

25

C

H A P T E R

3

J2EE Overview

Over the years, the Java technology platform has grown out of its original applet client/server
origins into a robust server-side development platform. Initial platform packages introduced
built-in threading support and provided abstractions to I/O and networking protocols; newer ver-
sions of the Java Software Development Kit (SDK) continued to enhance these abstractions and
introduce newer framework offerings.

The momentum of producing technology frameworks supporting enterprise server-based
development has continued, and has been formalized into the J2EE platform offering. The moti-
vation of this offering is to provide developers with a set of technologies that support the deliv-
ery of robust enterprise-scale software systems. IT professionals are presented with an ever-
changing business and technology landscape. Technology professionals must balance the
demands for new automation requirements against the existence of existing line of business
applications; simply using the technology du jour perpetuates the problem of integrating existing
legacy systems. The goal of the J2EE platform is to offer a consistent and reliable way in which
these demands can be met with applications that possess the following characteristics:

•

High Availability

—Support and exist in a 24/7 global business environment.
•

Secure

—Ensure user privacy and confidence in business function and transactions.
•

Reliable and Scalable

—Support high volumes of business transactions accurately and
in a timely manner.

This chapter offers an overview of the J2EE architecture, a brief discussion of the specifi-
cation’s component design and the solutions they provide, and describes which J2EE technolo-
gies this book will focus on.

First, some background.

chapter 3.fm Page 25 Thursday, November 13, 2003 11:39 AM

26 Chapter 3 • J2EE Overview

 All J2EE technologies are built upon the Java 2 Standard Edition (J2SE). It includes basic
platform classes, such as the Collections framework, along with more specific packages such as
JDBC and other technologies that support client/server-oriented applications that users interact
with through a GUI interface (e.g., drag-and-drop and assistive technologies). Note that platform
technologies are not limited to framework implementations. They also include development and
runtime support tools such as the Java Platform Debugger Architecture (JPDA).

Technologies specific to developing robust, scalable, multitiered server-based enterprise
applications are provided within the J2EE platform offering. While still supporting client/server-
based architectures, J2EE platform technologies provide support for distributed computing,
message-oriented middleware, and dynamic Web page development. This chapter and most of
this book will deal specifically with some of these technologies. In particular, WebSphere 5.0
(the focus of this book) implements the J2EE 1.3 platform specification. A list of the technolo-
gies from J2EE 1.3 (along with the supported levels) is shown in Table 3.1.

Table 3.1

J2EE technologies.

Supported Technology Level required by J2EE 1.3

Java IDL (Interface Definition Language) API (Provided by J2SE 1.3)

JDBC Core API 2.0 (Provided by J2SE 1.3)

RMI-IIOP API (Provided by J2SE 1.3)

JNDI API (Provided by J2SE 1.3)

JDBC Extensions 2.0

EJB (Enterprise Java Beans) 2.0

Servlet API 2.3

JSP (JavaServer Pages) 1.3

JMS (Java Message Service) 1.0

JTA (Java Transaction API) 1.0

JavaMail 1.3

Java Activation Framework (JAF) 1.0

JAXP (Java API for XML Parsing) 1.1

Java 2 Connector Architecture (J2C) 1.0

JAAS (Java Authentication and Authorization
Service)

1.0

chapter 3.fm Page 26 Thursday, November 13, 2003 11:39 AM

27

In addition to the required technologies for J2EE 1.3, WebSphere Application Server 5.0
implements a number of J2EE-compatible technologies in advance of support of J2EE 1.4. In
particular, WebSphere also supports technologies which will be required in J2EE 1.4 (Table 3.2).

3.0.1 J2EE Component Design

One of the most appealing features of object technology is its ability to combine function and
data into a single element, also referred to as an object. Arguably, a single object implementation
could be classified as a component, but components offer more functionality than providing
access to data and performing functions against this data. Flexibility is achieved with designs
that can consist of multiple classes related through composition and inheritance. The word com-
ponent implies that they are a part of something whole, indicating that components require some
kind of reference problem space where they can be applied. The J2EE specification provides this
frame of reference for components that can be used, extended and combined by developers to
deliver robust enterprise applications.

J2EE components defined for the platforms exploit the OO nature of Java by applying
design patterns that provide both white and black box extensibility and configuration options.
The platform components use inheritance and composition throughout their design, providing a
way for custom configuration by developers. Also, defining components in an abstract way can
allow systems built using those components to work regardless of how each vendor implements
each concrete component implementation.

