
1

Introducing .NET

What’s required to create good software? While it’s possible to
write first-rate code in almost any environment, creating good
software is much easier when the right platform and tools are
available. For most Windows developers today, that platform is
defined by .NET. While defining .NET clearly was once a chal-
lenge, it’s now clear that the .NET label refers primarily to two
things. They are:

� The .NET Framework, which consists of the Common
Language Runtime (CLR) and the .NET Framework class
library. The CLR provides a standard foundation for
building applications, while the .NET Framework class
library offers a large set of standard classes and other
types that can be used by any .NET Framework applica-
tion written in any language.

� Visual Studio, an integrated development environment
(IDE) for creating Windows applications. While this tool
can be used to build software that runs directly on

1

The .NET
Framework and
Visual Studio are
the main compo-
nents of .NET

Chappell_ch01.qxd 4/21/06 8:17 PM Page 1

2 Introducing .NET

Windows, its main focus is helping developers create
.NET Framework applications. Visual Studio supports
several programming languages for creating these appli-
cations, including C#1, Visual Basic (VB), and C++.

Various versions exist for both of these technologies. The
versions described in this book are those released by Microsoft

■ Perspective: .NET’s Naming Journey

It makes sense today to think of the name “.NET” as primarily referring to the
.NET Framework and Visual Studio. Things weren’t always so simple, however.
When .NET was first announced in the summer of 2000, Microsoft applied the
term to a broad range of things. Today’s .NET technologies were included, of
course, but so were several other things. Many of Microsoft’s server products, in-
cluding SQL Server and BizTalk Server, were grouped together as the .NET
Enterprise Servers, for example, and a wholly separate effort eventually known
as .NET My Services was launched. There was even talk about a possible
Windows .NET and Office .NET sometime in the future.

But was there a common technical underpinning for all of these things? Sadly,
the answer was no. When Microsoft first sprang .NET on the world, it treated the
term as a broad brand, one that could be applied to pretty much anything the
company was doing. The result was a good deal of confusion among Microsoft’s
customers.

Thankfully, the story has gotten much simpler. The .NET Enterprise Servers are
now considered part of the Windows Server System, and so they’ve lost the
.NET tag. .NET My Services faded from the scene, while the branding boffins in
Redmond decided against tacking the .NET brand onto either Windows or
Office. Today, when somebody says “.NET,” they’re referring to the .NET
Framework and Visual Studio.

1. Pronounced “C sharp,” as in the musical note.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 2

The .NET Framework 3

in late 2005: version 2.0 of the .NET Framework and Visual
Studio 2005.

The .NET Framework

The heart of .NET is the .NET Framework. First released in
2002, it brought enormous change to the lives of those who
write Windows software and the people who manage them.
Figure 1-1 shows the Framework’s two main parts: the CLR and
the .NET Framework class library. A .NET application always
uses the CLR, and it can also use whatever parts of the class
library it requires.

Every application written using the Framework depends on the
CLR. Among other things, the CLR provides a common set of
data types, acting as a foundation for C#, VB, and all other lan-
guages that target the .NET Framework. Because this foundation
is the same no matter which language they choose, developers
see a more consistent environment.

The .NET
Framework is a
foundation for
creating Windows
applications

The CLR provides a
common basis for
all .NET languages

Common Language Runtime

Windows

.NET Framework Class Library

Windows
Forms

Enterprise
Services

ASP.
NET

ADO.
NET

MoreASP.NET Web
Services

Applications

Figure 1-1 The .NET Framework consists of the Common Language
Runtime (CLR) and the .NET Framework class library.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 3

4 Introducing .NET

■ Perspective: The .NET Framework vs. the Java Environment

Mainstream software development today has split largely into two camps.
Microsoft, promoting the .NET Framework, is in one, while most other vendors
backing the Java environment are in the other. Each technology has its fans and
detractors, and each has a substantial installed base today.

