07.qxd 8/19/04 6:13 PM Page 179

asynchronous EAIRequest XML message to the web service and see a message in the
text box of the application as the message is picked up from the queue and processed.
Later, you will convert this monitor to a Windows service.

A main text box in the application shows status information. Figure 7-9 shows the
application as it exists just after launch.

180 Chapter 7 The Controller

Figure 7-9 RequestQueMonitor screen.

When the application starts, no monitoring is occurring. To start watching the Request
message queue, click the Start Listener button. You will see a few things happen on the
screen. First, a message is printed on the top-left side of the screen telling what time the
monitor started watching the queue. Below that, a line is printed showing how many mes-
sages have been read off the queue. At the top center of the screen, you should see the
white box turn green, with the message “Listener Status” printed in the center. Green sig-
nifies that the monitor has successfully connected to the message queue and has entered
into the while loop, waiting patiently for messages to appear. Finally, you will see a cou-
ple of messages in the status text box. The first tells you that the monitor has connected to
the message queue. It prints the name of the message queue, which was pulled from a
ConfigData instance, just like in the Controller instance earlier.

The code enters a while loop and makes a call to the Receive() method. It gives a
new TimeSpan object of 5 seconds, which means that the code will block for 5 seconds,
waiting for a message to become available. If a message arrives within the time specified,
it is read in, and you can process it in whatever way you need to. On the other hand, if the
time period expires, the message queue object throws a MessageQueueException. In
the catch block, a message is printed telling you that the timeout for the requested opera-
tion has expired.

Figure 7-10 shows the RequestQueMonitor screen after having read a message from
the queue, processed three Request blocks within that message, and then listened for a
couple of timeout cycles without having another message to read and process.

Clark_ch07.qxd 8/19/04 6:13 PM Page 180

That’s really good information, for a while. A button on the bottom-right side of the screen
enables you to toggle this timeout message on and off. When the application starts, a
Boolean flag is set to print the timeout message. As soon as you click the toggle button,
the Boolean flag is set to false and the messages are no longer printed.

The only component on the screen that I haven’t talked about yet is the Shut Down
Listener button. As you might have surmised, clicking this stops the message queue moni-
toring. It works by setting a class-level Boolean member that is used in the main receive
while loop. As you will see in a moment, if the flag is set appropriately, the while loop
exits and the connection to the message queue is closed. When you click the Shut Down
Listener button, you might notice a several-second lag. This is because the shutdown
doesn’t take effect until the current time TimeSpan expires.

RequestQueMonitor startListening() Method

Now let’s take a look at the startListening() method (see Listing 7-6). The loop for
reading messages from the queue lives here.

Listing 7-6: The startListening() Method

/// <summary>
/// Helper method, called when the Start Listening
/// button is clicked. It gets the name of the
/// Requests message queue, opens a connection, and

/// then starts a while loop to wait for messages.
/// Currently, the timeout for any specific waiting
/// period is 5 seconds, set in a TimeSpan instance.
/// To break out of the while loop and stop Listening,
/// a class member, named bShutdown, is set in a button

RequestQueMonitor Project 181

Figure 7-10 RequestQueMonitor processing a transaction.

Clark_ch07.qxd 8/19/04 6:13 PM Page 181

/// click event handler elsewhere. When the user
/// presses the Shut Down Listener button, the flag
/// is set to true. The next time the while loop
/// fires, it sees that the Boolean is true and exits

/// the read (while) loop.
/// </summary>
private void startListening()
{
ConfigData cdata = new ConfigData();

string strQueName = cdata.getConfigSetting(
“RequestsQueueName”);

MessageQueue mq;
RequestsProcessor rProc;

// See if we need to create the queue
try
{
textBox1.Text =
“Monitor: Going to check que: “ +
strQueName;

if(!MessageQueue.Exists(strQueName)){
MessageQueue.Create(strQueName);

}//end if
}
catch(Exception exc)
{

textBox1.Text =
“Monitor: ERROR calling MessageQueue.” +
“Exists(): “ + exc.Message;

}//end catch

// Create a MessageQueue instance, set it as
// Recoverable - to make the messages stored to
// disk during their trip, and set the Formatter
// to XmlMessageFormatter that understands the
// EAIRequest object.
mq = new System.Messaging.MessageQueue(strQueName);
mq.DefaultPropertiesToSend.Recoverable = true;
XmlMessageFormatter xmf =
(XmlMessageFormatter)mq.Formatter;

xmf.TargetTypes = new Type[]{typeof(EAIRequest)};
mq.Formatter = xmf;