Studying these design techniques employed in the platform implementations can help
make your own designs more elegant. These object design techniques are nothing new and have
been applied throughout the years in other OO languages. Two design themes that take different
approaches in supporting component configuration are discussed in the following sections.

3.0.2 Configurable Implementations

A specific design technique often used in the J2EE platform is the notion of describing com-
pletely abstract designs (through the use of interfaces) that allow the entire implementation to be
configurable. This means that developers are aware of, and have visibility to, a set of interface
types without regard to how they are implemented; implementation is the vendor’s responsibil-
ity. This allows developers to choose the best available solutions. Figure 3.1 shows the dual rela-
tionship interfaces create between developers and vendors.

Table 3.2

J2EE 1.4 technologies implemented
by WebSphere 5.0.

J2EE 1.4 Technology

JAX-RPC (Java API for XML-based RPC)

SAAJ (SOAP with Attachments API for Java)

JMX (Java Management Extensions)

chapter 3.fm Page 27 Thursday, November 13, 2003 11:39 AM

28 Chapter 3 • J2EE Overview

3.0.3 Configurable Algorithms

Not all technology implementations are exclusively interfaces. Most have a combination of gen-
eralized class definitions that interact with interface types. Consider the servlet package; it pro-
vides a

javax.servlet.GenericServlet

 implementation that is defined abstractly along with
providing a servlet interface type. While this may seem redundant, designers of the servlet API
have provided a way for developers to take advantage of an abstract configurable algorithm, and
have provided an abstract configurable implementation that can serve as the basis of a concrete
implementation. (For more on this dual nature, see the discussion comparing abstract classes and
interfaces.)

A

BSTRACT

 C

LASSES

OR

 I

NTERFACES

?

Inheritance is a feature of the OO paradigm that captures the
imagination of developers when they first encounter this technology. The
ability to define and classify hierarchies of data structures and create state and
behavior that is extended for specific functionalities provides an excellent way
to deliver solutions that can be extended in a white box manner.

White box-based designs utilize inheritance by implementing a base
class that is extended by developers, and the appropriate elements are
overridden with the desired functionality. Java provides language constructs
that help communicate what can and cannot be overridden at construction
time. Methods and class definitions can be defined as abstract, requiring
developers to supply concrete implementations. Access modifiers such as final
and private can be utilized to prohibit methods from being overridden.
Combining these elements effectively can yield what is referred to as a
configurable algorithm. The base class implements generalized methods that
perform a set of algorithmic steps. Within this scope of base methods calls,
abstract methods appear that are overridden, fulfilling a given method’s
implementation.

Using inheritance exclusively can result in deep hierarchies that may
lead to coupled implementations, usually the result of an abstract design that
requires a large number of abstract methods to be implemented. Java
interfaces provide an alternative abstract mechanism that allows for a more
independent implementation without regard to an existing hierarchy.

Inheritance is useful for designs that have algorithms or behavior that
can be generalized and utilized by extending classes. Designs that require
most or all of its implementation to be defined by extending classes can be

Figure 3.1

Relationship between developers and vendors.

Technology
Interfaces

Vendors DevelopersImplement Reference

chapter 3.fm Page 28 Thursday, November 13, 2003 11:39 AM

29

communicated using interface definitions. Implementers are given complete
freedom in how the interface methods carry out their operations. However,
interfaces enforce a more rigid contract, and changing an interface design can
make a larger impact on existing implementations. Therefore, an effective way
to evolve a design, in lieu of booking a lot of initial design time, is to initially
utilize inheritances and let an abstract design evolve. Once the required
signatures have been discovered, and it turns out that a configurable
implementation is necessary, interface(s) can be produced.

Configurable implementations utilizing interfaces are the underpinnings
of providing vendor-independent J2EE technology designs.

Interfaces and effective abstractions are the means by which J2EE components achieve
vendor neutrality. The J2EE specifications simply define the APIs, types, life cycles, and interac-
tions of objects within the technology frameworks. Vendors can then apply their efforts toward
the agreed-upon contracts and specifications. Developers write to these specifications. You may
ask: “Won’t that create a dependency on these contracts, and if they change,won’t my code be
affected?” The short answer is yes, you are dependent upon versions of these contracts, but
engaging them in a consistent way and knowing that they are community supported should help
minimize this concern.

In addition to describing WebSphere Application Servers as a J2EE implementation prod-
uct, this book will provide patterns and approaches for neutralizing this dependency.

