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Chapter 6

 

6.Simple Shading Example

 

Now that we’ve described the OpenGL Shading Language, let’s look at a 
simple example. In this example, we’ll be applying a brick pattern to an 
object. The brick pattern will be calculated entirely within a fragment 
shader. If you’d prefer to skip ahead to the next chapter for a more in-depth 
discussion of the API that allows shaders to be defined and manipulated, 
feel free to do so.

In this example, and in most of the others in this book, there are three 
essential components: the source code for the vertex shader, the source code 
for the fragment shader, and the application code that is used to initialize 
and use these shaders. This chapter focuses on the vertex and fragment 
shaders. The application code for using these shaders will be discussed in 
Section 7.11, after the details of the OpenGL Shading Language API have 
been discussed.

With this first example, we’ll take a little more time discussing the details in 
order to give you a better grasp of what’s going on. In examples later in the 
book, we’ll focus mostly on the details that differ from previous examples.

 

6.1   Brick Shader Overview

 

One approach to writing shaders is to come up with a description of the 
effect that you’re trying to achieve and then decide which parts of the 
shader need to be implemented in the vertex shader, which need to be 
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implemented in the fragment shader, and how the application will tie 
everything together.

In this example, we’ll develop a shader that applies a computed brick 
pattern to all objects that are drawn. We’re not going to attempt the most 
realistic looking brick shader, but rather a fairly simple one that illustrates 
many of the concepts we introduced in the previous chapters. We won’t 
be using textures for this brick pattern; the pattern itself will be generated 
algorithmically. We can build a lot of flexibility into this shader by param-
eterizing the different aspects of our brick algorithm. 

Let’s first come up with a description of the overall effect we’re after:

• A single light source

• Diffuse and specular reflection characteristics

• A brick pattern that is based on the position in modeling coordinates 
of the object being rendered—where the 

 

x

 

 coordinate will be related to 
the brick horizontal position and the 

 

y

 

 coordinate will be related to the 
brick vertical position

• Alternate rows of bricks will be offset by one-half the width of a single 
brick

• Parameters that control the brick color, mortar color, brick-to-brick 
horizontal distance, brick-to-brick vertical distance, brick width fraction 
(ratio of the width of a brick to the overall horizontal distance between 
two adjacent bricks), and brick height fraction (ratio of the height of a 
brick to the overall vertical distance between two adjacent bricks) 

The brick geometry parameters that we’ll be using are illustrated in 
Figure 6.1. Brick size and brick percentage parameters will both be stored in 
user-defined uniform variables of type 

 

vec2

 

. The horizontal distance 
between two bricks, including the width of the mortar, will be provided by 

 

BrickSize.x

 

. The vertical distance between two rows of bricks, including the 
height of the mortar, will be provided by 

 

BrickSize.y

 

. These two values will 
be given in units of modeling coordinates. The fraction of 

 

BrickSize.x

 

 repre-
sented by the brick only will be provided by 

 

BrickPct.x

 

. The fraction of 

 

BrickSize.y

 

 represented by the brick only will be provided by 

 

BrickPct.y

 

. 
These two values will be in the range [0,1]. Finally, the brick color and the 
mortar color will be represented by the variables 

 

BrickColor

 

 and 

 

MortarColor

 

.

Now that we’re armed with a firm grasp of our desired outcome, we’ll design 
our vertex shader, then our fragment shader, and then the application code 
that will tie it all together.
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The vertex shader embodies the operations that will occur on each vertex 
that is provided to OpenGL. To define our vertex shader, we need to answer 
three questions.

1. What data must be passed to the vertex shader for every vertex (i.e., 
attribute variables)?

2. What global state is required by the vertex shader (i.e., uniform 
variables)?

3. What values are computed by the vertex shader (i.e., varying 
variables)?

Let’s look at these questions one at a time.