These competing worlds are strikingly similar. To see how similar, compare the
figure above with Figure 1-1. Both environments support the same kinds of ap-
plications, and both provide a large standard library to help build those applica-
tions. The Java library, mostly known today as Java 2 Enterprise Edition (J2EE or
just JEE) includes Java Server Pages (JSP) for Web scripting, Swing for building
GUIs, JAX-WS (formerly JAX-RPC) for Web services–based communication,
Enterprise JavaBeans (EJB) for building scalable server applications, JDBC for
database access, and other classes. These technologies are analogous to the
.NET Framework’s ASP.NET, Windows Forms, ASP.NET Web Services, Enterprise
Services, and ADO.NET, respectively. The Java virtual machine is also much like
the .NET Framework’s CLR, and even the semantics of the dominant lan-
guages—Microsoft’s C# and VB vs. Java—are quite similar.

There are also differences, of course. One obvious distinction between the two is
that the Java environment runs on diverse operating systems, while the .NET
Framework focuses on Windows. The trade-off here is clear: Portability is good,

Java Virtual Machine (VM)

Windows, Solaris, Linux, others

Standard Java Packages

Swing Enterprise
Java Beans

JSP JDBC MoreJAX-WS

Applications

Chappell_ch01.qxd 4/21/06 8:17 PM Page 4

Applications written in any .NET language can use the code in
the .NET Framework class library. Among the most important
technologies provided in this library are the following:

� ASP.NET: Classes focused on building browser-accessible
applications.

� Windows Forms: Classes for building Windows graphical
user interfaces (GUIs) in any CLR-based programming
language.

� ASP.NET Web Services (also called ASMX): Classes for
creating applications that communicate with other
applications using Web services.

� Enterprise Services: Classes that provide distributed
transactions, object instance control, and other
services useful for building reliable, scalable applications.

� ADO.NET: Classes focused on accessing data stored in
relational database management systems (DBMS).

The .NET
Framework class
library provides
standard code for
common functions

The .NET Framework 5

but it prevents tight integration with any one system, and integration is also good.
You can’t have everything, at least not all at the same time. Also, Java-based
products are available from multiple vendors, while only Microsoft provides the
.NET Framework. Different Java vendors can provide different extensions to the
core specifications, so developers can get somewhat locked into a single vendor.
Still, portability across different Java platforms is possible, while the .NET
Framework unambiguously ties your application to Microsoft.

This bifurcation and the competition it engenders are ultimately a good thing.
Both camps have had good ideas, and each has borrowed from the other.
Having one completely dominant technology, whether the .NET Framework or
Java, would produce a stultifying monopoly, while having a dozen viable
choices would lead to anarchy. Two strong competitors, each working to outdo
the other, is just right.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 5

6 Introducing .NET

The .NET Framework class library contains much more than this
short list indicates. Among the other services it provides are
support for creating and working with XML documents, a variety
of security services, and mechanisms for interoperating with
applications built using older Windows technologies such as the
Component Object Model (COM).

As this short description suggests, the .NET Framework class
library can be used to create many different types of applica-
tions. And because all of the services in this library are built on
the CLR, applications can combine them as needed. A browser
application built using ASP.NET, for example, might use
ADO.NET to access stored data and Enterprise Services to
perform distributed transactions.

Software that uses the .NET Framework (and thus relies on the
CLR) is referred to as managed code. As Figure 1-2 shows, an
application can be built solely from managed code, relying en-
tirely on the CLR and the relevant parts of the .NET Framework
class library. An application can also be built from a combina-
tion of managed code and ordinary unmanaged code, with the
two interacting as necessary. This second option, shown on the

A .NET Framework
application consists
of managed code

The .NET
Framework sup-
ports various kinds
of applications

Figure 1-2 An application can be built entirely from managed code or
from a combination of managed and unmanaged code.