3.0.4 Who Defines These Specifications?

Another key advantage of Java and the J2EE standard is the way in which component solutions
are identified and defined. Early on, Sun promoted the openness of the Java language, initially
by giving it away.

Advancement of Java technology and the formulation of the J2EE specification have been
carried out by the JCP (Java Community Process). Community is the operative word; any inter-
ested individual or organization can participate. For individuals participation is free; organiza-
tions pay nominal dues. Delegates from the membership propose, review, and accept technology
specification proposals. While not an open source initiative, but under a community license that
still allows Sun to be steward of the language, the JCP encourages community participation.

Ideas are proposed through the creation of a Java Specification Request (JSR). Members
evaluate and vote on the JSR for merit. Once accepted the JSR becomes an official technology
component and goes through the design and development process by a committee made up JCP
members—usually a cross section of well-known vendor members.

The advantage of community participation is the proliferation of new frameworks/com-
ponents that are derived and designed from a wide point of view, arguably larger than propri-
etary-based technology that may be more influenced by market pressures. These market
pressures still exist in the JCP environment, but the checks and balances of the membership can
make them have less influence over the manner in which the problem is solved.

chapter 3.fm Page 29 Thursday, November 13, 2003 11:39 AM

30 Chapter 3 • J2EE Overview

Of course, there is a down side to this approach. Whereas a company can be very nimble
in getting a solution out the door by using a custom-built design, standardized solutions must
receive approval and validation from the community which can take time.

3.1 Why J2EE?

Reuse is an adjective that can beckon the attention of developers, managers, and bean counters.
It promises savings in the form of shorter development efforts and higher quality. Unfortunately,
reuse has been oversimplified, and overhyped, resulting in a minimized impact. For instance,
some reuse (of the base class libraries) occurs just through using Java as a programming envi-
ronment. If you add J2EE components, more reuse occurs. Of course, this is not the business
domain type of reusability that would allow us to snap together applications as in the proverbial
IC chip analogy made by Brad Cox. Nevertheless, Java’s OO nature and the standards of J2EE
are a progression toward achieving high degrees of reuse.

J2EE-based technologies provide what can be classified as horizontal technology reuse
(Figure 3.2). Contracts, primarily in the form of Java interfaces, allow developers to use vendor-
supplied technology solutions with a high degree of transparency. Imagine if the JDBC specifica-
tion did not exist and developers had to write directly to vendor-supplied APIs; of course, then-

Figure 3.2

Horizontal technologies.

Accounts Receivable

Framework

Invoicing

Framework
 Printing

Framework

Controller Servlet
Framework

Persistence
Framework

chapter 3.fm Page 30 Thursday, November 13, 2003 11:39 AM

J2EE Architecture 31

good OO developers would build designs that would decouple and wrapper vendor-specific APIs
with a neutralized access API. Even though SQL is also a standard, each new target SQL-based
data source would require a modification to this neutral API.

Fortunately, the JDBC specification allows the burden of access APIs to be moved to ven-
dors. Developers simply acknowledge the specified contracts and generalized implementations
and use them in applications to execute SQL against any vendor honoring the JDBC specifica-
tion, which most, if not all, do.

Other horizontal technologies are vendor neutralized in a similar approach, allowing
developers to concentrate on application-specific logic by using standards-compliant solutions.
This frees developers from worrying about having to produce or refactor a horizontal implemen-
tation. Instead, the best vendor-supplied solutions can be engaged, resulting in shorter delivery
times of applications that are robust and scalable.

3.2 J2EE Architecture

Planes, trains, and automobiles are all assembled using well-accepted blueprints and parts sup-
plied by countless vendors. One way that this is carried out is through industry-accepted blue-
prints that define specifications for construction and how they are to be used. Under this same
premise, the J2EE specification defines these interfaces, their life cycles, and interactions they
must carry out. The specification also describes roles that can be held by resources involved in
the development and deployment of server-based applications.

The J2EE specification introduces an architectural concept of a container. Containers are
defined to house J2EE components within a layer boundary. Containers manage component rela-
tionships within tiers and resolve dependencies of components between these tiers. Figure 3.3
illustrates the J2EE containers and their associated component dependencies.

To understand where these components exist within the topology of an application, con-
sider that a given application can be partitioned as follows:

•

Client Container

—User interface implementation resident on a client workstation.

•

Web Container

—Server-based user-interface implementation accessed via HTTP.

•

EJB Container

—Captures and defines enterprise business data and function; provides
a mechanism for distribution of business objects and for transactional support of
complex business interactions.