We can’t draw any geometry at all without specifying a value for each vertex 
position. Furthermore, we can’t do any lighting unless we have a surface 
normal for each location for which we want to apply a lighting computa-
tion. So at the very least, we’ll need a vertex position and a normal for every 
incoming vertex. These attributes are already defined as part of OpenGL, 
and the OpenGL Shading Language provides built-in variables to refer to 

BrickSize.x = 0.30
BrickPct.y = 0.85

BrickPct.x = 0.90

BrickColor = (1.0, 0.3, 0.2)

MortarColor = (0.85, 0.86, 0.84)

BrickSize.y = 0.15

Figure 6.1    Parameters for defining brick
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them (

 

gl_Vertex

 

 and 

 

gl_Normal

 

). If we use the standard OpenGL entry points 
for passing vertex positions and normals, we don’t need any user-defined 
attribute variables in our vertex shader. We can access the current values for 
vertex position and normal simply by referring to 

 

gl_Vertex

 

 and 

 

gl_Normal

 

.

We need access to several pieces of OpenGL state for our brick algorithm. 
These are available to our shader as built-in uniform variables. We’ll 
need to access the current modelview-projection matrix (

 

gl_ModelView-
ProjectionMatrix

 

) in order to transform our vertex position into the clipping 
coordinate system. We’ll need to access the current modelview matrix 
(

 

gl_ModelViewMatrix

 

) in order to transform the vertex position into eye 
coordinates for use in the lighting computation. And we’ll also need to 
transform our incoming normals into eye coordinates using OpenGL’s 
normal transformation matrix (

 

gl_NormalMatrix

 

, which is just the inverse 
transpose of the upper-left 3

 

 × 

 

3 subset of 

 

gl_ModelViewMatrix

 

).

In addition, we’ll need the position of a single light source. We could use 
the OpenGL lighting state and reference that state within our vertex shader, 
but in order to illustrate the use of uniform variables, we’ll define the light 
source position as a uniform variable like this:

 

1

 

 

 

uniform vec3  LightPosition;

 

We also need values for the lighting calculation to represent the contri-
bution due to specular reflection and the contribution due to diffuse 
reflection. We could define these as uniform variables so that they could be 
changed dynamically by the application, but in order to illustrate some 
additional features of the language, we’ll define them as constants like this:

 

const float SpecularContribution = 0.3;
const float DiffuseContribution  = 1.0 - SpecularContribution;

 

Finally, we need to define the values that will be passed on to the fragment 
shader. Every vertex shader must compute the homogeneous vertex posi-
tion and store its value in the standard variable 

 

gl_Position

 

, so we know that 
our brick vertex shader will need to do likewise. We’re going to compute the 
brick pattern on-the-fly in the fragment shader as a function of the 
incoming geometry’s 

 

x

 

 and 

 

y

 

 values in modeling coordinates, so we’ll define 
a varying variable called 

 

MCposition

 

 for this purpose. In order to apply the 
lighting effect on top of our brick, we’ll need to do part of the lighting 

 

1 

 

The shaders in this book use the convention of capitalizing the first letter of user-specified 
uniform, varying, and attribute variable names in order to set them apart from local and 
(nonqualified) global variables.

 

Rost.book  Page 146  Wednesday, February 4, 2004  12:06 PM



 

6.2   Vertex Shader

 

147

 

computation in the fragment shader and apply the final lighting effect after 
the brick/mortar color has been computed in the fragment shader. We’ll do 
most of the lighting computation in the vertex shader and simply pass the 
computed light intensity to the fragment shader in a varying variable called 

 

LightIntensity

 

. These two varying variables are defined like this:

 

varying float LightIntensity;
varying vec2  MCposition;

 

We’re now ready to get to the meat of our brick vertex shader. We begin by 
declaring a main function for our vertex shader and computing the vertex 
position in eye coordinates:

 

void main(void)
{
    vec3 ecPosition = vec3 (gl_ModelViewMatrix * gl_Vertex);

 

In this first line of code, our vertex shader defines a variable called 

 

ecPosition

 

 
to hold the eye coordinate position of the incoming vertex. The eye coordi-
nate position is computed by transforming the vertex position (

 

gl_Vertex

 

) by 
the current modelview matrix (

 

gl_ModelViewMatrix

 

). Because one of the oper-
ands is a matrix and the other is a vector, the * operator performs a matrix 
multiplication operation rather than a component-wise multiplication. 

