
 

39

 

Integration 
Styles

 

Chapter 2

 

Integration Styles

 

Introduction

 

Enterprise integration is the task of making disparate applications work together
to produce a unified set of functionality. These applications can be custom devel-
oped in house or purchased from third-party vendors. They likely run on multiple
computers, which may represent multiple platforms, and may be geographically
dispersed. Some of the applications may be run outside of the enterprise by busi-
ness partners or customers. Other applications might not have been designed
with integration in mind and are difficult to change. These issues and others like
them make application integration complicated. This chapter explores multiple
integration approaches that can help overcome these challenges.

 

Application Integration Criteria

 

What makes good application integration? If integration needs were always the
same, there would be only one integration style. Yet, like any complex technolog-
ical effort, application integration involves a range of considerations and conse-
quences that should be taken into account for any integration opportunity.

The fundamental criterion is whether to use 

 

application integration

 

 at all. If
you can develop a single, standalone application that doesn’t need to collabo-
rate with any other applications, you can avoid the whole integration issue
entirely. Realistically, though, even a simple enterprise has multiple applications
that need to work together to provide a unified experience for the enterprise’s
employees, partners, and customers.

The following are some other main decision criteria. 

 

Application coupling

 

—Integrated applications should minimize their depen-
dencies on each other so that each can evolve without causing problems to
the others. As explained in Chapter 1, “Solving Integration Problems Using
Patterns,” tightly coupled applications make numerous assumptions about

 

Hohpe_book.fm  Page 39  Friday, September 19, 2003  2:51 AM



 

40

 

C

 

HAPTER

 

 2 I

 

NTEGRATION

 

 S

 

TYLES

 

Introduction

 

how the other applications work; when the applications change and break
those assumptions, the integration between them breaks. Therefore, the
interfaces for integrating applications should be specific enough to imple-
ment useful functionality but general enough to allow the implementation to
change as needed.

 

Intrusiveness

 

—When integrating an application into an enterprise, develop-
ers should strive to minimize both changes to the application and the amount
of integration code needed. Yet, changes and new code are often necessary to
provide good integration functionality, and the approaches with the least
impact on the application may not provide the best integration into the
enterprise.

 

Technology selection

 

—Different integration techniques require varying
amounts of specialized software and hardware. Such tools can be expensive,
can lead to vendor lock-in, and can increase the learning curve for develop-
ers. On the other hand, creating an integration solution from scratch usually
results in more effort than originally intended and can mean reinventing the
wheel.

 

Data format

 

—Integrated applications must agree on the format of the data
they exchange. Changing existing applications to use a unified data format
may be difficult or impossible. Alternatively, an intermediate translator can
unify applications that insist on different data formats. A related issue is 

 

data
format evolution and extensibility

 

—how the format can change over time
and how that change will affect the applications.

 

Data timeliness

 

—Integration should minimize the length of time between
when one application decides to share some data and other applications have
that data. This can be accomplished by exchanging data frequently and in
small chunks. However, chunking a large set of data into small pieces may
introduce inefficiencies. Latency in data sharing must be factored into the
integration design. Ideally, receiver applications should be informed as soon
as shared data is ready for consumption. The longer sharing takes, the
greater the opportunity for applications to get out of sync and the more com-
plex integration can become.

 

Data or functionality

 

—Many integration solutions allow applications to
share not only data but functionality as well, because sharing of functional-
ity can provider better abstraction between the applications. Even though
invoking functionality in a remote application may seem the same as invok-
ing local functionality, it works quite differently, with significant conse-
quences for how well the integration works.

 

Hohpe_book.fm  Page 40  Friday, September 19, 2003  2:51 AM



 

I

 

NTRODUCTION

 

41

 

Introduction

 

Remote Communication

 

—Computer processing is typically synchronous—
that is, a procedure waits while its subprocedure executes. However, calling a
remote subprocedure is much slower than a local one so that a procedure may
not want to wait for the subprocedure to complete; instead, it may want to
invoke the subprocedure asynchronously, that is, starting the subprocedure
but continuing with its own processing simultaneously. Asynchronicity can
make for a much more efficient solution, but such a solution is also more
complex to design, develop, and debug.