•

Information Systems Back End

—A database, messaging system, or EIS that provides
data and functions to the system.

Applications may utilize all or, at a minimum, the client and Web tiers; within each tier
J2EE technologies will be engaged to perform application functions. Some will occupy an obvi-
ous tier, as is the case with the JSP/Servlet technologies. Obviously, these belong in the Web tier.
Other technologies play a supporting role and may appear in any or all tiers. For instance, it’s
easy to see the requirement of interprocess messaging (JMS) appearing in all of the client, Web,
and EJB tiers.

chapter 3.fm Page 31 Thursday, November 13, 2003 11:39 AM

32 Chapter 3 • J2EE Overview

Notice the presence of J2SE in every container definition diagrammed in Figure 3.3. This
reflects the foundation for all containers. Other technologies shown may or may not appear
within a container definition because they are determined by application requirements. The fol-
lowing sections describe components defined within container boundaries.

3.2.1 JDBC

Potentially the catalyst technology for Java, JDBC allows developers to interact with vendor-
enforced JDBC data sources using generic interfaces. Statement execution, connection resolu-
tion, and result set processing can be carried out using the specification interfaces. Although in
most cases the data source is relational-based, the specification interfaces does not require this.

1

This allows developers to execute SQL in a vendor neutral fashion.

Figure 3.3

Container diagram.

1. The JDBC design is slanted toward row-based result sets, therefore the majority of JDBC support comes from
relational database vendors.

J2SE

Web Container

JSP Servlet

JAX,
RPC

SAAJ

Mgmt

JMX

Java
Mall

JTA

C
o
n
n
e
cto

rs
JM

S

W
e
b
 S

rcvs
JA

C
C

JA
X

R

Web Container

J2SE

EJB Container

EJB

JAX,
RPC

SAAJ

Mgmt

JMX

Java
Mall

JTA

C
o
n
n
e
cto

rs
JM

S

W
e
b
 S

rcvs
JA

C
C

JA
X

R

EJB Container

iiop

http

iiop

Client
Container

J2SE

Application Client
Container

JAX,
RPC

SAAJ

Mgmt

JMX

W
e
b
 S

rcvs

JA
C

C

JA
X

RJ2SE

Applet Container

Applet Application

chapter 3.fm Page 32 Thursday, November 13, 2003 11:39 AM

J2EE Architecture 33

3.2.2 Servlet/JSP

Servlet technology is the mechanism used to create dynamic Web pages, in the same spirit that
early Common Gateway Interface (CGI) technology was used to provide a personalized interac-
tion with a Web site. Servlet technology allows browser resident clients to interact with applica-
tion logic residing on the middle tier using request and response mechanisms of the HTTP
protocol.

JSP technology is built upon servlet technology. Its purpose is to help blend HTML-based
page definition and dynamic-based Java expressions into a single HTML-like document
resource.

3.2.3 EJB

EJBs support the ability to create distributed components that can exist across Java application
process boundaries and server topologies. More than simply providing access to distributed
objects, the specification supports transactions with two-phase commit support, security, and
data source access.

EJB technology is utilized to help support scalable application architecture by making
enterprise business logic and data available and accessible to Web container function. EJBs’
ability to support transactions across server boundaries in a distributed fashion is key to support-
ing large-scale, transaction-based applications.

3.2.4 Connector

EJB technology provides a distributed transaction-based environment for external resources. In
many, but not all, cases these sources are relational based. The connector specification provides
a mechanism for EJB technology to interact with other, non-relational resources in an imple-
mentation-independent manner.

3.2.5 JMS

JMS provides vendor-neutral point-to-point and publish/subscribe messaging solutions. The
JMS service provider will provide an implementation based upon the JMS APIs. JMS is the pri-
mary mechanism in J2EE for allowing asynchronous communication between components. It
can be used to provide asynchronous update of components running in networked client contain-
ers, or it can be used to allow asynchronous communication with back-end EISs.

3.2.6 Java Mail

This technology is a framework that implements an interface to an e-mail system. The frame-
work is provided with J2EE in binary form. Also included is a set of APIs that support POP3 and
SMTP mail protocols. While we will cover the other core J2EE APIs in this book, we will not
cover Java Mail in any depth because, in truth, this API is rarely used.

chapter 3.fm Page 33 Thursday, November 13, 2003 11:39 AM

34 Chapter 3 • J2EE Overview

3.2.7 JTA

Transaction support is abstracted using Java Transaction API (JTA). This API provides a generic
API that allows applications, applications servers, and resource managers to participate in defin-
ing and executing heterogeneous transaction boundaries.