The result of the matrix multiplication will be a 

 

vec4

 

, but 

 

ecPosition

 

 is 
defined as a 

 

vec3

 

. There is no automatic conversion between variables of 
different types in the OpenGL Shading Language so we convert the result to 
a 

 

vec3

 

 using a constructor. This causes the fourth component of the result 
to be dropped so that the two operands have compatible types. (Construc-
tors provide an operation that is similar to type casting, but it is much more 
flexible, as discussed in Section 3.3). As we’ll see, the eye coordinate posi-
tion will be used a couple of times in our lighting calculation.

The lighting computation that we’ll perform is a very simple one. Some 
light from the light source will be reflected in a diffuse fashion (i.e., in all 
directions). Where the viewing direction is very nearly the same as the 
reflection direction from the light source, we’ll see a specular reflection. To 
compute the diffuse reflection, we’ll need to compute the angle between the 
incoming light and the surface normal. To compute the specular reflection, 
we’ll need to compute the angle between the reflection direction and the 
viewing direction. First, we’ll transform the incoming normal:

 

    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal);

 

This line defines a new variable called 

 

tnorm

 

 for storing the transformed 
normal (remember, in the OpenGL Shading Language, variables can be 
declared when needed). The incoming surface normal (

 

gl_Normal

 

, a built-in 
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variable for accessing the normal value supplied through the standard 
OpenGL entry points) is transformed by the current OpenGL normal trans-
formation matrix (

 

gl_NormalMatrix

 

). The resulting vector is normalized 
(converted to a vector of unit length) by calling the built-in function 

 

normalize

 

, and the result is stored in 

 

tnorm

 

.

Next, we need to compute a vector from the current point on the surface of 
the three-dimensional object we’re rendering to the light source position. 
Both of these should be in eye coordinates (which means that the value for 
our uniform variable 

 

LightPosition

 

 must be provided by the application in 
eye coordinates). The light direction vector is computed as follows: 

 

    vec3 lightVec   = normalize(LightPosition - ecPosition);

 

The object position in eye coordinates was previously computed and stored 
in 

 

ecPosition

 

. To compute the light direction vector, we need to subtract the 
object position from the light position. The resulting light direction vector 
is also normalized and stored in the newly defined local variable 

 

lightVec

 

.

The calculations we’ve done so far have set things up almost perfectly to call 
the built-in function 

 

reflect

 

. Using our transformed surface normal and the 
computed incident light vector, we can now compute a reflection vector at 
the surface of the object; however, 

 

reflect

 

 requires the incident vector (the 
direction from the light to the surface), and we’ve computed the direction 
to the light source. Negating 

 

lightVec

 

 gives us the proper vector:

 

    vec3 reflectVec = reflect(-lightVec, tnorm);

 

Because both vectors used in this computation were unit vectors, the 
resulting vector is a unit vector as well. To complete our lighting calcula-
tion, one more vector is needed—a unit vector in the direction of the 
viewing position. Because, by definition, the viewing position is at the 
origin (i.e., (0,0,0)) in the eye coordinate system, we simply need to negate 
and normalize the computed eye coordinate position, 

 

ecPosition

 

:

 

    vec3 viewVec    = normalize(-ecPosition);

 

With these four vectors, we can perform a per-vertex lighting computation. 
The relationship of these vectors is shown in Figure 6.2.

Diffuse reflection is modeled by assuming that the incident light is scattered 
in all directions according to a cosine distribution function. The reflection 
of light will be strongest when the light direction vector and the surface 
normal are coincident. As the difference between the two angles increases 
to 90

 

o

 

, the diffuse reflection will drop off to zero. Because both vectors have 
been normalized to produce unit vectors, the cosine of the angle between 
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lightVec

 

 and 

 

tnorm

 

 can be determined by performing a dot product opera-
tion between them. We want the diffuse contribution to be 0 if the angle 
between the light and the surface normal is greater than 90

 

o 

 

(there should 
be no diffuse contribution if the light is behind the object), and the 

 

max

 

 
function is used to accomplish this:

 

    float diffuse = max(dot(lightVec, tnorm), 0.0);

 