// Now that we’re listening, change the background
// color of the Listener Status box to Green, to
// graphically indicate such.
lblStatus.BackColor = Color.LightGreen;

System.Messaging.Message msg;

while(!RequestQueMonitor.bShutDown)
{
try{

182 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 182

msg=mq.Receive(new System.TimeSpan(0,0,5));

textBox1.AppendText(
“>>>>> Read a new message\r\n”);

this.updateCount(++nCount);

EAIFramework.Messages.EAIRequest req =
(EAIFramework.Messages.EAIRequest)
msg.Body;

rProc = new RequestsProcessor(req);
ArrayList al = rProc.process();

textBox1.AppendText(“TrnxID “ +
req.TransactionID + “: “ +
“ we got “ + al.Count +
“ Components back\r\n”);

} catch (MessageQueueException mqe) {
// Only print out this message to the text
// box if the user wants to see it
// - This Boolean is controlled by the

// event handler method for the
// Turn on/off Timeout msg button.
if(bShowTimeout)textBox1.AppendText

(“...” + mqe.Message + “\r\n”);
} catch (Exception exc) {
textBox1.AppendText(
“...” + exc.Message + “\r\n”);

}//end catch()
}//end while()

mq.Close();
// Now that we’re not listening anymore, change
// the background of the Listener Status box
// to pink.
lblStatus.BackColor = Color.Pink;

}//end startListening()

The method starts by getting the name of the RequestsQueueName from the EAIConfig
file, just like in the engine, and stores the value in the member strQueName. This keeps
the submitter code and the listener code in synch. If you want to change the name of the
queue, you simply make the change in one place and (in this case) restart the
RequestQueMonitor application.

The method next checks to see if the message queue exists. If so, it just drops through
and continues processing. If it doesn’t exist, it creates a new message queue, named after
the value of strQueName. This is accomplished by a single statement:

MessageQueue.Create(strQueName);

Next, the MessageQueue instance is created. As discussed earlier, you set the
Recoverable property of the message queue to true to force MSMQ to write each
request to disk as it flows through the system. In this way, it is much less likely that mes-
sages will be lost if a power failure or other catastrophic problem occurs.

RequestQueMonitor Project 183

Clark_ch07.qxd 8/19/04 6:13 PM Page 183

Finally, the Formatter for the message queue is set. You’ll notice that we set the
TargetTypes of the Formatter to type typeof(EAIRequest). This tells the message
queue that any messages read back in from the queue should contain EAIRequest objects
within the Body member of the messages. Again, it is a way of setting default processing
behavior on the message queue, and it eliminates the need for explicitly setting the
Formatter type for every Message object created for this message queue.

With the connection to the message queue started, change the background property of
the status box, in the top middle of the screen, to LightGreen. I personally like being
able to glance at the screen and see the status of the listener. green means go; red (well,
okay, Pink) means stop.

You now enter the main while() loop for reading messages from the queue. The
class-level Boolean member is named bShutDown. When the program starts, this member
is given the value of false. When the processing hits this while loop each time, it
checks the value of bShutDown. In the event handler method for the Shut Down Listener
button, the value of bShutDown is set to true. When this happens, the while loop exits.

The first statement in the while() loop is a call to the Receive() method on the
MessageQueue instance. This returns a Message object if a message is available. Notice
that you send in a new TimeSpan object with a value of 5 seconds. If a message is read,
you print a message to the text box, update a counter, and pull in the EAIRequest object
that should be contained in the Body member of the Message instance. This EAIRequest
object gets sent to a RequestsProcessor instance, just the same as when the
Controller calls RequestsProcessor for synchronous request processing. In this
case, you’re not really doing anything with the response yet. That will come later. For
now, you just want to make sure that you’re reading in the messages, converting the con-
tents to an EAIRequest object, and sending it on for processing.

If there is no message to be returned within the specified 5 seconds, a
MessageQueueException is thrown. In a way similar to bShutDown, the
bShowTimeout member indicates whether to display the timeout messages. This Boolean
member is maintained in the event handler for the Turn on(off) Timeout msg button.

When the bShutDown member is set to true, it tells you that the user wants to quit
listening. All you need to do here is close the MessageQueue to free up the resources held
by it, and change the background of the status box to Pink. The application is then ready
for the user to either exit or press the Start Listening button again.