Application using
only managed code

Application using both managed
and unmanaged code

Windows

.NET Framework Class
Library

CLR

Managed Code

.NET Framework Class
Library

CLR

Managed Code

Unmanaged
Code

Chappell_ch01.qxd 4/21/06 8:17 PM Page 6

The .NET Framework 7

right side of the figure, is especially important for existing
applications. Most new Windows applications created today are
built wholly in managed code, but it can also be useful to
extend pre-.NET applications with managed code. And although
it’s not shown in the figure, it’s still possible to create new
Windows applications entirely in unmanaged code—using the
.NET Framework isn’t obligatory.

Managed code is typically object-oriented, so the objects it
creates and uses are known as managed objects. A managed
object can use and inherit from another managed object even
if the two are written in different languages. This fact is a key part
of what makes the .NET Framework class library an effective
foundation: Objects written in any CLR-based language can in-
herit and use the class library’s code. Given the fundamental role
played by the CLR, understanding the .NET Framework begins
with understanding this runtime environment.

The Common Language Runtime
Built from scratch to support modern applications, the CLR
embodies a current view of what a programming environment
should be. While it’s hard to claim complete originality for
any idea in computer science today, it is fair to say that this
essential .NET technology takes an interesting new approach to
programming languages.

What the CLR Defines
Think about how a programming language is typically defined.
Each language commonly has its own unique syntax, its own set
of control structures, a unique set of data types, its own notions
of how classes inherit from one another, and much more. The
choices a language designer makes are driven by the target appli-
cations for the language, who its users are meant to be, and the
designer’s own sensibilities.

Yet most people agree on much of what a modern general-
purpose programming language should provide. While opinions

Managed code is
typically built using
managed objects

There’s widespread
agreement on the
features a modern
programming lan-
guage should offer

Chappell_ch01.qxd 4/21/06 8:17 PM Page 7

8 Introducing .NET

Looking Backward: Windows DNA and COM

For most of the 1990s, application developers in the Microsoft environment relied
on a set of technologies that became known as Windows DNA. Those technolo-
gies included the Component Object Model (COM) and Distributed COM
(DCOM), a larger group of COM-based technologies known collectively as
COM+, support for creating browser applications using Active Server Pages (ASP),
data access support with ActiveX Data Objects (ADO), and others. The most com-
monly used languages for building Windows DNA applications were VB and
C++, both supported by earlier versions of Visual Studio.

Tens of thousands of applications based on these technologies are in production
today, providing solid evidence of Windows DNA’s success. Yet the technolo-
gies Windows DNA includes were developed independently over a period of
several years. Because of this, the integration among them wasn’t as complete
as it might have been. For example, while the Windows DNA environment let
developers use various programming languages, each language has its own run-
time libraries, its own data types, its own approach to building GUIs, and other
differences. Applications written in different languages also accessed system
services in different ways. C++ applications could make direct calls to the oper-
ating system through the Win32 interface, for instance, while VB applications
typically accessed these services indirectly. These differences made life chal-
lenging for developers working in more than one language. COM, by defining
common conventions for interfaces, data types, and other aspects of interaction
among different software, was effectively the duct tape that held this complex
environment together.

By providing a common foundation that can be used from all languages,
the .NET Framework significantly simplified life for Windows developers.
Applications built on the .NET Framework don’t face many of the problems
that COM addresses—.NET Framework applications all use the CLR, for
example, which defines a common approach to interfaces and other data
types—and so the glue between different languages that COM provides is no
longer necessary. This is why COM technology isn’t used in building pure .NET
Framework applications. Instead, developers can build software that interacts in
a more natural and substantially simpler way.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 8

The .NET Framework 9

on syntax differ—some developers love curly braces, others
abhor them—there’s widespread agreement on what semantics
a language should offer. Given this, why not define a standard
implementation of those semantics, then allow different syn-
taxes to be used to express those semantics?

