
Chapter 3

The amazing em unit
and other best
practices

This chapter is about writing style sheets with style. By showing you
case studies and how they are constructed, we give you a sense of how
CSS can encode the visual presentation you want to achieve. More
importantly, if you follow the guidelines in this chapter, your documents
will behave well on a wide range of Web devices. For example, they will
scale gracefully from one screen size to another.
The foremost tool for writing scalable style sheets is the em unit, and

it therefore goes on top of the list of guidelines that we compile
throughout this chapter: Use ems to make scalable style sheets. Named
after the letter “M,” the em unit has a long-standing tradition in typogra-
phy where it has been used to measure horizontal widths. For example,
the long dash (—) often found in American texts is known as an “em
dash” because historically, it has had the same width as the letter “M.”
Its narrower cousin (–), often found in European texts, is similarly
referred to as “en dash.”
The meaning of “em” has changed over the years. Not all fonts have

the letter “M” in them (for example, Chinese), but all fonts have a
height. The term has therefore come to mean the height of the font –
not the width of the letter “M.”
In CSS, the em unit is a general unit for measuring lengths (for exam-

ple, page margins and padding around elements). You can use it both
horizontally and vertically, and this shocks traditional typographers who
have always used the em exclusively for horizontal measurements. By
extending the em unit to also work vertically, it has become a very
powerful unit – so powerful that you seldom have to use other units of
length.

Cascading Style Sheets

54

M
Use ems to make scalable

style sheets!

Let's look at a simple example where we use the em unit to set font
sizes:

<HTML>
 <STYLE>
 H1 { font-size: 2em }
 </STYLE>
 <BODY>
 <H1>Movies</H1>
 </BODY>
</HTML>

When used to specify font sizes, the em unit refers to the font size of
the parent element. So, in the previous example, the font size of the H1
element is set to be twice the font size of the BODY element. To find
what the font size of the H1 element will be, we need to know the font
size of BODY. Because this isn't specified in the the style sheet, the
browser must find it from somewhere else – a good place to look is in
the user's preferences. So, if the user sets the normal font size to 10
points, the size of the H1 element is 20 points. This makes document
headlines stand out relative to the surrounding text. Therefore: Always
use ems to set font sizes!
Designers who come from a desktop-publishing background may be

inclined to skip the indirection that em introduces and specify directly
that the font size should be 20 points. This is possible in CSS (see the
description of the font-size property in Chapter 5, “Fonts”) but using
em is a better solution. Say, for example, that a sight-impaired user sets
his normal font size to 20pt (20 points). If the font size of H1 is 2em, as
we recommend, H1 elements will scale accordingly and be displayed in
40 points. If, however, the style sheet sets the font size to be 20pt,
there will be no scaling of fonts and the size of headlines will have the
same size as the surrounding text.
The usefulness of the em unit isn't limited to font sizes. Figure 3.1

shows a page design where all lengths – including the padding and mar-
gins around elements – are specified in ems.
Let's first consider the padding. In CSS, padding is space around an

element that is added to set the element apart from the rest of the con-
tent. The color of the padding is always the same as the background
color of the element it surrounds. In Figure 3.1, the menu on the right
has been given a padding with this rule:

DIV.menu { padding: 1.5em }

Chapter 3: The amazing em unit and other best practices

55

Always use ems to set font
sizes!

By specifying the padding width in ems, the width of the padding is rela-
tive to the font size of the DIV element. As a designer, you don't really
care what the exact width of the padding is on the user's screen; what
you care about is the proportions of the page you are composing. If the
font size of an element increases, the padding around the element
should also increase. This is shown in Figure 3.2 where the font size of
the menu has increased while the proportions remain constant.
Outside the menu's padding is the margin area. The margin area

ensures that there is enough space around an element so that the page
doesn't appear cramped. This rule sets the margin around the menu:

DIV.menu { margin: 1.5em }

Figure 3.2 identifies the margin area. Again, the use of ems ensures scal-
able designs.
Another use of ems can be found in this book where the indent of

the first line of most paragraphs is set to 1.8 em. The same value is used
for the left margin of code examples, such as this:

P { text-indent: 1.8em }
PRE { margin-left: 1.8em }

So, if ems are so great, why does CSS have other units as well? There
are cases when it makes sense to use other units. For example, here is a

Cascading Style Sheets

56

Figure 3.1 All lengths on this
page are specified using ems.

case where percentages may work just as well, if not better: setting the
margins of the BODY element. Remember that everything that is dis-
played in an HTML page is inside BODY, so setting the margins of that
element sets the overall shape of the page. You could give the page nice
wide margins on both sides with these two rules:

BODY {
 margin-left: 15%;
 margin-right: 10%
}

This makes the text 75% of the total width, and the left margin a bit
wider than the right one. Try it! Your page immediately looks more
professional. Percentage values set on the BODY element are typically
calculated with respect to the browser window. So, in the previous
example, the text will cover 75% of the browser window.
Both ems and percentages are relative units, which means that they

are computed with respect to something. We can distill a general rule
from this: Use relative units for lengths. But, how about the absolute units
in CSS – inches, centimeters, points, and picas – why are they in there
at all if you never recommend to use them?
Cases may arise when you'll need to use absolute units. Say, for

example, that you are creating your wedding invitations using XML and
CSS. You have carefully crafted tags such as <BESTMAN> and <RSVP/>,
and you plan to distribute the invitations through the Web. However,
some parts of your families are not yet connected and require printed

Chapter 3: The amazing em unit and other best practices

57

Use relative units for
lengths!