The specular component of the light intensity for this vertex is computed by

 

    float spec = 0.0;
    if (diffuse > 0.0)
    {
        spec = max(dot(reflectVec, viewVec), 0.0);
        spec = pow(spec, 16.0);
    }

 

The variable for the specular reflection value is defined and initialized to 0. 
We’ll compute only a specular value other than 0 if the angle between the 
light direction vector and the surface normal is less than 90

 

o

 

 (i.e., the 

lightVec

tnorm

vie
wVec

reflectVec

lightPosition ecPosition

Figure 6.2    Vectors involved in the lighting computation for the brick vertex shader

 

Rost.book  Page 149  Wednesday, February 4, 2004  12:06 PM



 

150

 

Chapter 6: Simple Shading Example

 

diffuse value is greater than 0) because we don’t want any specular high-
lights if the light source is behind the object. Because both 

 

reflectVec

 

 and 

 

viewVec

 

 are normalized, computing the dot product of these two vectors 
gives us the cosine of the angle between them. If the angle is near zero 
(i.e., the reflection vector and the viewing vector are almost the same), the 
resulting value will be near 1.0. By raising the result to the 16th power in 
the subsequent line of code, we’re effectively “sharpening” the highlight, 
ensuring that we’ll have a specular highlight only in the region where the 
reflection vector and the view vector are almost the same. The choice of 16 
for the exponent value is arbitrary. Higher values will produce more concen-
trated specular highlights, and lower values will produce less concentrated 
highlights. This value could also be passed in as a uniform variable in order 
to allow it to be easily modified by the end user.

All that remains is to multiply the computed diffuse and specular reflection 
values by the 

 

diffuseContribution

 

 and 

 

specularContribution

 

 constants and add 
the two values together:

 

    LightIntensity = DiffuseContribution * diffuse +
                     SpecularContribution * spec;

 

This is the value that will be assigned to the varying variable 

 

LightIntensity

 

 
and interpolated between vertices. We also have one other varying variable 
to compute, and it is done quite easily: 

 

    MCposition = gl_Vertex.xy;

 

When the brick pattern is applied to a geometric object, we want the brick 
pattern to remain constant with respect to the surface of the object, no 
matter how the object is moved. We also want the brick pattern to remain 
constant with respect to the surface of the object, no matter what the 
viewing position. In order to generate the brick pattern algorithmically in 
the fragment shader, we need to provide a value at each fragment that repre-
sents a location on the surface. For this example, we will provide the 
modeling coordinate at each vertex by setting our varying variable 

 

MCposition

 

 to the same value as our incoming vertex position (which is, by 
definition, in modeling coordinates).

We’re not going to need the 

 

z

 

 or 

 

w

 

 coordinate in the fragment shader, so we 
need a way to select the 

 

x

 

 and 

 

y

 

 components of 

 

gl_Vertex

 

. We could have 
used a constructor here (e.g., 

 

vec2

 

 (

 

gl_Vertex

 

)), but to show off another 
language feature, we’ll use the component selector 

 

.xy

 

 to select the first two 
components of 

 

gl_Vertex

 

 and store them in our varying variable 

 

MCposition

 

. 

The only thing that remains to be done is the thing that must be done by 
all vertex shaders: computing the homogeneous vertex position. We do this 
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by transforming the incoming vertex value by the current modelview-
projection matrix using the built-in function 

 

ftransform

 

:

 

    gl_Position = ftransform();
}

 

For clarity, the code for our vertex shader is provided in its entirety in 
Listing 6.1.

 

Listing 6.1   

 

Source code for brick vertex shader

 

uniform vec3 LightPosition;

const float SpecularContribution = 0.3;
const float DiffuseContribution  = 1.0 - SpecularContribution;

varying float LightIntensity;
varying vec2  MCposition;

void main(void)
{
    vec3 ecPosition = vec3 (gl_ModelViewMatrix * gl_Vertex);
    vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal);
    vec3 lightVec   = normalize(LightPosition - ecPosition);
    vec3 reflectVec = reflect(-lightVec, tnorm);
    vec3 viewVec    = normalize(-ecPosition);
    float diffuse   = max(dot(lightVec, tnorm), 0.0);
    float spec      = 0.0;

    if (diffuse > 0.0)
    {
        spec = max(dot(reflectVec, viewVec), 0.0);
        spec = pow(spec, 16.0);
    }