The CLR provides this standard implementation. By providing a
common set of data types such as integers, strings, classes, and
interfaces, specifications for how inheritance works, and much
more, it defines a common set of semantics for languages built
on it. The CLR says nothing about syntax, however. How a
language looks, whether it contains curly braces or semicolons
or anything else, is entirely up to the language designer. While
it is possible to implement languages with varying behaviors on
top of the CLR, the CLR itself provides a consistent, modern set
of semantics for a language designer to build on.

Along with its standard types, the CLR provides other
fundamental services. Those services include the following:

� Garbage collection, which automatically frees managed
objects that are no longer referenced.

� A standard format for metadata, information about each
type that’s stored with the compiled code for that type.

� A common format, called assemblies, for organizing
compiled code. An assembly can consist of one or more
Dynamic Link Libraries (DLLs) and/or executables (EXEs),
and it includes the metadata for the classes it contains.

The CLR also
provides other
common services

For the most part, the arrival of the .NET Framework was the death knell for
Windows DNA and COM. It’s taken quite a while for organizations to migrate to
the new world of .NET, and many applications built with these older Windows
technologies are still in production. Still, with few exceptions, serious new
Windows development today uses .NET, not Windows DNA.

The CLR defines a
common set of
semantics that is
used by multiple
languages

Chappell_ch01.qxd 4/21/06 8:17 PM Page 9

10 Introducing .NET

A single application might use code from one or more
assemblies, and so each assembly can specify other as-
semblies on which it depends.

Using the CLR
The CLR was not defined with any particular programming
language in mind. Instead, its features are derived largely from
popular existing languages, such as C++, the pre-.NET version
of VB, and Java. Today, Microsoft provides several CLR-based
languages, including C#, the .NET version of VB, an extended

The CLR supports
many different
programming
languages

■ Perspective: Standardizing C# and the CLR

C# and a subset of the CLR called the Common Language Infrastructure (CLI) are
now official international standards. Microsoft originally submitted them to the
ECMA standards organization, and they’ve also been approved by the
International Organization for Standardization (ISO). Along with C#, the stan-
dardized technologies include the syntax and semantics for metadata, MSIL
(rechristened the Common Intermediate Language, or CIL), and parts of the .NET
Framework class library. For more details on exactly what has been submitted
and its current status, see http://msdn.microsoft.com/net/ecma.

The biggest effect of establishing C# and the CLI as standards is to let others
more easily implement these technologies. The most visible non-Microsoft
implementation of .NET is surely the Mono project (http://www.mono-project
.com). Mono’s ambitious goal is to implement at least a large part of what
Microsoft has given to ECMA, including a C# compiler and the CLI, along with
other parts of the .NET Framework. Mono’s creators say that they were attracted
to the CLR for technical reasons, which must please Microsoft. (In fact, it’s pos-
sible to view the CLI as the specification of a system, while .NET’s CLR is just the
Microsoft implementation of this specification.) Now led by Novell, the Mono
project qualifies as a success in many ways, with implementations available for
Linux and other operating systems. If nothing else, I admire the ambition and
ability of the people who created it.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 10

The .NET Framework 11

version of C++, and others. Third parties also provide
languages built on the CLR.

No matter what language it’s written in, all managed code is
compiled into Microsoft Intermediate Language (MSIL) rather
than a machine-specific binary. MSIL (also referred to as just IL)
is a set of CPU-independent instructions for performing typical
operations such as loading and storing information and calling
methods. Each DLL and EXE in an assembly contains MSIL
rather than processor-specific code. Installing a .NET Framework
application on your system really means copying to your disk
files that contain MSIL rather than a machine-specific binary.
When the application is executed, MSIL is transformed into
native code before it’s executed.