Figure 3.2 Because margins and
padding are specified in ems, they

scale relative to the font size.

invitations – on handmade paper, of course, and with proper margins.
And 12 point fonts, exactly. This is the time to pull out the obsolete
absolute length units: Only use absolute length units when the physical char-
acteristics of the output medium are known. In practice, this happens only
when you hand-tailor a style sheet for a specific printer paper size. In all
other cases, you are better off using relative length units.
A common presentation on the Web is to move elements to the

sides of the page. Typically, this is achieved by using a table for layout
purposes. Although you can use CSS to describe table layout (see
Appendix A, “HTML 4.0 quick reference”), there is a simpler way to
“put stuff on the side.” In HTML, images can float; i.e., they move over
to the side while allowing text to “wrap around” them. In CSS, all ele-
ments – not just images – can float. The menu in Figures 3.1 and 3.2 is
an example of a floating element that has been set to float to the right
side of the page. To achieve this effect, you must complete two steps.
First, the element must be declared to be floating using the float prop-
erty. Second, the element must be given an appropriate width (in ems,
of course). This is done through the width property. Here are the two
rules needed:

DIV.menu {
 float: right;
 width: 15em;
}

By using floating text elements instead of tables, your markup can
remain simple while achieving many of the visual effects that are often
accomplished with tables in HTML. Thus, we have another guideline:
Use floating elements instead of tables. Simpler markup isn't the only rea-
son why floating elements are good replacements for tables. Flexible
layout schemes are another. By changing a few lines in the style sheet
which generated the page shown in Figure 3.1, we can, for example,
move the menu to the left side (see Figure 3.3). Also, many text-only
browsers have problems displaying tables because content within the
table doesn't come in its logical order.
This brings us to the next guideline: Put content in its logical order.

Although CSS allows you to move text around on the screen by means
of floats and other ways of positioning, do not rely on that. By putting
content in its logical order, you ensure that your document makes
sense in browsers that don't support CSS. That includes browsers that
work in text mode, such as Lynx, older browsers that date from before

Cascading Style Sheets

58

Put content in its logical
order!

Use floating elements
instead of tables!

Only use absolute length
units when the physical

characteristics of the out-
put medium are known!

CSS, browsers whose users have turned off style sheets, or browsers
that don't work visually at all, such as voice browsers and Braille
browsers. Voice browsers may actually support CSS because CSS can
also describe the style of spoken pages, but aural CSS (not described in
this book) doesn't allow text to be spoken out of order.
Even a browser that supports CSS may sometimes fail to load the

style sheet because of a network error. Therefore, you should always
make sure your documents are legible without style sheets. Documents must
be legible to humans, but also to Web robots and other software that
try to index, summarize, or translate your documents. Also, think of the
future: Five years from now, the style sheet may be lost; in 50 years,
there may not be a browser that knows CSS; and in 500 years…
A good way to make sure your documents are really legible is to test

your documents on several browsers. Alas, not all browsers that claim to
support CSS do so according to W3C's specification. How much effort
you should put into testing your style sheets depends on the target
audience of your documents. If you publish on a closed intranet where
everyone uses the same browser, your testing job will be easy. If, on the
other hand, your documents are openly available on the Web, testing
can be a time-consuming task. One way to avoid doing all the testing
yourself is to use one of the W3C Core Styles, which are freely avail-
able on the Web (see Chapter 14, “External style sheets”).

Chapter 3: The amazing em unit and other best practices

59

Test your documents on
several browsers!

Make sure your documents
are legible without style

sheets!

Figure 3.3 By changing a few
lines in the style sheets, you can

achieve a different design.

Realize that your document will end up on systems that have differ-
ent fonts. CSS specifies five so-called generic fonts that are guaranteed to
exist in all browsers: serif, sans-serif, monospace, cursive, and
fantasy. When specifying a font family in CSS, you have the option of
supplying a list to increase the chance of finding a specified font at the
user's system. The last font family in the list should always be a generic
font. So always specify a fallback generic font. This book, for example, has
been set in Gill Sans. But, not everybody has a copy of that font, so we
actually specified the font as

BODY { font-family: Gill Sans, sans-serif }

This code says that the font for the document's body is Gill Sans when
available, or any other sans serif font when not. Depending on your
browser and your machine's configuration, you may get Helvetica, Arial,
or something similar. You can learn more about setting fonts in Chap-
ter 5.
A word of warning at the end: Know when to stop. Be critical when

designing your style sheet. Just because you can use 10 different fonts
and 30 different colors on the same page doesn't mean you have to – or
should. Simple style sheets often convey your message better than over-
loaded ones. That single word of red in a page of black gets more atten-
tion than any of the words on a page with a dozen different fonts and
colors. If you think a piece of your text deserves more attention, give it
larger margins, maybe even on all four sides. A little extra space can do
wonders.

Cascading Style Sheets

60

Know when to stop!

Always specify a fallback
generic font!