 

Reliability

 

—Remote connections are not only slow, but they are much less reli-
able than a local function call. When a procedure calls a subprocedure inside a
single application, it’s a given that the subprocedure is available. This is not
necessarily true when communicating remotely; the remote application may
not even be running or the network may be temporarily unavailable. Reliable,
asynchronous communication enables the source application to go on to other
work, confident that the remote application will act sometime later. 

So, as you can see, there are several different criteria that must be consid-
ered when choosing and designing an integration approach. The question then
becomes, Which integration approach best addresses which of these criteria?

 

Application Integration Options

 

There is no one integration approach that addresses all criteria equally well.
Therefore, multiple approaches for integrating applications have evolved over
time. The various approaches can be summed up in four main integration styles.

 

File Transfer

 

 (43)—Have each application produce files of shared data for
others to consume and consume files that others have produced.

 

Shared Database

 

 (47)—Have the applications store the data they wish to
share in a common database.

 

Remote Procedure Invocation

 

 

 

(50)—Have each application expose some of
its procedures so that they can be invoked remotely, and have applications
invoke those to initiate behavior and exchange data.

 

Messaging

 

 (53)—Have each application connect to a common messaging
system, and exchange data and invoke behavior using messages.

This chapter presents each style as a pattern. The four patterns share the
same problem statement—the need to integrate applications—and very similar
contexts. What differentiates them are the forces searching for a more elegant

 

Hohpe_book.fm  Page 41  Friday, September 19, 2003  2:51 AM



 

42

 

C

 

HAPTER

 

 2 I

 

NTEGRATION

 

 S

 

TYLES

 

Introduction

 

solution. Each pattern builds on the last, looking for a more sophisticated
approach to address the shortcomings of its predecessors. Thus, the pattern order
reflects an increasing order of sophistication, but also increasing complexity.

The trick is not to choose one style to use every time but to choose the 

 

best

 

style for a particular integration opportunity. Each style has its advantages and
disadvantages. Applications may integrate using multiple styles so that each
point of integration takes advantage of the style that suits it best. Likewise, an
application may use different styles to integrate with different applications,
choosing the style that works best for the other application. As a result, many
integration approaches can best be viewed as a hybrid of multiple integration
styles. To support this type of integration, many integration and EAI middle-
ware products employ a combination of styles, all of which are effectively hid-
den in the product’s implementation.

The patterns in the remainder of this book expand on the 

 

Messaging

 

 (53)
integration style. We focus on messaging because we believe that it provides a
good balance between the integration criteria but is also the most difficult style
to work with. As a result, messaging is still the least well understood of the inte-
gration styles and a technology ripe with patterns that quickly explain how to
use it best. Finally, messaging is the basis for many commercial EAI products,
so explaining how to use messaging well also goes a long way in teaching you
how to use those products. The focus of this section is to highlight the issues
involved with application integration and how messaging fits into the mix.

 

Hohpe_book.fm  Page 42  Friday, September 19, 2003  2:51 AM



 

F

 

ILE

 

 T

 

RANSFER

 

43

 

File 
Transfer

 

File Transfer

 

by Martin Fowler

 

An enterprise has multiple applications that are being built independently, with
different languages and platforms.

 

How can I integrate multiple applications so that they work together and can ex-

 

change information?

 

In an ideal world, you might imagine an organization operating from a single,
cohesive piece of software, designed from the beginning to work in a unified
and coherent way. Of course, even the smallest operations don’t work like that.
Multiple pieces of software handle different aspects of the enterprise. This is
due to a host of reasons.

• People buy packages that are developed by outside organizations.

• Different systems are built at different times, leading to different technol-
ogy choices.

• Different systems are built by different people whose experience and pref-
erences lead them to different approaches to building applications.

• Getting an application out and delivering value is more important than
ensuring that integration is addressed, especially when that integration
doesn’t add any value to the application under development.

As a result, any organization has to worry about sharing information between
very divergent applications. These can be written in different languages, based
on different platforms, and have different assumptions about how the business
operates.

Tying together such applications requires a thorough understanding of how
to link together applications on both the business and technical levels. This is a
lot easier if you minimize what you need to know about how each application
works.

