

143

Chapter 6

6.Simple Shading Example

Now that we’ve described the OpenGL Shading Language, let’s look at a
simple example. In this example, we’ll be applying a brick pattern to an
object. The brick pattern will be calculated entirely within a fragment
shader. If you’d prefer to skip ahead to the next chapter for a more in-depth
discussion of the API that allows shaders to be defined and manipulated,
feel free to do so.

In this example, and in most of the others in this book, there are three
essential components: the source code for the vertex shader, the source code
for the fragment shader, and the application code that is used to initialize
and use these shaders. This chapter focuses on the vertex and fragment
shaders. The application code for using these shaders will be discussed in
Section 7.11, after the details of the OpenGL Shading Language API have
been discussed.

With this first example, we’ll take a little more time discussing the details in
order to give you a better grasp of what’s going on. In examples later in the
book, we’ll focus mostly on the details that differ from previous examples.

6.1 Brick Shader Overview

One approach to writing shaders is to come up with a description of the
effect that you’re trying to achieve and then decide which parts of the
shader need to be implemented in the vertex shader, which need to be

Rost.book Page 143 Wednesday, February 4, 2004 12:06 PM

144

Chapter 6: Simple Shading Example

implemented in the fragment shader, and how the application will tie
everything together.

In this example, we’ll develop a shader that applies a computed brick
pattern to all objects that are drawn. We’re not going to attempt the most
realistic looking brick shader, but rather a fairly simple one that illustrates
many of the concepts we introduced in the previous chapters. We won’t
be using textures for this brick pattern; the pattern itself will be generated
algorithmically. We can build a lot of flexibility into this shader by param-
eterizing the different aspects of our brick algorithm.

Let’s first come up with a description of the overall effect we’re after:

• A single light source

• Diffuse and specular reflection characteristics

• A brick pattern that is based on the position in modeling coordinates
of the object being rendered—where the

x

 coordinate will be related to
the brick horizontal position and the

y

 coordinate will be related to the
brick vertical position

• Alternate rows of bricks will be offset by one-half the width of a single
brick

• Parameters that control the brick color, mortar color, brick-to-brick
horizontal distance, brick-to-brick vertical distance, brick width fraction
(ratio of the width of a brick to the overall horizontal distance between
two adjacent bricks), and brick height fraction (ratio of the height of a
brick to the overall vertical distance between two adjacent bricks)

The brick geometry parameters that we’ll be using are illustrated in
Figure 6.1. Brick size and brick percentage parameters will both be stored in
user-defined uniform variables of type

vec2

. The horizontal distance
between two bricks, including the width of the mortar, will be provided by

BrickSize.x

. The vertical distance between two rows of bricks, including the
height of the mortar, will be provided by

BrickSize.y

. These two values will
be given in units of modeling coordinates. The fraction of

BrickSize.x

 repre-
sented by the brick only will be provided by

BrickPct.x

. The fraction of

BrickSize.y

 represented by the brick only will be provided by

BrickPct.y

.
These two values will be in the range [0,1]. Finally, the brick color and the
mortar color will be represented by the variables

BrickColor

 and

MortarColor

.

Now that we’re armed with a firm grasp of our desired outcome, we’ll design
our vertex shader, then our fragment shader, and then the application code
that will tie it all together.

Rost.book Page 144 Wednesday, February 4, 2004 12:06 PM

6.2 Vertex Shader

145

6.2 Vertex Shader

The vertex shader embodies the operations that will occur on each vertex
that is provided to OpenGL. To define our vertex shader, we need to answer
three questions.

1. What data must be passed to the vertex shader for every vertex (i.e.,
attribute variables)?

2. What global state is required by the vertex shader (i.e., uniform
variables)?

3. What values are computed by the vertex shader (i.e., varying
variables)?

Let’s look at these questions one at a time.