3.2.8 JAX-RPC

Java API for XML-based RPC (JAX-RPC) allows Java developers to create client and end-point
Simple Object Access Protocol (SOAP)-based Web service functions. Developers can utilize
Java-based classes to define Web services and clients that exercise Web-services, effectively
shielding the developer from the complexity of interacting with the SOAP protocol. As with
SAAJ and JMX, JAX-RPC is a required part of the J2EE 1.4 platform.

3.2.9 SAAJ

This technology (SOAP with Attachments API for Java) provides a Java API that allows the for-
matting of XML messages in conformance with the SOAP specifications. This should not be
confused with JAX-RPC, which also supports SOAP, but provides Web services support for
message composition and support for SAAJ, which allows the attachment of MIME-encoded
binary documents to SOAP messages. SAAJ is a required part of the JAX-RPC API, so we will
discuss it only within the context of JAX-RPC.

3.2.10 JMX

Java Management Extension (JMX) allows a generalized way that distributed and Web-based
applications can provide monitoring and instrumentation services, independent of the vendor
application server. We won’t discuss programming to this API in WebSphere, but we will discuss
how it is used in WebSphere administration.

3.3 J2EE Platform Roles

Besides defining a standard blueprint for vendor neutral enterprise computing components, the
J2EE specification identifies roles that participate in producing, creating, and supporting infor-
mation systems built upon the J2EE platform. These roles as defined in the J2EE 1.3 specifica-
tion are described in the sections which follow.

3.3.1 J2EE Product Provider

The role is responsible for providing the J2EE containers that house the specification compo-
nents. In addition, they are required to provide deployment and management tools used to man-
age J2EE applications deployed to the product. IBM plays the role of a product provider with its
WebSphere application server product.

3.3.2 Application Component Provider

This role identifies the provider of components such as enterprise bean developers, and HTML
document designers, and programmers that create components used to produce J2EE applica-
tions. This book exists primarily to educate developers who will fill this role.

chapter 3.fm Page 34 Thursday, November 13, 2003 11:39 AM

J2EE Versions and Evolution 35

3.3.3 Application Assembler

The act of using J2EE components to construct an application is the role defined by the specifi-
cation—an application developer. Assembly implies that components are created and defined
within an Enterprise Archive (EAR) file for deployment to containers. We will discuss integrat-
ing J2EE components and packaging them as EAR files for deployment.

3.3.4 Deployer

The deployer is responsible for deploying enterprise Java components into an operating environ-
ment that has a J2EE server supplied by a product provider. Deployment is typically made up of
three steps: (1) installation, which involves moving the application (.ear) to the server environ-
ment; (2) configuration of any external dependencies required by the resource; (3) Execution of
the installed application.

While our primary focus is application development, and not deployment, we will discuss
areas where the two roles meet.

3.3.5 System Administrator

This role is not new to the J2EE landscape. Administrators are responsible for configuring and
monitoring the operating environments where J2EE servers exist, tasks are accomplished by
using the appropriate tools from the J2EE product provider. We will not examine this role in our
book. For more information on performing system administration with the WebSphere family of
products, see [Francis] or the WebSphere Application Server InfoCenter.

3.3.6 Tool Provider

Tool providers furnish tools that help with the construction, deployment, and management of
J2EE components. Tools can be targeted to all platform roles defined by the specification. This
book describes WebSphere Application Developer, used to develop components, making IBM a
tool provider.

Currently, the specification does not require or provide a mechanism by which these tools
are standardized. However, the specification has referenced a possibility of this being so in the
future.

3.4 J2EE Versions and Evolution

Java’s momentum has moved it from a niche programming language into a mainstream language
that is robust enough for a spectrum of applications from scientific to business. Java’s object-
based environment allows the fundamental language to remain relatively stable with extensions
coming in platform technologies, such as those defined in J2EE. Developers and vendors fulfill-
ing these technology specifications with best-of-breed implementations have arguably formed a
so-called critical mass. There is no reason why this momentum should not continue; new ver-
sions of current technologies along with new technologies will continue to augment the J2EE
technology platform. Already, a single J2EE version increment from 1.3 to 1.4 has introduced
Web services technology and XML support.

chapter 3.fm Page 35 Thursday, November 13, 2003 11:39 AM

36 Chapter 3 • J2EE Overview

What does this mean to the Java developer? One point of view is that change in designs
and APIs leads to a maintenance nightmare. Another, more optimistic view, is that smaller devel-
opment cycles will result in more stable and robust software. Developers can protect themselves
from API creep through consistency, generalization, and the application of design patterns. This
book will not only describe how these technologies are used, specifically with IBM WebSphere,
but will provide patterns that can be used to implement these technologies in a malleable way.