    LightIntensity  = DiffuseContribution * diffuse +
                      SpecularContribution * spec;

    MCposition      = gl_Vertex.xy;
    gl_Position     = ftransform();
}

 

6.3   Fragment Shader

The purpose of a fragment shader is to compute the color to be applied to a 
fragment or to compute the depth value for the fragment or both. In this 
case (and indeed with most fragment shaders), we’re concerned only about 
the color of the fragment. We’re perfectly happy using the depth value that’s 
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been computed by the OpenGL rasterization stage. Therefore, the entire 
purpose of this shader is to compute the color of the current fragment.

Our brick fragment shader starts off by defining a few more uniform vari-
ables than did the vertex shader. The brick pattern that will be rendered on 
our geometry is parameterized in order to make it easier to modify. The 
parameters that are constant across an entire primitive can be stored as 
uniform variables and initialized (and later modified) by the application. 
This makes it easy to expose these controls to the end user for modification 
through user interface elements such as sliders and color pickers. The brick 
fragment shader uses the parameters that are illustrated in Figure 6.1. These 
are defined as uniform variables as follows:

uniform vec3  BrickColor, MortarColor;
uniform vec2  BrickSize;
uniform vec2  BrickPct;

We want our brick pattern to be applied in a consistent way to our geometry 
in order to have the object look the same no matter where it is placed in the 
scene or how it is rotated. The key to determining the placement of the brick 
pattern is the modeling coordinate position that is computed by the vertex 
shader and passed in the varying variable MCposition:

varying vec2  MCposition;

This variable was computed at each vertex by the vertex shader in the 
previous section, and it is interpolated across the primitive and made avail-
able to the fragment shader at each fragment location. Our fragment shader 
can use this information to determine where the fragment location is in 
relation to the algorithmically defined brick pattern. The other varying vari-
able that is provided as input to the fragment shader is defined as follows:

varying float LightIntensity;

This varying variable contains the interpolated value for the light intensity 
that we computed at each vertex in our vertex shader. Note that both of the 
varying variables we defined in our fragment shader are defined with the 
same type that was used to define them in our vertex shader. A link error 
would be generated if this were not the case.

With our uniform and varying variables defined, we can begin with the 
actual code for the brick fragment shader:

void main (void)
{
    vec3  color;
    vec2  position, useBrick;
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In this shader, we’ll do things more like we would in C and define all our 
local variables before they’re used at the beginning of our main function. In 
some cases, this can make the code a little cleaner or easier to read, but it is 
mostly a matter of personal preference and coding style. The first actual 
lines of code in our brick fragment shader will compute values for the local 
vec2 variable position:

    position = MCposition / BrickSize;

This statement divides the fragment’s x position in modeling coordinates by 
the column width and the y position in modeling coordinates by the row 
height. This gives us a “brick row number” (position.y) and a “brick number” 
within that row (position.x). Keep in mind that these are signed, floating-
point values, so it is perfectly reasonable to have negative row and brick 
numbers as a result of this computation. Next, we’ll use a conditional to 
determine whether the fragment is in a row of bricks that is offset:

    if (fract(position.y * 0.5) > 0.5)
        position.x += 0.5;

The “brick row number” (position.y) is multiplied by 0.5, and the result is 
compared against 0.5. Half the time (or every other row) this comparison 
will be true, and the “brick number” value (position.x) is incremented by 
0.5 to offset the entire row by half the width of a brick. Following this, we 
need to compute the fragment’s location within the current brick:

    position = fract(position);

This computation provides us with the vertical and horizontal position 
within a single brick. This will be used as the basis for determining whether 
to use the brick color or the mortar color. 

Next we need a function that gives us a value of 1.0 when the brick color 
should be used and 0 when the mortar color should be used. If we can 
achieve this, we’ll end up with a simple way to choose the appropriate color. 
We know that we’re working with a horizontal component of the brick 
texture function and a vertical component. If we can create the desired 
function for the horizontal component and the desired function for the 
vertical component, we can just multiply the two values together to get our 
final answer. If the result of either of the individual functions is 0 (mortar 
color), the multiplication will cause the final answer to be 0; otherwise, it 
will be 1.0, and the brick color will be used.