 

Hohpe_book.fm  Page 43  Friday, September 19, 2003  2:51 AM



 

44

 

C

 

HAPTER

 

 2 I

 

NTEGRATION

 

 S

 

TYLES

 

File
Transfer

 

What is needed is a common data transfer mechanism that can be used by a
variety of languages and platforms but that feels natural to each. It should
require a minimal amount of specialized hardware and software, making use of
what the enterprise already has available.

Files are a universal storage mechanism, built into any enterprise operating
system and available from any enterprise language. The simplest approach
would be to somehow integrate the applications using files.

 

Have each application produce files that contain the information the other applica-
tions must consume. Integrators take the responsibility of transforming files into dif-
ferent formats. Produce the files at regular intervals according to the nature of the 
business.

 

An important decision with files is what format to use. Very rarely will the
output of one application be exactly what’s needed for another, so you’ll have
to do a fair bit of processing of files along the way. This means not only that all
the applications that use a file have to read it, but that you also have to be able
to use processing tools on it. As a result, standard file formats have grown up
over time. Mainframe systems commonly use data feeds based on the file system
formats of COBOL. UNIX systems use text-based files. The current method is to
use XML. An industry of readers, writers, and transformation tools has built up
around each of these formats.

Another issue with files is when to produce them and consume them. Since
there’s a certain amount of effort required to produce and process a file, you
usually don’t want to work with them too frequently. Typically, you have some
regular business cycle that drives the decision: nightly, weekly, quarterly, and so
on. Applications get used to when a new file is available and processes it at its
time.

The great advantage of files is that integrators need no knowledge of the
internals of an application. The application team itself usually provides the file.
The file’s contents and format are negotiated with integrators, although if a

Application

A

Application

A

Application

B

Application

B

E
x
p
o
r
t

E
x
p
o
r
t

I
m
p
o
r
t

I
m
p
o
r
t

Shared
Data

 

Hohpe_book.fm  Page 44  Friday, September 19, 2003  2:51 AM



 

F

 

ILE

 

 T

 

RANSFER

 

45

 

File 
Transfer

 

package is used, the choices are often limited. The integrators then deal with the
transformations required for other applications, or they leave it up to the con-
suming applications to decide how they want to manipulate and read the file. As
a result, the different applications are quite nicely decoupled from each other.
Each application can make internal changes freely without affecting other appli-
cations, providing they still produce the same data in the files in the same for-
mat. The files effectively become the public interface of each application.

Part of what makes 

 

File Transfer

 

 simple is that no extra tools or integration
packages are needed, but that also means that developers have to do a lot of the
work themselves. The applications must agree on file-naming conventions and
the directories in which they appear. The writer of a file must implement a strat-
egy to keep the file names unique. The applications must agree on which one
will delete old files, and the application with that responsibility will have to
know when a file is old and no longer needed. The applications will need to
implement a locking mechanism or follow a timing convention to ensure that
one application is not trying to read the file while another is still writing it. If all
of the applications do not have access to the same disk, then some application
must take responsibility for transferring the file from one disk to another.

One of the most obvious issues with 

 

File Transfer

 

 is that updates tend to
occur infrequently, and as a result systems can get out of synchronization. A
customer management system can process a change of address and produce an
extract file each night, but the billing system may send the bill to an old address
on the same day. Sometimes lack of synchronization isn’t a big deal. People
often expect a certain lag in getting information around, even with computers.
At other times the result of using stale information is a disaster. When deciding
on when to produce files, you have to take the freshness needs of consumers
into account.

In fact, the biggest problem with staleness is often on the software develop-
ment staff themselves, who frequently must deal with data that isn’t quite right.
This can lead to inconsistencies that are difficult to resolve. If a customer
changes his address on the same day with two different systems, but one of
them makes an error and gets the wrong street name, you’ll have two different
addresses for a customer. You’ll need some way to figure out how to resolve
this. The longer the period between file transfers, the more likely and more
painful this problem can become.