We can’t draw any geometry at all without specifying a value for each vertex
position. Furthermore, we can’t do any lighting unless we have a surface
normal for each location for which we want to apply a lighting computa-
tion. So at the very least, we’ll need a vertex position and a normal for every
incoming vertex. These attributes are already defined as part of OpenGL,
and the OpenGL Shading Language provides built-in variables to refer to

BrickSize.x = 0.30
BrickPct.y = 0.85

BrickPct.x = 0.90

BrickColor = (1.0, 0.3, 0.2)

MortarColor = (0.85, 0.86, 0.84)

BrickSize.y = 0.15

Figure 6.1 Parameters for defining brick

Rost.book Page 145 Wednesday, February 4, 2004 12:06 PM

146

Chapter 6: Simple Shading Example

them (

gl_Vertex

 and

gl_Normal

). If we use the standard OpenGL entry points
for passing vertex positions and normals, we don’t need any user-defined
attribute variables in our vertex shader. We can access the current values for
vertex position and normal simply by referring to

gl_Vertex

 and

gl_Normal

.

We need access to several pieces of OpenGL state for our brick algorithm.
These are available to our shader as built-in uniform variables. We’ll
need to access the current modelview-projection matrix (

gl_ModelView-
ProjectionMatrix

) in order to transform our vertex position into the clipping
coordinate system. We’ll need to access the current modelview matrix
(

gl_ModelViewMatrix

) in order to transform the vertex position into eye
coordinates for use in the lighting computation. And we’ll also need to
transform our incoming normals into eye coordinates using OpenGL’s
normal transformation matrix (

gl_NormalMatrix

, which is just the inverse
transpose of the upper-left 3

 ×

3 subset of

gl_ModelViewMatrix

).

In addition, we’ll need the position of a single light source. We could use
the OpenGL lighting state and reference that state within our vertex shader,
but in order to illustrate the use of uniform variables, we’ll define the light
source position as a uniform variable like this:

1

uniform vec3 LightPosition;

We also need values for the lighting calculation to represent the contri-
bution due to specular reflection and the contribution due to diffuse
reflection. We could define these as uniform variables so that they could be
changed dynamically by the application, but in order to illustrate some
additional features of the language, we’ll define them as constants like this:

const float SpecularContribution = 0.3;
const float DiffuseContribution = 1.0 - SpecularContribution;

Finally, we need to define the values that will be passed on to the fragment
shader. Every vertex shader must compute the homogeneous vertex posi-
tion and store its value in the standard variable

gl_Position

, so we know that
our brick vertex shader will need to do likewise. We’re going to compute the
brick pattern on-the-fly in the fragment shader as a function of the
incoming geometry’s

x

 and

y

 values in modeling coordinates, so we’ll define
a varying variable called

MCposition

 for this purpose. In order to apply the
lighting effect on top of our brick, we’ll need to do part of the lighting

1

The shaders in this book use the convention of capitalizing the first letter of user-specified
uniform, varying, and attribute variable names in order to set them apart from local and
(nonqualified) global variables.

Rost.book Page 146 Wednesday, February 4, 2004 12:06 PM

6.2 Vertex Shader

147

computation in the fragment shader and apply the final lighting effect after
the brick/mortar color has been computed in the fragment shader. We’ll do
most of the lighting computation in the vertex shader and simply pass the
computed light intensity to the fragment shader in a varying variable called

LightIntensity

. These two varying variables are defined like this:

varying float LightIntensity;
varying vec2 MCposition;

We’re now ready to get to the meat of our brick vertex shader. We begin by
declaring a main function for our vertex shader and computing the vertex
position in eye coordinates:

void main(void)
{
 vec3 ecPosition = vec3 (gl_ModelViewMatrix * gl_Vertex);

In this first line of code, our vertex shader defines a variable called

ecPosition

to hold the eye coordinate position of the incoming vertex. The eye coordi-
nate position is computed by transforming the vertex position (

gl_Vertex

) by
the current modelview matrix (

gl_ModelViewMatrix

). Because one of the oper-
ands is a matrix and the other is a vector, the * operator performs a matrix
multiplication operation rather than a component-wise multiplication.

The result of the matrix multiplication will be a

vec4

, but

ecPosition

 is
defined as a

vec3

. There is no automatic conversion between variables of
different types in the OpenGL Shading Language so we convert the result to
a

vec3

 using a constructor. This causes the fourth component of the result
to be dropped so that the two operands have compatible types. (Construc-
tors provide an operation that is similar to type casting, but it is much more
flexible, as discussed in Section 3.3). As we’ll see, the eye coordinate posi-
tion will be used a couple of times in our lighting calculation.