The step function can be used to achieve the desired effect. It takes two 
arguments, an edge (or threshold) and a parameter, to test against that edge. 
If the value of the parameter to be tested is less than or equal to the edge 
value, the function returns 0; otherwise, it returns 1.0. (Refer to Figure 5.11 
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for a graph of this function). In typical use, the step function is used to 
produce a pattern of pulses (i.e., a square wave) where the function starts off 
at 0 and rises to 1 when the threshold is reached. We can get a function that 
starts off at 1.0 and drops to 0 just by reversing the order of the two argu-
ments provided to this function:

    useBrick = step(position, BrickPct);

In these two lines, we compute two values that tell us whether we are in the 
brick or in the mortar in the horizontal direction (useBrick.x) and in the 
vertical direction (useBrick.y). The built-in function step will produce a 
value of 0 when BrickPct.x <= position.x and a value of 1.0 when BrickPct.x > 
position.x. Because of the fract function, we know that position.x will vary 
from [0,1). The variable BrickPct is a uniform variable, so its value will be 
constant across the primitive. This means that the value of useBrick.x will 
be 1.0 when the brick color should be used and 0 when the mortar color 
should be used as we move horizontally. The same thing is done in the 
vertical direction using position.y and BrickPct.y to compute the value for 
useBrick.y. By multiplying useBrick.x and useBrick.y together, we can get a 
value of 0 or 1.0 that will let us select the appropriate color for the fragment. 
The periodic step function for the horizontal component of the brick 
pattern is illustrated in Figure 6.3.

The values of BrickPct.x and BrickPct.y can be computed by the application 
to give a uniform mortar width in both directions based on the ratio of 
column width to row height, or they can be chosen arbitrarily to give a 
mortar appearance that looks right. 

0

1

1 2 3

BrickPct.x BrickPct.x+1 BrickPct.x+2

MortarColorBrickColor

Figure 6.3    The periodic step function that produces the horizontal component of 
the procedural brick pattern
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All that remains is to compute our final color value and store it in the special 
variable gl_FragColor:

    color  = mix(MortarColor, BrickColor, useBrick.x * useBrick.y);
    color *= LightIntensity;
    gl_FragColor = vec4 (color, 1.0);
}

Here we compute the color of the fragment and store it in the local variable 
color. The built-in function mix is used to choose the brick color or the 
mortar color, depending on the value of useBrick.x * useBrick.y. Because 
useBrick.x and useBrick.y can have values of only 0 (mortar) or 1.0 (brick), 
we will choose the brick color only if both values are 1.0; otherwise, we will 
choose the mortar color.

The resulting value is then multiplied by the light intensity, and that result is 
stored in the local variable color. This local variable is a vec3, and gl_FragColor 
is defined as a vec4, so we create our final color value by using a constructor 
to add a fourth component (alpha) equal to 1.0 and assign the result to the 
built-in variable gl_FragColor.

The source code for the complete fragment shader is shown in Listing 6.2.

Listing 6.2   Source code for brick fragment shader

uniform vec3  BrickColor, MortarColor;
uniform vec2  BrickSize;
uniform vec2  BrickPct;

varying vec2  MCposition;
varying float LightIntensity;

void main(void)
{
    vec3  color;
    vec2  position, useBrick;
    
    position = MCposition / BrickSize;

    if (fract(position.y * 0.5) > 0.5)
        position.x += 0.5;

    position = fract(position);

    useBrick = step(position, BrickPct);

    color  = mix(MortarColor, BrickColor, useBrick.x * useBrick.y);
    color *= LightIntensity;
    gl_FragColor = vec4 (color, 1.0);
}
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When comparing this shader to the vertex shader in the previous example, 
we notice one of the key features of the OpenGL Shading Language, namely 
that the language used to write these two shaders is almost identical. Both 
shaders have a main function, some uniform variables, and some local vari-
ables; expressions are the same; built-in functions are called in the same way; 
constructors are used in the same way; and so on. The only perceptible differ-
ences exhibited by these two shaders are (A) the vertex shader accesses built-
in attributes, such as gl_Vertex and gl_Normal, (B) the vertex shader writes to 
the built-in variable gl_Position, whereas the fragment shader writes to the 
built-in variable gl_FragColor, and (C) the varying variables are written by 
the vertex shader and are read by the fragment shader.