Of course, there’s no reason that you can’t produce files more frequently.
Indeed, you can think of 

 

Messaging

 

 (53) as 

 

File Transfer

 

 where you produce a
file with every change in an application. The problem then is managing all the
files that get produced, ensuring that they are all read and that none get lost.
This goes beyond what file system–based approaches can do, particularly since

 

Hohpe_book.fm  Page 45  Friday, September 19, 2003  2:51 AM



 

46

 

C

 

HAPTER

 

 2 I

 

NTEGRATION

 

 S

 

TYLES

 

File
Transfer

 

there are expensive resource costs associated with processing a file, which can
get prohibitive if you want to produce lots of files quickly. As a result, once you
get to very fine-grained files, it’s easier to think of them as 

 

Messaging

 

 (53).
To make data available more quickly and enforce an agreed-upon set of data

formats, use a 

 

Shared Database

 

 (47). To integrate applications’ functionality
rather than their data, use 

 

Remote Procedure Invocation 

 

(50). To enable fre-
quent exchanges of small amounts of data, perhaps used to invoke remote func-
tionality, use 

 

Messaging

 

 (53).

 

Hohpe_book.fm  Page 46  Friday, September 19, 2003  2:51 AM



 

S

 

HARED

 

 D

 

ATABASE

 

47

 

Shared 
Database

 

Shared Database

 

by Martin Fowler

 

An enterprise has multiple applications that are being built independently, with
different languages and platforms. The enterprise needs information to be
shared rapidly and consistently.

 

How can I integrate multiple applications so that they work together and can ex-

 

change information?

 

File Transfer

 

 (43) enables applications to share data, but it can lack timeli-
ness—yet timeliness of integration is often critical. If changes do not quickly
work their way through a family of applications, you are likely to make mis-
takes due to the staleness of the data. For modern businesses, it is imperative
that everyone have the latest data. This not only reduces errors, but also
increases people’s trust in the data itself.

Rapid updates also allow inconsistencies to be handled better. The more fre-
quently you synchronize, the less likely you are to get inconsistencies and the
less effort they are to deal with. But however rapid the changes, there are still
going to be problems. If an address is updated inconsistently in rapid succes-
sion, how do you decide which one is the true address? You could take each
piece of data and say that one application is the master source for that data, but
then you’d have to remember which application is the master for which data.

 

File Transfer

 

 (43) also may not enforce data format sufficiently. Many of the
problems in integration come from incompatible ways of looking at the data.
Often these represent subtle business issues that can have a huge effect. A geo-
logical database may define an oil well as a single drilled hole that may or may
not produce oil. A production database may define a well as multiple holes cov-
ered by a single piece of equipment. These cases of 

 

semantic dissonance

 

 are
much harder to deal with than inconsistent data formats. (For a much deeper
discussion of these issues, it’s really worth reading 

 

Data and Reality

 

 [Kent].)
What is needed is a central, agreed-upon datastore that all of the applications
share so each has access to any of the shared data whenever it needs it.

 

Hohpe_book.fm  Page 47  Friday, September 19, 2003  2:51 AM



 

48

 

C

 

HAPTER

 

 2 I

 

NTEGRATION

 

 S

 

TYLES

 

Shared
Database

 

Integrate applications by having them store their data in a single 

 

Shared Data-
base,

 

 and define the schema of the database to handle all the needs of the differ-
ent applications.

 

If a family of integrated applications all rely on the same database, then you
can be pretty sure that they are always consistent all of the time. If you do get
simultaneous updates to a single piece of data from different sources, then you
have transaction management systems that handle that about as gracefully as it
ever can be managed. Since the time between updates is so small, any errors are
much easier to find and fix.

 

Shared Database

 

 is made much easier by the widespread use of SQL-based
relational databases. Pretty much all application development platforms can
work with SQL, often with quite sophisticated tools. So you don’t have to
worry about multiple file formats. Since any application pretty much has to use
SQL anyway, this avoids adding yet another technology for everyone to master.

Since every application is using the same database, this forces out problems
in semantic dissonance. Rather than leaving these problems to fester until they
are difficult to solve with transforms, you are forced to confront them and deal
with them before the software goes live and you collect large amounts of
incompatible data. 

One of the biggest difficulties with 

 

Shared Database

 

 is coming up with a suit-
able design for the shared database. Coming up with a unified schema that can
meet the needs of multiple applications is a very difficult exercise, often resulting
in a schema that application programmers find difficult to work with. And if the
technical difficulties of designing a unified schema aren’t enough, there are also
severe political difficulties. If a critical application is likely to suffer delays in
order to work with a unified schema, then often there is irresistible pressure to
separate. Human conflicts between departments often exacerbate this problem.