Figure 1-3 illustrates the process of compiling and executing
managed code. Source code written in VB, C#, or another lan-
guage that targets the CLR is first transformed into MSIL by the
appropriate language compiler. As the figure shows, the compiler

Managed code is
always compiled
first into MSIL

Each method is
typically JIT com-
piled the first time
it’s invoked

Execution

Native
Code

JIT
Compiler

MSIL and
Metadata

Source
Code

Language
Compiler

Before installation or
the first time each
method is called

Compilation

Figure 1-3 All managed code is compiled first to MSIL, then translated
into native code before execution.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 11

The .NET
Framework class
library is organized
as a tree

12 Introducing .NET

also produces metadata that’s stored in the same file as the MSIL.
Before execution, this MSIL is compiled into native code for the
processor on which the code will run. By default, each method
in a running application is compiled the first time that method is
called. Because the method is compiled just in time to execute it,
this approach is called just in-time (JIT) compilation.

One point worth noting is that any language built on the
CLR should exhibit roughly the same performance as any
other CLR-based language. Unlike the pre-.NET world, where the
performance difference between VB and C++ was sometimes
significant, a .NET Framework application written in C# isn’t
noticeably faster than the same application written in
VB. While some compilers may produce better MSIL code
than others, large variations in execution speed are unlikely.

The CLR is the foundation of everything else in the .NET
Framework. All code in the .NET Framework class library
depends on it, as do all Framework-based applications. Chapter 2
provides a more detailed look at the technology of the CLR.

The .NET Framework Class Library
The .NET Framework class library is exactly what its name
suggests: a library of classes and other types that developers
can use to make their lives easier. While these classes are
themselves written in C#, they can be used from any CLR-
based language. Code written in C#, VB, C++, or any other
language supported by the .NET Framework can create
instances of these classes and call their methods. That code can
also rely on the CLR’s support for inheritance to inherit from the
library’s classes.

Surveying the Library
The contents of the .NET Framework class library are organized
into a tree of namespaces. Each namespace can contain types,
such as classes and interfaces, and other namespaces. Figure 1-4

The .NET
Framework class
library can be used
from any CLR-
based language

All .NET
Framework–based
languages have
about the same
level of
performance

Chappell_ch01.qxd 4/21/06 8:17 PM Page 12

The .NET Framework 13

Web Windows EnterpriseServices XML ...Int32,
String, ...

System

ServicedComponent, ...

XmlDocument, ...

...Connection,
DataSet, ...

Data

UI Services Forms

Figure 1-4 The .NET Framework class library is structured as a
hierarchy of namespaces, with the System namespace at the root.

The .NET Compact Framework

While the .NET Framework is useful for writing applications on desktops
and server machines, it can also be used with smaller devices, such as mobile
phones, PDAs, and set-top boxes. Small devices are becoming more and more
important, and they’re an important piece of Microsoft’s overall business strat-
egy. These devices typically have less memory, however, so they’re unable to
run the complete .NET Framework. The .NET Compact Framework addresses
this issue. By eliminating some parts of the .NET Framework class library, it al-
lows use of the Framework in smaller devices.

The .NET Compact Framework targets the Windows CE operating system, but be-
cause it’s built on the same foundation used in larger systems, developers can use
Visual Studio as their development environment. Organizations that must create
software for a range of devices can now use the same languages, the same tools,
and much of the same development platform to target systems of all sizes.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 13

14 Introducing .NET

shows a very small part of the .NET Framework class library’s
namespace tree. The namespaces shown include the following:

� System: The root of the tree, this namespace contains all
of the other namespaces in the .NET Framework class
library. System also contains the core data types used by
the CLR (and thus by languages built on the CLR). These
types include several varieties of integers, a string type,
and many more.

� System.Web: This namespace contains types useful for
creating Web applications, and like many namespaces,
it has subordinate namespaces. Developers can use
the types in System.Web.UI to build ASP.NET browser
applications, for example, while those in System.
Web.Services are used to build ASP.NET Web Services
applications.