The application code to create and use these shaders will be shown in 
Section 7.11, after the OpenGL Shading Language API has been presented. 
The result of rendering some simple objects with these shaders is shown in 
Figure 6.4. A color version of the result is shown in Color Plate 25.

6.4   Observations

There are a couple of problems with our shader that make it unfit for 
anything but the simplest cases. Because the brick pattern is computed by 
using the modeling coordinates of the incoming object, the apparent size 
of the bricks depends on the size of the object in modeling coordinates. The 
brick pattern might look fine with some objects, but the bricks may turn out 
much too small or much too large on other objects. At the very least, we 
should probably have a uniform variable that could be used in the vertex 
shader to scale the modeling coordinates. The application could allow the 
end user to adjust the scale factor to make the brick pattern look good on 
the object being rendered.

Figure 6.4    A flat polygon, a sphere, and a torus rendered with the brick shaders
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Another issue stems from the fact that we’ve chosen to base the brick 
pattern on the object’s x and y coordinates in the modeling space. This can 
result in some unrealistic looking effects on objects that aren’t as regular as 
the objects shown in Figure 6.4. By using only the x and y coordinates of 
the object, we end up modeling bricks that are infinitely deep. The brick 
pattern looks fine when viewed from the front of the object, but when you 
look at it from the side, you’ll be able to see how the brick extends in depth. 
To get a truly three-dimensional brick shader, we’d need to add a third 
dimension to our procedural texture calculation and use the z component 
of the position in modeling coordinates to determine whether we were in 
brick or mortar in the z dimension as well (see if you can modify the 
shaders to do this).

If we look closely at our brick pattern, we’ll also notice that there are 
aliasing artifacts (jaggies) along the transition from brick color to mortar 
color. These artifacts are due to the step function causing an instantaneous 
change from 0 to 1.0 (or from 1.0 to 0) when we cross the transition point 
between brick color and mortar color. Our shader has no alternative but to 
pick one color or the other for each fragment, and, because we cannot 
sample at a high enough frequency to represent this instantaneous change 
at the brick/mortar border, aliasing artifacts occur. Instead of using the step 
function, we could have used the built-in smoothstep function. This func-
tion is like the step function, except that it defines two edges and a smooth 
interpolation between 0 and 1.0 between those two edges. This would have 
the effect of blurring the transition between the brick color and the mortar 
color, thus making the aliasing artifacts much less noticeable. A method 
for analytically antialiasing the procedural brick texture is described in 
Section 14.4.5.

Despite these shortcomings, our brick shaders are perfectly good examples 
of a working OpenGL shader. Together, our brick vertex and fragment 
shaders illustrate a number of the interesting features of the OpenGL 
Shading Language. 

6.5   Summary

This chapter has applied the language concepts from previous chapters in 
order to create working shaders that create a procedurally defined brick 
pattern. The vertex shader is responsible for transforming the vertex posi-
tion, passing along the modeling coordinate position of the vertex, and 
computing a light intensity value at each vertex using a single simulated 
light source. The fragment shader is responsible for determining whether 
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each fragment should be brick color or mortar color. Once this determina-
tion is made, the light intensity value is applied to the chosen color, and the 
final color value is passed from the fragment shader so that it might ulti-
mately be written in the frame buffer. The source code for these two shaders 
was discussed line by line in order to explain clearly how they work. This 
pair of shaders illustrates many of the features of the OpenGL Shading 
Language and can be used as a springboard for doing bigger and better 
things with the language.

6.6   Further Information

The brick shader presented in this chapter is similar to the RenderMan brick 
shader written by Darwyn Peachey (2002) and presented in the book, 
Texturing and Modeling: A Procedural Approach, Third Edition. This shader and 
others are available from the 3Dlabs developer Web site. Source code for 
getting started with OpenGL shaders is also available.
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