Application
A

Application
A

Shared
Data

Application
B

Application
B

Application
C

Application
C

 

Hohpe_book.fm  Page 48  Friday, September 19, 2003  2:51 AM



 

S

 

HARED

 

 D

 

ATABASE

 

49

 

Shared 
Database

 

Another, harder limit to 

 

Shared Database

 

 is external packages. Most pack-
aged applications won’t work with a schema other than their own. Even if there
is some room for adaptation, it’s likely to be much more limited than integra-
tors would like. Adding to the problem, software vendors usually reserve the
right to change the schema with every new release of the software.

This problem also extends to integration after development. Even if you can
organize all your applications, you still have an integration problem should a
merger of companies occur.

Multiple applications using a 

 

Shared Database

 

 to frequently read and modify
the same data can turn the database into a performance bottleneck and can cause
deadlocks as each application locks others out of the data. When applications are
distributed across multiple locations, accessing a single, shared database across a
wide-area network is typically too slow to be practical. Distributing the database
as well allows each application to access the database via a local network connec-
tion, but confuses the issue of which computer the data should be stored on. A
distributed database with locking conflicts can easily become a performance
nightmare.

To integrate applications’ functionality rather than their data, use 

 

Remote
Procedure Invocation 

 

(50). To enable frequent exchanges of small amounts of
data using a format per datatype rather than one universal schema, use 

 

Messag-
ing

 

 (53).

 

Hohpe_book.fm  Page 49  Friday, September 19, 2003  2:51 AM



 

50

 

C

 

HAPTER

 

 2 I

 

NTEGRATION

 

 S

 

TYLES

 

Remote
Procedure
Invocation

 

Remote Procedure Invocation

 

by Martin Fowler

 

An enterprise has multiple applications that are being built independently, with
different languages and platforms. The enterprise needs to share data and pro-
cesses in a responsive way.

 

How can I integrate multiple applications so that they work together and can ex-

 

change information?

 

File Transfer

 

 (43) and 

 

Shared Database

 

 (47) enable applications to share
their data, which is an important part of application integration, but just shar-
ing data is often not enough. Changes in data often require actions to be taken
across different applications. For example, changing an address may be a sim-
ple change in data, or it may trigger registration and legal processes to take into
account different rules in different legal jurisdictions. Having one application
invoke such processes directly in others would require applications to know far
too much about the internals of other applications.

This problem mirrors a classic dilemma in application design. One of the
most powerful structuring mechanisms in application design is encapsulation,
where modules hide their data through a function call interface. In this way,
they can intercept changes in data to carry out the various actions they need to
perform when the data is changed. 

 

Shared Database

 

 (47) provides a large,
unencapsulated data structure, which makes it much harder to do this. 

 

File
Transfer

 

 (43) allows an application to react to changes as it processes the file,
but the process is delayed.

The fact that 

 

Shared Database

 

 (47) has unencapsulated data also makes it
more difficult to maintain a family of integrated applications. Many changes in
any application can trigger a change in the database, and database changes
have a considerable ripple effect through every application. As a result, organi-
zations that use 

 

Shared Database

 

 (47) are often very reluctant to change the
database, which means that the application development work is much less
responsive to the changing needs of the business.

 

Hohpe_book.fm  Page 50  Friday, September 19, 2003  2:51 AM



 

R

 

EMOTE

 

 P

 

ROCEDURE

 

 I

 

NVOCATION

 

51

 

Remote 
Procedure 
Invocation

 

What is needed is a mechanism for one application to invoke a function in
another application, passing the data that needs to be shared and invoking the
function that tells the receiver application how to process the data.

 

Develop each application as a large-scale object or component with encapsulated 
data. Provide an interface to allow other applications to interact with the running
application.

 

Remote Procedure Invocation

 

 applies the principle of encapsulation to inte-
grating applications. If an application needs some information that is owned by
another application, it asks that application directly. If one application needs to
modify the data of another, it does so by making a call to the other application.
This allows each application to maintain the integrity of the data it owns. Fur-
thermore, each application can alter the format of its internal data without
affecting every other application.