� System.Data: The types in this namespace comprise
ADO.NET. For example, the Connection class is used to
establish connections to a database management system
(DBMS), while an instance of the DataSet class can be
used to cache and examine the results of a query issued
against that DBMS.

� System.Windows.Forms: The types in this namespace
make up Windows Forms, and they’re used to build
Windows GUIs. Rather than relying on language-specific
mechanisms, such as the older Microsoft Foundation
Classes (MFC) in C++, .NET Framework applications
written in any programming language use this common
set of types to build graphical interfaces for Windows.

� System.EnterpriseServices: The types in this namespace
provide services required for some kinds of enterprise
applications. Implemented by COM+ in the pre-NET
world, these services include distributed transactions,
object instance lifetime management, and more. The
most important type in this namespace, one from which

Chappell_ch01.qxd 4/21/06 8:17 PM Page 14

The .NET Framework 15

classes must inherit to use Enterprise Services, is the
ServicedComponent class.

� System.XML: Types in this namespace provide support
for creating and working with XML-defined data. The
XmlDocument class, for instance, allows accessing an
XML document using the Document Object Model
(DOM). This namespace also includes support for tech-
nologies such as the XML Schema definition language
(XSD) and XPath.

Many more namespaces are defined, providing support for file
access, serializing an object’s state, remote access to objects,
and much more. In fact, the biggest task facing developers who
wish to build on the .NET Framework is learning to use the
many services that the library provides. There’s no requirement
to learn everything, however, so a developer is free to focus on
only those things relevant to his or her world. Still, some parts
will be relevant to almost everybody, and so the next sections
provide a quick overview of some of this large library’s most
important aspects.

Building Web Applications: ASP.NET
Implemented in the System.Web namespace, ASP.NET is an im-
portant piece of the .NET Framework. The successor to the very
popular Active Server Pages (ASP) technology, ASP.NET applica-
tions are built from one or more pages. Each page contains HTML
and/or executable code, and typically has the extension .aspx.
As Figure 1-5 shows, a request from a browser made via HTTP
causes a page to be loaded and executed. Any output the page
creates is then returned to the browser that made the request.

Building effective Web applications requires more than just the
ability to combine code with HTML. Accordingly, ASP.NET pro-
vides a range of support, including the following:

� Web controls, allowing a developer to create a browser
GUI in a familiar way. By dragging and dropping

ASP.NET
applications rely on
.aspx pages

Learning the .NET
Framework class
library takes time

ASP.NET includes
a number of things
to help developers
create Web
applications

Chappell_ch01.qxd 4/21/06 8:17 PM Page 15

ADO.NET lets
applications access
stored data

16 Introducing .NET

standard ASP.NET controls for buttons and other inter-
face elements onto a form, it’s possible to build GUIs for
Web applications in much the same way as for local
Windows applications.

� Mechanisms for managing an application’s state
information.

� Built-in support for maintaining information about an
application’s users, sometimes called membership
information.

� Support for data binding, which allows easier access to
information stored in a DBMS or some other data source.

Given the popularity of Web applications, ASP.NET probably
impacts more developers than any other part of the .NET
Framework class library. Chapter 5 provides more detail on this
key component of the .NET Framework.

Accessing Data: ADO.NET
ADO.NET lets applications work with stored data. As Figure 1-6
shows, access to a DBMS relies on a .NET Framework data
provider, written as managed code. Providers that allow access
to SQL Server, Oracle, and other DBMS are included with the

IIS

Common Language Runtime

<HTML>
...
</HTML>HTTP

example.
aspx

Figure 1-5 ASP.NET allows developers to create browser-accessible
applications.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 16

The .NET Framework 17

.NET Framework. They allow a client application to issue
commands against the DBMS and examine any results those
commands return. The result of a Structured Query Language
(SQL) query, for example, can be examined in two ways.
Applications that need only read the result a row at a time can
do this by using a DataReader object to march through the result
one record at a time. Applications that need to do more com-
plex things with a query result, such as send it to a browser,
update information, or store that information on disk, can in-
stead have the query’s result packaged inside a DataSet object.