3.5 A J2EE Perspective

It is not enough to download the J2EE platform components and start writing enterprise applica-
tions with just any tool. Choosing the right development environment and application server
determines whether complexity will be shielded and managed, or be an ever-present struggle
during the development process. Realizing the full potential of J2EE technologies requires more
than just a tool—it requires a pattern-based approach that engages tool-produced artifacts.

 Many choices are available to the developer who wants to use J2EE technology. Some are
free, others are vendor-supported. Obviously if you are reading this you are interested in the
IBM WebSphere suite of products. The remaining chapters capture and describe the complete
cycle from development to deployment utilizing the WebSphere Studio Application Developer
product and its integrated tooling support. Besides providing a complete tutorial on how to uti-
lize these tools and the application server, we will describe design approaches and patterns that
can help make your development and deployment process, as well as the resulting software, flex-
ible to better meet changing business needs.

As we discussed in Chapter 1, we see the idea of layered application architecture as being
critical to J2EE, and to understanding the architecture of the WebSphere product family. Figure
3.4 illustrates how the different technologies we’ve just covered fit into that layered architecture.

At the top of our architecture is the presentation layer. We’ll discuss providing presenta-
tion layers based on HTML using Java servlets, JSP, and eXtensible Stylesheet Language Trans-
formations (XSLT). XSLT, not a J2EE technology, is a mechanism for transforming XML
documents into HTML (commonly used along with servlets and JSP). We will also consider
Web services in this layer, even though they are considered to be a program-to-program commu-
nication mechanism. We’ll also examine how to test servlet-based applications using the open-
source HTTPUnit tool.

Next comes the controller/mediator layer, which captures the notion of application flow
and adapts the domain model layer to the presentation layer. We’ll examine several ways of
implementing controller logic, including implementing it with servlets, using the Struts open-
source application framework, and even using message-driven beans (which are EJBs called
through JMS) as application controllers for asynchronous logic flows.

In the domain layer, we’ll examine how to implement domain logic using Java Beans (or,
more correctly, Plain Old Java Classes) and EJBs. We’ll also show you how to test your domain
logic using the open-source JUnit toolkit. To support the persistence of objects in the domain

chapter 3.fm Page 36 Thursday, November 13, 2003 11:39 AM

A J2EE Perspective 37

layer, we’ll examine the mapping layer in depth, discovering how to use mapper objects, bean-
managed persistence (BMP) and container-managed persistence (CMP) entity EJBs.

 In addition to showing you how to test with JUnit, we’ll show you how to use the Web-
Sphere Studio Universal Test Client. Finally, we’ll examine the two most common sources of
data for J2EE programs, JMS and JDBC.

While the book will proceed roughly in the order we’ve outlined, it won’t cover the layers
in strict order because not every system uses every technology we’ve described. Instead, you can
rely on the application architecture graphic (Figure 3.4), which will appear at the beginning of
every chapter starting in Chapter 5, to help you understand where the technologies fit into the
overall J2EE architecture.

Figure 3.4

Layered J2EE application architecture.

Servlet Container EJB Container

Presentation

Logging Exception
Handling

Application Services

Properties

Java
Application

HTML

JSP

XSLT

Web
Services

HTTP
Unit

Servlets

Struts

Java
Beans

Msg-Driven
Beans

Cactus

Controller/
Mediator Domain Data Mapping

Java
Beans

Session
EJBs

JUnit

Data Source

Mapper
Objects

CMP
EJBs

BMP
EJBs

WAS
UTC

JDBC

JMS

chapter 3.fm Page 37 Thursday, November 13, 2003 11:39 AM

38 Chapter 3 • J2EE Overview

3.6 Summary

This chapter described Java’s evolution from an initial way of delivering client/server type appli-
cations via the Web, to a robust OO platform that can support large-scale multiuser enterprise
applications. With the addition of J2EE-based technologies, which are supported by the Java
community at large, Java technology is a viable choice for developing applications of varying
deployment topologies, platforms requirements, and business requirements.

chapter 3.fm Page 38 Thursday, November 13, 2003 11:39 AM