A number of technologies, such as CORBA, COM, .NET Remoting, and Java
RMI, implement 

 

Remote Procedure Invocation

 

 (also referred to as Remote Pro-
cedure Call, or RPC). These approaches vary as to how many systems support
them and their ease of use. Often these environments add additional capabili-
ties, such as transactions. For sheer ubiquity, the current favorite is Web ser-
vices, using standards such as SOAP and XML. A particularly valuable feature
of Web services is that they work easily with HTTP, which is easy to get through
firewalls.

The fact that there are methods that wrap the data makes it easier to deal
with semantic dissonance. Applications can provide multiple interfaces to the
same data, allowing some clients to see one style and others a different style.
Even updates can use multiple interfaces. This provides a lot more ability to
support multiple points of view than can be achieved by relational views. How-
ever, it is awkward for integrators to add transformation components, so each
application has to negotiate its interface with its neighbors.

Function
Application

A

Application

A

Application

B

Application

BResult

S
t
u
b

S
t
u
b

S
k
e
l
e
t
o
n

S
k
e
l
e
t
o
n

 

Hohpe_book.fm  Page 51  Friday, September 19, 2003  2:51 AM



 

52

 

C

 

HAPTER

 

 2 I

 

NTEGRATION

 

 S

 

TYLES

 

Remote
Procedure
Invocation

 

Since software developers are used to procedure calls, Remote Procedure
Invocation fits in nicely with what they are already used to. Actually, this is
more of a disadvantage than an advantage. There are big differences in perfor-
mance and reliability between remote and local procedure calls. If people don’t
understand these, then Remote Procedure Invocation can lead to slow and
unreliable systems (see [Waldo], [EAA]).

Although encapsulation helps reduce the coupling of the applications by
eliminating a large shared data structure, the applications are still fairly tightly
coupled together. The remote calls that each system supports tend to tie the dif-
ferent systems into a growing knot. In particular, sequencing—doing certain
things in a particular order—can make it difficult to change systems indepen-
dently. These types of problems often arise because issues that aren’t significant
within a single application become so when integrating applications. People
often design the integration the way they would design a single application,
unaware that the rules of the engagement change dramatically.

To integrate applications in a more loosely coupled, asynchronous fashion,
use Messaging (53) to enable frequent exchanges of small amounts of data, ones
that are perhaps used to invoke remote functionality.

Hohpe_book.fm  Page 52  Friday, September 19, 2003  2:51 AM



MESSAGING 53

Messaging

Messaging

An enterprise has multiple applications that are being built independently, with
different languages and platforms. The enterprise needs to share data and pro-
cesses in a responsive way.

How can I integrate multiple applications so that they work together and can ex-
change information?

File Transfer (43) and Shared Database (47) enable applications to share
their data but not their functionality. Remote Procedure Invocation (50)
enables applications to share functionality, but it tightly couples them as well.
Often the challenge of integration is about making collaboration between sepa-
rate systems as timely as possible, without coupling systems together in such a
way that they become unreliable either in terms of application execution or
application development.

File Transfer (43) allows you to keep the applications well decoupled but at
the cost of timeliness. Systems just can’t keep up with each other. Collaborative
behavior is way too slow. Shared Database (47) keeps data together in a
responsive way but at the cost of coupling everything to the database. It also
fails to handle collaborative behavior.

Faced with these problems, Remote Procedure Invocation (50) seems an
appealing choice. But extending a single application model to application inte-
gration dredges up plenty of other weaknesses. These weaknesses start with the
essential problems of distributed development. Despite that RPCs look like
local calls, they don’t behave the same way. Remote calls are slower, and they
are much more likely to fail. With multiple applications communicating across
an enterprise, you don’t want one application’s failure to bring down all of the
other applications. Also, you don’t want to design a system assuming that calls
are fast, and you don’t want each application knowing the details about other
applications, even if it’s only details about their interfaces.

What we need is something like File Transfer (43) in which lots of little data
packets can be produced quickly and transferred easily, and the receiver applica-
tion is automatically notified when a new packet is available for consumption.