The lighting computation that we’ll perform is a very simple one. Some
light from the light source will be reflected in a diffuse fashion (i.e., in all
directions). Where the viewing direction is very nearly the same as the
reflection direction from the light source, we’ll see a specular reflection. To
compute the diffuse reflection, we’ll need to compute the angle between the
incoming light and the surface normal. To compute the specular reflection,
we’ll need to compute the angle between the reflection direction and the
viewing direction. First, we’ll transform the incoming normal:

 vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);

This line defines a new variable called

tnorm

 for storing the transformed
normal (remember, in the OpenGL Shading Language, variables can be
declared when needed). The incoming surface normal (

gl_Normal

, a built-in

Rost.book Page 147 Wednesday, February 4, 2004 12:06 PM

148

Chapter 6: Simple Shading Example

variable for accessing the normal value supplied through the standard
OpenGL entry points) is transformed by the current OpenGL normal trans-
formation matrix (

gl_NormalMatrix

). The resulting vector is normalized
(converted to a vector of unit length) by calling the built-in function

normalize

, and the result is stored in

tnorm

.

Next, we need to compute a vector from the current point on the surface of
the three-dimensional object we’re rendering to the light source position.
Both of these should be in eye coordinates (which means that the value for
our uniform variable

LightPosition

 must be provided by the application in
eye coordinates). The light direction vector is computed as follows:

 vec3 lightVec = normalize(LightPosition - ecPosition);

The object position in eye coordinates was previously computed and stored
in

ecPosition

. To compute the light direction vector, we need to subtract the
object position from the light position. The resulting light direction vector
is also normalized and stored in the newly defined local variable

lightVec

.

The calculations we’ve done so far have set things up almost perfectly to call
the built-in function

reflect

. Using our transformed surface normal and the
computed incident light vector, we can now compute a reflection vector at
the surface of the object; however,

reflect

 requires the incident vector (the
direction from the light to the surface), and we’ve computed the direction
to the light source. Negating

lightVec

 gives us the proper vector:

 vec3 reflectVec = reflect(-lightVec, tnorm);

Because both vectors used in this computation were unit vectors, the
resulting vector is a unit vector as well. To complete our lighting calcula-
tion, one more vector is needed—a unit vector in the direction of the
viewing position. Because, by definition, the viewing position is at the
origin (i.e., (0,0,0)) in the eye coordinate system, we simply need to negate
and normalize the computed eye coordinate position,

ecPosition

:

 vec3 viewVec = normalize(-ecPosition);

With these four vectors, we can perform a per-vertex lighting computation.
The relationship of these vectors is shown in Figure 6.2.

Diffuse reflection is modeled by assuming that the incident light is scattered
in all directions according to a cosine distribution function. The reflection
of light will be strongest when the light direction vector and the surface
normal are coincident. As the difference between the two angles increases
to 90

o

, the diffuse reflection will drop off to zero. Because both vectors have
been normalized to produce unit vectors, the cosine of the angle between

Rost.book Page 148 Wednesday, February 4, 2004 12:06 PM

6.2 Vertex Shader

149

lightVec

 and

tnorm

 can be determined by performing a dot product opera-
tion between them. We want the diffuse contribution to be 0 if the angle
between the light and the surface normal is greater than 90

o

(there should
be no diffuse contribution if the light is behind the object), and the

max

function is used to accomplish this:

 float diffuse = max(dot(lightVec, tnorm), 0.0);

The specular component of the light intensity for this vertex is computed by

 float spec = 0.0;
 if (diffuse > 0.0)
 {
 spec = max(dot(reflectVec, viewVec), 0.0);
 spec = pow(spec, 16.0);
 }

The variable for the specular reflection value is defined and initialized to 0.
We’ll compute only a specular value other than 0 if the angle between the
light direction vector and the surface normal is less than 90

o

 (i.e., the

lightVec

tnorm

vie
wVec

reflectVec

lightPosition ecPosition

Figure 6.2 Vectors involved in the lighting computation for the brick vertex shader

Rost.book Page 149 Wednesday, February 4, 2004 12:06 PM

150

Chapter 6: Simple Shading Example

diffuse value is greater than 0) because we don’t want any specular high-
lights if the light source is behind the object. Because both

reflectVec

 and

viewVec

 are normalized, computing the dot product of these two vectors
gives us the cosine of the angle between them. If the angle is near zero
(i.e., the reflection vector and the viewing vector are almost the same), the
resulting value will be near 1.0. By raising the result to the 16th power in
the subsequent line of code, we’re effectively “sharpening” the highlight,
ensuring that we’ll have a specular highlight only in the region where the
reflection vector and the view vector are almost the same. The choice of 16
for the exponent value is arbitrary. Higher values will produce more concen-
trated specular highlights, and lower values will produce less concentrated
highlights. This value could also be passed in as a uniform variable in order
to allow it to be easily modified by the end user.