RequestsProcessor Discussion

We finish this chapter with a discussion of the RequestsProcessor class. As we
look at RequestsProcessor, we jump briefly to a helper class that it calls
RequestHandlerFactory, because it has some interesting and powerful code. As men-
tioned earlier, the RequestsProcessor class actually kicks off the processing efforts for
each Request block in an incoming transaction. If all goes well, each Request block,
identified by a separate <Request> . . . </Request> element in the incoming XML
message, is processed by an appropriate RequestHandler, and an EAIResponse mes-
sage is generated for return.

184 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 184

If one or more request blocks fail, however, RequestsProcessor needs to call the
rollback() method on the RequestHandler objects. Any specific RequestHandler
does not need to do any real rollback processing, but all RequestHandler components
do need to implement (override) the abstract RequestHandlerBase.rollback()
method.

The FailOnFirstError attribute, which can decorate the <Requests> XML ele-
ment in the EAIRequest message, tells the RequestsProcessor whether to continue
processing when the first Request processing returns an error. If FailOnFirstError is
true, the overall processing is halted at that point and the rollback() method is called
on the offending request by calling its RequestHandler object. Figure 7-11 shows an
activity diagram detailing the important actions that take place, mostly in the
RequestsProcessor class, for a synchronously processed transaction.

RequestsProcessor Discussion 185

Figure 7-11 Synchronous processing activity diagram.

Clark_ch07.qxd 8/19/04 6:13 PM Page 185

The name of the RequestHandler for the Request named Catalogue would be
CatalogueHandler, in the EAIFramework.Handler namespace. RequestsProcessor
generates the name, creates an instance of the class on the fly, and finally calls the
process method. This is all accomplished through classes in the System.Reflection
namespace. In the next section, you will see how you can use these classes to instantiate
an appropriate handler class on the fly, given just the name of the handler class.

System.Reflection Namespace

The System.Reflection namespace contains a large number of utility classes that are very
handy in certain situations. They enable you to interact with and manipulate types, assem-
blies, and so on. Major classes in this namespace include Assembly, Module,
ConstructorInfo, MemberInfo, and MethodInfo.

With the tools available in System.Reflection, you now can plug in new functionality
and allow for new <Request Name=”xxx”> blocks simply by writing a subclass of
EAIFramework.Handler.RequestHandlerBase and making it accessible to the
EAIFramework engine. The framework figures out what class should be handling the
request, attempts to create an instance of it, and then calls its process method.

186 Chapter 7 The Controller

One bit of sorcery called from the RequestsProcessor class is really fun.
The name of the request handler class, which is subclassed from the
RequestHandlerBase class, either is explicitly defined in the database table
T_RequestDefinitions or is derived from the name of the Request sent in. This
name is identified in the Name attribute of each <Request> XML element.
For example, a request to catalogue the MP3 files on a machine could be called
like so:

<EAIRequest>
<SessionID>987-cba-321-zyx</SessionID>
<Requests>
<Request Name=”Catalogue”>

<OutputFilename>MyMP3Files.txt</OutputFilename>
</Request>

</Requests>
</EAIRequest>

Alright, so this might not solve a burning industry-wide need, but I wanted to com-
pile a list of MP3 files on my server. Sure, I could have used the Search utility that
comes with Windows 2003, but what fun would that be? Being the geek that I am, I
instead wrote a RequestHandler to perform this function. When the server is
connected to the Internet, I can get a list of files from anywhere in the world. Now,
when I’m in a dark alley in Rome, and a thug says “Gimme a list of all yer MP3
files on yer server, or else,” I can fire off an EAIRequest message and display
the results. (Remind me to always have my wireless device in all dark alleys from
now on.)

Clark_ch07.qxd 8/19/04 6:13 PM Page 186

RequestHandlerFactory.cs

Before we look at the entire RequestsProcessor class, let’s just pull out the code that
creates the instance of the handler class (see Listing 7-7). It is fairly small and performs
quite a bit of functionality in these few lines. It has been placed in a factory class named
RequestHandlerFactory.cs, and it is in the EAIFramework.Handler namespace.