As Figure 1-6 illustrates, a DataSet can contain one or more
tables. Each table can hold the result of a different query, so a
single DataSet might potentially contain the results of two or
more queries, perhaps from different DBMS. In effect, a DataSet
acts as an in-memory cache for data. As the figure shows, how-
ever, DataSets can hold more than just the result of a SQL query.
It’s also possible to read an XML document directly into a table
in a DataSet without relying on a .NET Framework data

An ADO.NET
DataSet acts as an
in-memory cache
for data

DBMS

Common Language Runtime

.NET
Framework

Data
Provider

Client Application

DataSet

Windows

XML
Document

Rows

Figure 1-6 ADO.NET allows .NET Framework applications to access
data stored in DBMS and XML documents.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 17

ASP.NET Web
Services allow
communication
via SOAP

18 Introducing .NET

provider. Data defined using XML has also become much more
important in the last few years, so ADO.NET allows accessing it
directly. While not all .NET Framework applications will rely on
ADO.NET for data access, a large percentage surely will.
ADO.NET is described in more detail in Chapter 6.

Building Distributed Applications
Creating software that communicates with other software is a
standard part of modern application development. Yet different
applications have different communication requirements. To
meet these diverse needs, the .NET Framework class library
includes three distinct technologies for creating distributed
applications. Figure 1-7 illustrates these choices.

ASP.NET Web Services, mostly defined in System.Web.Services,
allows applications to communicate using Web services. Since
it’s part of ASP.NET, this technology lets developers use a similar

Running the .NET Framework

The .NET Framework is meant to be the foundation for most Windows applica-
tions going forward. To make this possible, the Framework runs on many versions
of Windows, including Windows 2000, Windows XP, Windows Server 2003,
and Windows Vista. It’s also available for the 64-bit versions of Windows XP,
Windows Server 2003, and Windows Vista. The Framework doesn’t run on older
systems, however, such as Windows 95 or Windows NT. Given that it was re-
leased many years after these versions of Windows, this shouldn’t be surprising.

The .NET Framework also supports an option called side-by-side execution. This
allows simultaneous execution of not just multiple versions of the same applica-
tion, but also multiple versions of the .NET Framework itself. For example, a
single machine might have both version 1.1 and version 2.0 of the Framework
installed, with each used to run applications written specifically for it. This lets
organizations move forward with new versions of the .NET Framework without
touching existing applications that run on earlier releases.

Chappell_ch01.qxd 4/21/06 8:17 PM Page 18

The .NET Framework 19

model for creating distributed software. As Figure 1-7 shows,
applications that expose methods as Web services can be built
from files with the extension .asmx, each of which contains only
code. Clients make requests using the standard Web services
protocol SOAP2, and the correct page is loaded and executed.
Because this technology is part of ASP.NET, requests and replies
also go through Internet Information Services (IIS), the standard
Web server for Windows.

Communication via Web services is especially useful for interop-
erating with software built on platforms other than the .NET
Framework, such as the Java environment. But it’s not always the
right solution. In some situations, the technology known as .NET

DBMS

Client Server

SOAP

IIS

Common Language Runtime

ASP.NET Web Services

class X {…}

app.asmx

Server

Binary, SOAP,
Others

.NET Remoting

DCOM

Enterprise Services

Client

Client Server

Figure 1-7 Distributed applications can use ASP.NET Web Services,
.NET Remoting, or Enterprise Services.

2. “SOAP” was originally an acronym for “Simple Object Access Protocol.”
Today, the standards group that owns this technology has decided that
SOAP no longer stands for anything—it’s just a name.

.NET Remoting
focuses on commu-
nication between
.NET Framework-
based applications

Chappell_ch01.qxd 4/21/06 8:17 PM Page 19

(chapter continues...)