All that remains is to multiply the computed diffuse and specular reflection
values by the

diffuseContribution

 and

specularContribution

 constants and add
the two values together:

 LightIntensity = DiffuseContribution * diffuse +
 SpecularContribution * spec;

This is the value that will be assigned to the varying variable

LightIntensity

and interpolated between vertices. We also have one other varying variable
to compute, and it is done quite easily:

 MCposition = gl_Vertex.xy;

When the brick pattern is applied to a geometric object, we want the brick
pattern to remain constant with respect to the surface of the object, no
matter how the object is moved. We also want the brick pattern to remain
constant with respect to the surface of the object, no matter what the
viewing position. In order to generate the brick pattern algorithmically in
the fragment shader, we need to provide a value at each fragment that repre-
sents a location on the surface. For this example, we will provide the
modeling coordinate at each vertex by setting our varying variable

MCposition

 to the same value as our incoming vertex position (which is, by
definition, in modeling coordinates).

We’re not going to need the

z

 or

w

 coordinate in the fragment shader, so we
need a way to select the

x

 and

y

 components of

gl_Vertex

. We could have
used a constructor here (e.g.,

vec2

 (

gl_Vertex

)), but to show off another
language feature, we’ll use the component selector

.xy

 to select the first two
components of

gl_Vertex

 and store them in our varying variable

MCposition

.

The only thing that remains to be done is the thing that must be done by
all vertex shaders: computing the homogeneous vertex position. We do this

Rost.book Page 150 Wednesday, February 4, 2004 12:06 PM

6.3 Fragment Shader

151

by transforming the incoming vertex value by the current modelview-
projection matrix using the built-in function

ftransform

:

 gl_Position = ftransform();
}

For clarity, the code for our vertex shader is provided in its entirety in
Listing 6.1.

Listing 6.1

Source code for brick vertex shader

uniform vec3 LightPosition;

const float SpecularContribution = 0.3;
const float DiffuseContribution = 1.0 - SpecularContribution;

varying float LightIntensity;
varying vec2 MCposition;

void main(void)
{
 vec3 ecPosition = vec3 (gl_ModelViewMatrix * gl_Vertex);
 vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);
 vec3 lightVec = normalize(LightPosition - ecPosition);
 vec3 reflectVec = reflect(-lightVec, tnorm);
 vec3 viewVec = normalize(-ecPosition);
 float diffuse = max(dot(lightVec, tnorm), 0.0);
 float spec = 0.0;

 if (diffuse > 0.0)
 {
 spec = max(dot(reflectVec, viewVec), 0.0);
 spec = pow(spec, 16.0);
 }

 LightIntensity = DiffuseContribution * diffuse +
 SpecularContribution * spec;

 MCposition = gl_Vertex.xy;
 gl_Position = ftransform();
}

6.3 Fragment Shader

The purpose of a fragment shader is to compute the color to be applied to a
fragment or to compute the depth value for the fragment or both. In this
case (and indeed with most fragment shaders), we’re concerned only about
the color of the fragment. We’re perfectly happy using the depth value that’s

Rost.book Page 151 Wednesday, February 4, 2004 12:06 PM

152 Chapter 6: Simple Shading Example

been computed by the OpenGL rasterization stage. Therefore, the entire
purpose of this shader is to compute the color of the current fragment.