Listing 7-7: RequestHandlerFactory.cs

using System;
using System.Xml;
using System.Runtime.Remoting;
using System.Reflection;

using EAIFramework.Messages;
using EAIFramework.Util;

namespace EAIFramework.Handler
{
/// <summary>
/// RequestHandlerFactory class follows a factory pattern
/// and has a single static public method: getHandler(Req).
/// It also has a private constructor.
/// </summary>
public class RequestHandlerFactory
{
private RequestHandlerFactory(){}

/// <summary>
/// The only public method in this class, getHandler,

/// takes in a Request object. This method then
/// checks to see what type of request it is, checks to
/// see what the handler name is (from the database),
/// and instantiates and returns the new object.
/// If it cannot instantiate an appropriately named
/// object, it will return null.
/// </summary>
/// <param name=”rIn”>Request object to be processed
/// </param>
/// <returns>Subclassed object of RequestHandlerBase
/// </returns>
public static
EAIFramework.Handler.RequestHandlerBase
getHandler(Request rIn)

{
// First, get the Handler name for this request
EAIFramework.Util.DBUtilProxy tdp = new
DBUtilProxy();

string strHandlerName= tdp.getHandlerName(rIn.Name);
// *** If we don’t have a specific Handler Name

// from the database, use the Request.Name
if((strHandlerName == null) ||

RequestsProcessor Discussion 187

Clark_ch07.qxd 8/19/04 6:13 PM Page 187

(strHandlerName.Equals(“”)))
strHandlerName = rIn.Name;

// Now get an ObjectHandle for the appropriate type
// of RequestHandler object
ObjectHandle oh = Activator.CreateInstance(
“EAIUtilities”,
“EAIFramework.Handler.” +
strHandlerName + “Handler”);

Logger.log(Logger.INFO,
“New Handler obj = “ + oh.ToString());

// Next, get a Type object
Type ht = oh.Unwrap().GetType();
Logger.log(Logger.INFO,

“New Type from Handler = “ +
ht.Name + “-” + ht.ToString());

// Finally, get a ConstructorInfo object for this
// Type. With this, we will Invoke the CI and

// get a ‘ready-to-run’ object that we can return
ConstructorInfo ci = ht.GetConstructor(new Type[]{
new EAIFramework.Messages.Request().GetType()});

Logger.log(Logger.INFO,
“ConstructorInfo () returned: “ +
ci.ToString());

// Now all we have to do is invoke the
// ConstructorInfo object to get the handler
EAIFramework.Handler.RequestHandlerBase rhb =
(EAIFramework.Handler.RequestHandlerBase)

ci.Invoke(new object[]{rIn});

// ---
// For testing, uncomment these lines, and the
// newly created RequestHandlerBase (or
// descendent class) will process the Request.
// This method can be called from a standalone
// test program to test a specific Handler or
// to ensure that the above code works as expected.

//
// EAIFramework.Messages.Component cBack =
// rhb.process();
// Logger.log(Logger.INFO,
// “Component returned = “ + cBack.Name + “, ” +
// cBack.Status + “, “ + cBack.ToString());
// ---

return rhb;
}//end getHandler()

}//end class
}//end namespace

188 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 188

RequestHandlerFactory has a single public, static method named getHandler(). It
takes in a Request object and returns an instance of the Handler class that it determines
should be handling this type of request, or it returns null. Because all handlers should be
subclassed from the RequestHandlerBase class, the abstract type RequestHandlerBase
is returned. All concrete subclasses have process and rollback() methods that are
called by the RequestsProcessor class during actual execution.

We include the System.Runtime.Remoting namespace to get access to the
ObjectHandle class, used in the getHandler() method. Also included is the
System.Reflection namespace for access to the ConstructorInfo class.

As the method is entered, it instantiates the DBUtilProxy class, used to interact with
some of the support tables in the database. In this case, we want to see if a specific handler
name is associated with the request name. The table T_RequestDefinitions has four
columns:

• RequestName

• Description

• Status

• HandlerName

You might be asking why we have this table: We have already said that you get the name
of the handler from the name of the request, right? Well, you might want to have several
different requests handled by the same handler. For example, in this instance, we want to
provide the following kinds of requests for EAIFramework reporting and statuses:

• ListAllRequests (used to get a list of supported request types)

• TransactionStatus (used to get the status/results of a given
TransactionID)

• ListToDo (used to get all requests sitting in the ToDo database table)

• ListUsers (used to get a list of all authorized EAIFramework users)

This is just a brief list of the many possible support request types that the EAIFramework
could provide to its users and administrators. Because each will have a different request
name, each would have to have a separate RequestHandler component. However, each
of the requests will be quite small in terms of processing, and it would be unnecessary
overhead for each one to have its own handler. Instead, the T_RequestDefinitions table
tells you what RequestHandlerBase subclass to use. In this way, you can process
more than one request type in a single RequestHandler. For example, the rows in the
T_RequestDefinitions table for the preceding scenario might look something like Table 7-2.