Hohpe_book.fm  Page 53  Friday, September 19, 2003  2:51 AM



54 CHAPTER 2 INTEGRATION STYLES

Messaging

The transfer needs a retry mechanism to make sure it succeeds. The details of
any disk structure or database for storing the data needs to be hidden from the
applications so that, unlike Shared Database (47), the storage schema and
details can be easily changed to reflect the changing needs of the enterprise. One
application should be able to send a packet of data to another application to
invoke behavior in the other application, like Remote Procedure Invocation
(50), but without being prone to failure. The data transfer should be asynchro-
nous so that the sender does not need to wait on the receiver, especially when
retry is necessary.

Use Messaging to transfer packets of data frequently, immediately, reliably, and 
asynchronously, using customizable formats.

Asynchronous messaging is fundamentally a pragmatic reaction to the prob-
lems of distributed systems. Sending a message does not require both systems to
be up and ready at the same time. Furthermore, thinking about the communica-
tion in an asynchronous manner forces developers to recognize that working with
a remote application is slower, which encourages design of components with high
cohesion (lots of work locally) and low adhesion (selective work remotely).

Messaging systems also allow much of the decoupling you get when using
File Transfer (43). Messages can be transformed in transit without either the
sender or receiver knowing about the transformation. The decoupling allows
integrators to choose between broadcasting messages to multiple receivers,
routing a message to one of many receivers, or other topologies. This separates
integration decisions from the development of the applications. Since human
issues tend to separate application development from application integration,
this approach works with human nature rather than against it.

The transformation means that separate applications can have quite different
conceptual models. Of course, this means that semantic dissonance will occur.

Message Bus

Application
A

Application
A

Application
B

Application
B

Application
C

Application
C

Event

Hohpe_book.fm  Page 54  Friday, September 19, 2003  2:51 AM



MESSAGING 55

Messaging

However, the messaging viewpoint is that the measures used by Shared Data-
base (47) to avoid semantic dissonance are too complicated to work in practice.
Also, semantic dissonance is going to occur with third-party applications and
with applications added as part of a corporate merger, so the messaging
approach is to address the issue rather than design applications to avoid it.

By sending small messages frequently, you also allow applications to collabo-
rate behaviorally as well as share data. If a process needs to be launched once an
insurance claim is received, it can be done immediately by sending a message
when a single claim comes in. Information can be requested and a reply made
rapidly. While such collaboration isn’t going to be as fast as Remote Procedure
Invocation (50), the caller needn’t stop while the message is being processed and
the response returned. And messaging isn’t as slow as many people think—many
messaging solutions originated in the financial services industry where thousands
of stock quotes or trades have to pass through a messaging system every second.

This book is about Messaging, so you can safely assume that we consider
Messaging to be generally the best approach to enterprise application integra-
tion. You should not assume, however, that it is free of problems. The high fre-
quency of messages in Messaging reduces many of the inconsistency problems
that bedevil File Transfer (43), but it doesn’t remove them entirely. There are
still going to be some lag problems with systems not being updated quite simul-
taneously. Asynchronous design is not the way most software people are
taught, and as a result there are many different rules and techniques in place.
The messaging context makes this a bit easier than programming in an asyn-
chronous application environment like X Windows, but asynchrony still has a
learning curve. Testing and debugging are also harder in this environment.

The ability to transform messages has the nice benefit of allowing applica-
tions to be much more decoupled from each other than in Remote Procedure
Invocation (50). But this independence does mean that integrators are often left
with writing a lot of messy glue code to fit everything together.

Once you decide that you want to use Messaging for system integration,
there are a number of new issues to consider and practices you can employ.

How do you transfer packets of data?

A sender sends data to a receiver by sending a Message (66) via a Message
Channel (60) that connects the sender and receiver.

How do you know where to send the data? 

If the sender does not know where to address the data, it can send the data to
a Message Router (78), which will direct the data to the proper receiver. 

Hohpe_book.fm  Page 55  Friday, September 19, 2003  2:51 AM



56 CHAPTER 2 INTEGRATION STYLES

Messaging

How do you know what data format to use? 

If the sender and receiver do not agree on the data format, the sender can
direct the data to a Message Translator (85) that will convert the data to the
receiver’s format and then forward the data to the receiver. 

If you’re an application developer, how do you connect your application to
the messaging system? 

An application that wishes to use messaging will implement Message End-
points (95) to perform the actual sending and receiving.

Hohpe_book.fm  Page 56  Friday, September 19, 2003  2:51 AM