Our brick fragment shader starts off by defining a few more uniform vari-
ables than did the vertex shader. The brick pattern that will be rendered on
our geometry is parameterized in order to make it easier to modify. The
parameters that are constant across an entire primitive can be stored as
uniform variables and initialized (and later modified) by the application.
This makes it easy to expose these controls to the end user for modification
through user interface elements such as sliders and color pickers. The brick
fragment shader uses the parameters that are illustrated in Figure 6.1. These
are defined as uniform variables as follows:

uniform vec3 BrickColor, MortarColor;
uniform vec2 BrickSize;
uniform vec2 BrickPct;

We want our brick pattern to be applied in a consistent way to our geometry
in order to have the object look the same no matter where it is placed in the
scene or how it is rotated. The key to determining the placement of the brick
pattern is the modeling coordinate position that is computed by the vertex
shader and passed in the varying variable MCposition:

varying vec2 MCposition;

This variable was computed at each vertex by the vertex shader in the
previous section, and it is interpolated across the primitive and made avail-
able to the fragment shader at each fragment location. Our fragment shader
can use this information to determine where the fragment location is in
relation to the algorithmically defined brick pattern. The other varying vari-
able that is provided as input to the fragment shader is defined as follows:

varying float LightIntensity;

This varying variable contains the interpolated value for the light intensity
that we computed at each vertex in our vertex shader. Note that both of the
varying variables we defined in our fragment shader are defined with the
same type that was used to define them in our vertex shader. A link error
would be generated if this were not the case.

With our uniform and varying variables defined, we can begin with the
actual code for the brick fragment shader:

void main (void)
{
 vec3 color;
 vec2 position, useBrick;

Rost.book Page 152 Wednesday, February 4, 2004 12:06 PM

6.3 Fragment Shader 153

In this shader, we’ll do things more like we would in C and define all our
local variables before they’re used at the beginning of our main function. In
some cases, this can make the code a little cleaner or easier to read, but it is
mostly a matter of personal preference and coding style. The first actual
lines of code in our brick fragment shader will compute values for the local
vec2 variable position:

 position = MCposition / BrickSize;

This statement divides the fragment’s x position in modeling coordinates by
the column width and the y position in modeling coordinates by the row
height. This gives us a “brick row number” (position.y) and a “brick number”
within that row (position.x). Keep in mind that these are signed, floating-
point values, so it is perfectly reasonable to have negative row and brick
numbers as a result of this computation. Next, we’ll use a conditional to
determine whether the fragment is in a row of bricks that is offset:

 if (fract(position.y * 0.5) > 0.5)
 position.x += 0.5;

The “brick row number” (position.y) is multiplied by 0.5, and the result is
compared against 0.5. Half the time (or every other row) this comparison
will be true, and the “brick number” value (position.x) is incremented by
0.5 to offset the entire row by half the width of a brick. Following this, we
need to compute the fragment’s location within the current brick:

 position = fract(position);

This computation provides us with the vertical and horizontal position
within a single brick. This will be used as the basis for determining whether
to use the brick color or the mortar color.

Next we need a function that gives us a value of 1.0 when the brick color
should be used and 0 when the mortar color should be used. If we can
achieve this, we’ll end up with a simple way to choose the appropriate color.
We know that we’re working with a horizontal component of the brick
texture function and a vertical component. If we can create the desired
function for the horizontal component and the desired function for the
vertical component, we can just multiply the two values together to get our
final answer. If the result of either of the individual functions is 0 (mortar
color), the multiplication will cause the final answer to be 0; otherwise, it
will be 1.0, and the brick color will be used.

The step function can be used to achieve the desired effect. It takes two
arguments, an edge (or threshold) and a parameter, to test against that edge.
If the value of the parameter to be tested is less than or equal to the edge
value, the function returns 0; otherwise, it returns 1.0. (Refer to Figure 5.11

Rost.book Page 153 Wednesday, February 4, 2004 12:06 PM

154 Chapter 6: Simple Shading Example

for a graph of this function). In typical use, the step function is used to
produce a pattern of pulses (i.e., a square wave) where the function starts off
at 0 and rises to 1 when the threshold is reached. We can get a function that
starts off at 1.0 and drops to 0 just by reversing the order of the two argu-
ments provided to this function:

 useBrick = step(position, BrickPct);

In these two lines, we compute two values that tell us whether we are in the
brick or in the mortar in the horizontal direction (useBrick.x) and in the
vertical direction (useBrick.y). The built-in function step will produce a
value of 0 when BrickPct.x <= position.x and a value of 1.0 when BrickPct.x >
position.x. Because of the fract function, we know that position.x will vary
from [0,1). The variable BrickPct is a uniform variable, so its value will be
constant across the primitive. This means that the value of useBrick.x will
be 1.0 when the brick color should be used and 0 when the mortar color
should be used as we move horizontally. The same thing is done in the
vertical direction using position.y and BrickPct.y to compute the value for
useBrick.y. By multiplying useBrick.x and useBrick.y together, we can get a
value of 0 or 1.0 that will let us select the appropriate color for the fragment.
The periodic step function for the horizontal component of the brick
pattern is illustrated in Figure 6.3.