RequestsProcessor Discussion 189

Clark_ch07.qxd 8/19/04 6:13 PM Page 189

Table 7-2 Requests supported by Admin request handler

RequestName Description Status HandlerName

ListAllRequests List supported requests A Admin

TransactionStatus Return saved status info A Admin
for TrnxID

ListToDo Snapshot of current A Admin
ToDo requests

ListUsers Return list of all A Admin
EAIFramework users

You can see that if any of the four Request blocks comes in for processing, they all will
be handled with a handler named Admin. This handler name, as described earlier, is used
to generate the full handler name. In this case, all four requests would generate the full
handler name:

EAIFramework.Handler.AdminHandler

Then, in the process method of the AdminHandler class, a quick check of the request
name is made to determine which functionality to perform.

After you have checked the database for a handler name for the supplied request
name, a check is made to see if the database call returned null or a blank string. If either
of these were returned, it means that the request name supplied does not exist in the table.
If that’s the case, just use the Request Name as the handler name. Essentially, the name of
a request is the default handler name; you have to insert rows in the T_RequestDefinitions
table only if more than one Request Name will be supported by a handler. For example, if
the <Request Name=”Catalogue”> request mentioned earlier is the only request han-
dled by the CatalogueHandler class, it doesn’t need to be in the database, because
Catalogue will be used to generate the name of the handler on the fly.

Next, you get an ObjectHandle object for the handler class. The static method
CreateInstance() of the Activator class is used for this purpose. You pass in the
name of an assembly and the name of the class to be instantiated. In this case, you build
the class name by using the strHandlerName member that should contain either the
request name or the handler name returned from the database for this request and a con-
stant. This is done with the following code:

strHandlerName + “Handler”

You use the ObjectHandle instance for the required handler to get a Type object. This is
accomplished by calling the Unwrap() method on the ObjectHandle returned earlier
and immediately calling the GetType() method. You are left with a Type object that rep-
resents the handler class you need.

Finally, you create a ConstructorInfo object from the System.Reflection name-
space. This instance is used to create the actual handler instance that gets returned to the
caller. The constructor for the ConstructorInfo class takes in an array of Type objects.
This is used when the constructor for the object in question is called. In this case, the con-
structor for a RequestHandler subclass takes in a single parameter, a Request object.
Therefore, the ConstructorInfo object takes in a Type array that contains a single
Type, the EAIFramework.Messages.Request type.

190 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 190

With the newly created ConstructorInfo instance for the handler you need, you
are ready to fire up the constructor and get an instance of the handler class. A call to
Invoke() on the ConstructorInfo class accomplishes this. The last line of real code in
the getHandler() method creates the instance:

EAIFramework.Handler.RequestHandlerBase rhb =
(EAIFramework.Handler.RequestHandlerBase)

ci.Invoke(new object[]{rIn});

The member rhb is returned to the caller. The Request object, sent into the
getHandler() method, is sent into the constructor in the Invoke() call. Invoke()
takes an array of Object objects. In this way, you could call any constructor with any sig-
nature by setting the appropriate input parameter list in the object array.

RequestsProcessor Code

Now we look at the RequestsProcessor class (see Listing 7-8). I’m going to blow past
some of the helper methods, because they are really self-explanatory. However, I do want
to spend some time on the process method. This is called from the Controller class
when a transaction is sent in that needs to be processed synchronously. It is also called
from the RequestQueMonitor class that watches the request message queue to process
asynchronous transactions.

Listing 7-8: The RequestsProcessor Class

using System;
using System.Collections;

using EAIFramework.Util;
using EAIFramework.Messages;
using EAIFramework.Handler;
using EAIFramework.BusinessRules;

namespace EAIFramework.Controller
{
/// <summary>
/// Summary description for RequestsProcessor.
/// </summary>
public class RequestsProcessor
{
protected EAIFramework.Messages.EAIRequest eaiReq = null;
protected Requests reqObjects = new Requests ();

/// <summary>
/// Default constructor, takes only a single argument,
/// An EAIRequest.
/// </summary>
/// <param name=”rIn”></param>
public RequestsProcessor(
EAIFramework.Messages.EAIRequest rIn)

{
eaiReq = rIn;
reqObjects = eaiReq.Requests;

}//end constructor()

RequestsProcessor Discussion 191

Clark_ch07.qxd 8/19/04 6:13 PM Page 191

There is nothing remarkable about the first portion of the class. It has a single constructor
that takes an EAIRequest as its only parameter, which it stores in an instance member.
Now on to the process method (see Listing 7-9).

Listing 7-9: The process Method

/// <summary>
/// This method adds each Request to the RequestsToDo
/// table and then processes each Request.

/// When it completes, each Request should remove
/// its own entry from the RequestsToDo table.
/// </summary>

public ArrayList process()
{
// Set up the ArrayList we’ll return to the caller
ArrayList alRet = new ArrayList();

// Get the list of Request objects
reqObjects = eaiReq.Requests;

// Set up a place to store handlers
ArrayList alHandlers = new ArrayList();

// Before anything gets added to the ToDo list,
// see if this set of Requests passes
// PreProcBusinessRules
PreProcBusinessRules preBR =

new PreProcBusinessRules();
EAIFramework.Messages.BusinessRuleResponse brr =
preBR.Check(eaiReq);

if(brr.StatusCode != StatusCodes.OK)
{
// This is an error. There was something wrong
// with the PreProcessing Business Rule checks!
// Generate response and return w/o processing.

Logger.log(Logger.ERROR,
“PreProcBusinessRules.Check Failed: “ +
brr.Description);

RequestResponse rBack = new RequestResponse();
rBack.StatusCode =
StatusCodes.FAILED_PREPROCBUSINESSRULES;

rBack.Status=
StatusCodes.Descriptions(rBack.StatusCode);

rBack.Description =
“Failed PreProcBusinessRules checking: “ +
brr.Description;

rBack.Name = “PreProcBusinessRules”;
alRet.Add(rBack);
return alRet;

}//end if PreProcBusRules.Check()

192 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 192

//Otherwise...
Logger.log(Logger.INFO,
“PreProcBusinessRules.Check Passed”);

// Add to the RequestsToDo list
this.addToToDo(reqObjects);

// Now process each Request object
foreach(Request req in reqObjects.RequestList)
{
RequestResponse rBack = null;
Logger.log(Logger.INFO,
“Processing Request # “ +
req.Iteration);

try{
// Here we check to see if the user is
// authorized to execute this type of
// request.
Authenticator auth = new Authenticator();
EAIUser theUser =

auth.GetUserFromSessionID(
eaiReq.SessionID);

if(theUser.Group.ToLower().Equals(“admin”))
{
// this is okay, they’re an ADMIN

}
else
{
// See if they have rights to process
// this type of Request now.
// If not, send them on their way w/o
// processing this Request
if(! auth.UserCanExecuteRequest(
theUser.Username,
req.Name))

{
// If we’re here, then the user is
// NOT an ADMIN, *AND* they’re not
// authorized for this Request type.
// Therefore, create an error and
// continue to the next one.
rBack = new RequestResponse();
rBack.StatusCode =

StatusCodes.USER_NOT_AUTHORIZED_FOR_REQUEST;
rBack.Status=
StatusCodes.Descriptions(
rBack.StatusCode);

rBack.Description =
“User: “ + theUser.Username +
“ attempting Unauthorized Request Type: “ +
req.Name;

rBack.Name = req.Name;
alRet.Add(rBack);
continue;
}//end if authed == false

RequestsProcessor Discussion 193

Clark_ch07.qxd 8/19/04 6:13 PM Page 193

}//end else (they’re NOT an ADMIN)

RequestHandlerBase hand =
RequestHandlerFactory.getHandler(req);

if(hand == null) {
rBack = new RequestResponse();
rBack.StatusCode =
StatusCodes.UNKNOWN_HANDLER;

rBack.Status=StatusCodes.Descriptions
(rBack.StatusCode);

rBack.Description =
“Cannot find Handler: “ +
“ EAIFramework.Handler.” +
req.Name + “Handler”;
rBack.Name = req.Name;