The values of BrickPct.x and BrickPct.y can be computed by the application
to give a uniform mortar width in both directions based on the ratio of
column width to row height, or they can be chosen arbitrarily to give a
mortar appearance that looks right.

0

1

1 2 3

BrickPct.x BrickPct.x+1 BrickPct.x+2

MortarColorBrickColor

Figure 6.3 The periodic step function that produces the horizontal component of
the procedural brick pattern

Rost.book Page 154 Wednesday, February 4, 2004 12:06 PM

6.3 Fragment Shader 155

All that remains is to compute our final color value and store it in the special
variable gl_FragColor:

 color = mix(MortarColor, BrickColor, useBrick.x * useBrick.y);
 color *= LightIntensity;
 gl_FragColor = vec4 (color, 1.0);
}

Here we compute the color of the fragment and store it in the local variable
color. The built-in function mix is used to choose the brick color or the
mortar color, depending on the value of useBrick.x * useBrick.y. Because
useBrick.x and useBrick.y can have values of only 0 (mortar) or 1.0 (brick),
we will choose the brick color only if both values are 1.0; otherwise, we will
choose the mortar color.

The resulting value is then multiplied by the light intensity, and that result is
stored in the local variable color. This local variable is a vec3, and gl_FragColor
is defined as a vec4, so we create our final color value by using a constructor
to add a fourth component (alpha) equal to 1.0 and assign the result to the
built-in variable gl_FragColor.

The source code for the complete fragment shader is shown in Listing 6.2.

Listing 6.2 Source code for brick fragment shader

uniform vec3 BrickColor, MortarColor;
uniform vec2 BrickSize;
uniform vec2 BrickPct;

varying vec2 MCposition;
varying float LightIntensity;

void main(void)
{
 vec3 color;
 vec2 position, useBrick;

 position = MCposition / BrickSize;

 if (fract(position.y * 0.5) > 0.5)
 position.x += 0.5;

 position = fract(position);

 useBrick = step(position, BrickPct);

 color = mix(MortarColor, BrickColor, useBrick.x * useBrick.y);
 color *= LightIntensity;
 gl_FragColor = vec4 (color, 1.0);
}

Rost.book Page 155 Wednesday, February 4, 2004 12:06 PM

156 Chapter 6: Simple Shading Example

When comparing this shader to the vertex shader in the previous example,
we notice one of the key features of the OpenGL Shading Language, namely
that the language used to write these two shaders is almost identical. Both
shaders have a main function, some uniform variables, and some local vari-
ables; expressions are the same; built-in functions are called in the same way;
constructors are used in the same way; and so on. The only perceptible differ-
ences exhibited by these two shaders are (A) the vertex shader accesses built-
in attributes, such as gl_Vertex and gl_Normal, (B) the vertex shader writes to
the built-in variable gl_Position, whereas the fragment shader writes to the
built-in variable gl_FragColor, and (C) the varying variables are written by
the vertex shader and are read by the fragment shader.

The application code to create and use these shaders will be shown in
Section 7.11, after the OpenGL Shading Language API has been presented.
The result of rendering some simple objects with these shaders is shown in
Figure 6.4. A color version of the result is shown in Color Plate 25.

6.4 Observations

There are a couple of problems with our shader that make it unfit for
anything but the simplest cases. Because the brick pattern is computed by
using the modeling coordinates of the incoming object, the apparent size
of the bricks depends on the size of the object in modeling coordinates. The
brick pattern might look fine with some objects, but the bricks may turn out
much too small or much too large on other objects. At the very least, we
should probably have a uniform variable that could be used in the vertex
shader to scale the modeling coordinates. The application could allow the
end user to adjust the scale factor to make the brick pattern look good on
the object being rendered.