}//end if handler == null
else {
// The Handler is not null, so add it
// to the list, and then call
// the process() method to do the work
alHandlers.Add(hand);

rBack = hand.process();
}//end else

} catch (Exception exc) {
// Need to build a failed RequestResponse
// here to return good info.
rBack = new RequestResponse();
rBack.StatusCode =
StatusCodes.UNKNOWN_HANDLER;

rBack.Status=
StatusCodes.Descriptions(rBack.StatusCode);
rBack.Description =
“Cannot find Handler: “ +
“EAIFramework.Handler.” +
req.Name + “Handler - “ + exc.Message;

rBack.Name = req.Name;
}//end catch()
alRet.Add(rBack);

// If there is an error AND we’re supposed to

// FailOnFirstError, then break out and don’t
// process any more Request objects.
if((rBack.StatusCode != StatusCodes.OK) &&
eaiReq.FailOnFirstError)

{
// However, b/f we go, we need to remove all
// the Requests that are currently in the
// T_RequestToDo table for this TrnxID
this.removeAllFromToDo(
req.TrnxID.ToString());

// Now call roll back on any of the Requests

194 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 194

// that have already been fired
for(int x = 0; x < req.Iteration; x++)
{
Request rRoll = (Request)
reqObjects.RequestList[x];

RequestHandlerBase hRoll =
(RequestHandlerBase) alHandlers[x];

RequestResponse rrRoll = hRoll.rollback();
alRet.Add(rrRoll);

}//end for
break;

}

// Otherwise, just remove this processed Request
// from the T_RequestsToDo table
this.removeFromToDo(req);

}//end foreach

// Now, right before we leave,
// see if this set of Requests passes
// PostProcBusinessRules
PostProcBusinessRules postBR =

new PostProcBusinessRules();
brr = postBR.Check(reqObjects);

if(brr.StatusCode != StatusCodes.OK)
{
// This is an error. There was something wrong
// with the PreProcessing Business Rule checks!
// Generate response and return w/o processing.

Logger.log(Logger.ERROR,
“PostProcBusinessRules.Check Failed: “ +
brr.Description);

RequestResponse rBack = new RequestResponse();
rBack.StatusCode =
StatusCodes.FAILED_POSTPROCBUSINESSRULES;

rBack.Status=
StatusCodes.Descriptions(rBack.StatusCode);

rBack.Description =
“Failed PostProcBusinessRules checking: “ +
brr.Description;

rBack.Name = “PostProcBusinessRules”;
alRet.Add(rBack);
return alRet;

}//end if PostProcBusRules.Check()

//Otherwise...
Logger.log(Logger.INFO,
“PostProcBusinessRules.Check Passed”);

return alRet;
}//end process()

RequestsProcessor Discussion 195

Clark_ch07.qxd 8/19/04 6:13 PM Page 195

process returns an ArrayList instance filled with RequestResponse objects. These
are the RequestResponse instances sent back from each called RequestHandler
instance. The method starts by creating the ArrayList that will be returned. It then pulls
out the Requests object from the EAIRequest object and creates an ArrayList to hold
the RequestHandler instances to be used for each Request. You create and store a list
of handler objects, because it might be necessary to call the rollback() method on each
one.

Next, all of the requests in the Requests object are added to the ToDo table in the
database. This is accomplished by calling the helper method addToToDo(). It makes the
code a little cleaner in this method to stick the call to the ToDo proxy class in a helper
method.

A foreach loop then blasts through each Request contained in the Requests
object. The handler object, cast as a RequestHandlerBase object, is created by calling
the RequestHandlerFactory.getHandler() method, discussed earlier. Providing that
the handler is found, instantiated, and returned, you can send off the request for process-
ing. If all is well, the handler is added to the ArrayList of the handler, and a new
RequestResponse object is created by calling the process method of the handler. If
there is an error along the way for this Request, an error RequestResponse instance is
created. You drop out of the code for this Request and add the RequestResponse, good
or bad, to the ArrayList to be returned, named alRet.

Next, if the status was unsuccessful for any reason and this transaction is set for
FailOnFirstError, you delete all requests for this transaction from the ToDo table,
because you’re bailing on this one. Then each handler that has already been called is
cycled through, and the rollback() method is called. A RequestResponse object is
returned from the rollback() method, just as the process method does. These status
objects are added to the alRet list along with those returned from process.

Otherwise, you remove the current Request from the ToDo table, whether the
response was successful or unsuccessful. When the foreach loop completes, either
because of running through each Request processed or because of a failure and
FailOnFirstError being set to true, the compiled ArrayList of RequestResponse
objects is returned to the caller (see Listing 7-10).