Figure 6.4 A flat polygon, a sphere, and a torus rendered with the brick shaders

Rost.book Page 156 Wednesday, February 4, 2004 12:06 PM

6.5 Summary 157

Another issue stems from the fact that we’ve chosen to base the brick
pattern on the object’s x and y coordinates in the modeling space. This can
result in some unrealistic looking effects on objects that aren’t as regular as
the objects shown in Figure 6.4. By using only the x and y coordinates of
the object, we end up modeling bricks that are infinitely deep. The brick
pattern looks fine when viewed from the front of the object, but when you
look at it from the side, you’ll be able to see how the brick extends in depth.
To get a truly three-dimensional brick shader, we’d need to add a third
dimension to our procedural texture calculation and use the z component
of the position in modeling coordinates to determine whether we were in
brick or mortar in the z dimension as well (see if you can modify the
shaders to do this).

If we look closely at our brick pattern, we’ll also notice that there are
aliasing artifacts (jaggies) along the transition from brick color to mortar
color. These artifacts are due to the step function causing an instantaneous
change from 0 to 1.0 (or from 1.0 to 0) when we cross the transition point
between brick color and mortar color. Our shader has no alternative but to
pick one color or the other for each fragment, and, because we cannot
sample at a high enough frequency to represent this instantaneous change
at the brick/mortar border, aliasing artifacts occur. Instead of using the step
function, we could have used the built-in smoothstep function. This func-
tion is like the step function, except that it defines two edges and a smooth
interpolation between 0 and 1.0 between those two edges. This would have
the effect of blurring the transition between the brick color and the mortar
color, thus making the aliasing artifacts much less noticeable. A method
for analytically antialiasing the procedural brick texture is described in
Section 14.4.5.

Despite these shortcomings, our brick shaders are perfectly good examples
of a working OpenGL shader. Together, our brick vertex and fragment
shaders illustrate a number of the interesting features of the OpenGL
Shading Language.

6.5 Summary

This chapter has applied the language concepts from previous chapters in
order to create working shaders that create a procedurally defined brick
pattern. The vertex shader is responsible for transforming the vertex posi-
tion, passing along the modeling coordinate position of the vertex, and
computing a light intensity value at each vertex using a single simulated
light source. The fragment shader is responsible for determining whether

Rost.book Page 157 Wednesday, February 4, 2004 12:06 PM

158 Chapter 6: Simple Shading Example

each fragment should be brick color or mortar color. Once this determina-
tion is made, the light intensity value is applied to the chosen color, and the
final color value is passed from the fragment shader so that it might ulti-
mately be written in the frame buffer. The source code for these two shaders
was discussed line by line in order to explain clearly how they work. This
pair of shaders illustrates many of the features of the OpenGL Shading
Language and can be used as a springboard for doing bigger and better
things with the language.

6.6 Further Information

The brick shader presented in this chapter is similar to the RenderMan brick
shader written by Darwyn Peachey (2002) and presented in the book,
Texturing and Modeling: A Procedural Approach, Third Edition. This shader and
others are available from the 3Dlabs developer Web site. Source code for
getting started with OpenGL shaders is also available.

[1] 3Dlabs developer Web site. http://www.3dlabs.com/support/developer

[2] Ebert, David S., John Hart, Bill Mark, F. Kenton Musgrave, Darwyn
Peachey, Ken Perlin, and Steven Worley, Texturing and Modeling:
A Procedural Approach, Third Edition, Morgan Kaufmann Publishers,
San Francisco, 2002. http://www.texturingandmodeling.com

[3] Kessenich, John, Dave Baldwin, and Randi Rost, The OpenGL Shading
Language, Version 1.051, 3Dlabs, February 2003.
http://www.3dlabs.com/support/developer/ogl2

[4] OpenGL Architecture Review Board, ARB_vertex_shader Extension
Specification, OpenGL Extension Registry.
http://oss.sgi.com/projects/ogl-sample/registry

[5] OpenGL Architecture Review Board, ARB_fragment_shader Extension
Specification, OpenGL Extension Registry.
http://oss.sgi.com/projects/ogl-sample/registry

[6] OpenGL Architecture Review Board, ARB_shader_objects Extension
Specification, OpenGL Extension Registry.
http://oss.sgi.com/projects/ogl-sample/registry

Rost.book Page 158 Wednesday, February 4, 2004 12:06 PM