Listing 7-10: addToToDo() Method

/// <summary>
/// Helper method to insert all Request objects into the
/// RequestToDo table.
/// </summary>
/// <param name=”rsIn”></param>
private void addToToDo(Requests rsIn)
{
DBUtilProxy tdprox = new DBUtilProxy();
foreach(Request req in rsIn.RequestList)
{
tdprox.addRequest(req);

}//end foreach
}//end addToToDo()

196 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 196

private void removeAllFromToDo(string strReq)
{
DBUtilProxy dbup = new DBUtilProxy();
int nRow = dbup.removeToDoRequests(strReq);

}//end removeAllFromToDo()

private void removeFromToDo(Request req)
{
DBUtilProxy dbup = new DBUtilProxy();
int nRows = dbup.removeRequest(req);

}//end removeFromToDo()

}//end class
}//end namespace

As you can see in Listing 7-10, the method addToToDo() takes in a Requests object. It
instantiates the DBUtilProxy class, which is used to interact with some of the utility
tables. In this case, it inserts rows into the T_RequestsToDo table. This table is used to
hold any Request steps that need to be processed. Because all the processing is happen-
ing in memory, if the box takes a nosedive for some reason, you would lose all traces of
submitted but as yet unprocessed requests. Therefore, the first thing you must do is add
each step to a database table. Now, if the cleaning crew decides to unplug your server so
that it can use the floor polisher, you can query the ToDo table and continue processing
(more or less) as if nothing had happened.

The removeAllFromToDo() method is called if the request processing is being
aborted. You already know that you are not going to continue processing any subsequent
requests, so just remove all of the requests in the T_RequestsToDo table.

removeFromToDo() performs essentially the opposite function as the addToToDo()
method. It is called when an individual request has been processed. When that happens,
you can safely remove this request from the T_RequestsToDo table so that it’s not in dan-
ger of being reprocessed later.

Summary

We’ve covered quite a bit of ground in this chapter. We started by looking at XML attrib-
utes in the EAIRequest message to signify whether the client wants the transaction
processed synchronously or asynchronously. The other attribute signified whether you
should abort processing when you hit the first error while processing a Request type.

Next, we examined the code for the Controller class. The Controller takes a
request from the web service and creates an EAIRequest object from the incoming XML
message. This object is then passed around the system to various subcomponents.

The Controller checks what type of processing has been requested. If the client
specifically requests Asynch=”TRUE”, you send the entire request on to a Message Queue
in the MSMQ service. All of the classes needed to interact with the MSMQ are housed in
the System.Messaging namespace. A response message is sent back to the caller with the
TransactionID that was created for this request. Because processing takes place asynchro-

Summary 197

Clark_ch07.qxd 8/19/04 6:13 PM Page 197

nously, the caller must send a message later to get the status of the processing for this
transaction.

The RequestQueMonitor project, a Windows application, uses the classes in the
System.Messaging namespace to watch the appropriate message queue for the integration
messages. When it finds one, it sends the message to an instance of the
RequestsProcessor class. Status information is printed to a text box on the screen to let
you know what’s going on.

If the request is synchronous, the client expects processing to happen now. The HTTP
connection is held open to the web service while you work on the back end. When you
send back the response, it is sent back to the calling client.

Next we described RequestsProcessor, the class that takes the input request and
actually pieces out the work to various appropriate handler classes. In the case of synchro-
nous requests, it is called from Controller. In the case of asynchronous requests, it is
called by Message Queue monitoring code. One of the main reasons for approaching the
architecture this way is so that you have a single spot where code can be changed if you
want to modify the behavior of the system. When a change is made, both synchronous and
asynchronous paths call the RequestsProcessor class.

What’s Coming Up

In the next chapter, we cover the RequestHandler set of classes. You saw an instance of
these classes created in the RequestsProcessor class. A subclass of the
RequestHandlerBase will be invoked to process each Request block sent into the sys-
tem. As shown earlier in this chapter, classes in the System.Reflection namespace are used
to create an instance of the needed subclass on the fly. This is powerful (and cool) code
that lets you quickly add functionality to your system without having to change any of the
code on the calling, engine side.

198 Chapter 7 The Controller

Clark_ch07.qxd 8/19/04 6:13 PM Page 198

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

