
1

Chapter 1

Introduction to SOA with Web
Services

Complexity is a fact of life in information technology (IT). Dealing with the
complexity while building new applications, replacing existing applications,
and keeping up with all the maintenance and enhancement requests represents
a major challenge.

If all applications were to use a common programming interface and interoper-
ability protocol, however, the job of IT would be much simpler, complexity
would be reduced, and existing functionality could be more easily reused. After
a common programming interface is in place, through which any application
can be accessed, existing IT infrastructure can be more easily replaced and
modernized.

This is the promise that service-oriented development brings to the IT world,
and when deployed using a service-oriented architecture (SOA), services also

Newcomer_01.qxd 11/22/04 8:26 AM Page 1

2 Introduction to SOA with Web Services

become the foundation for more easily creating a variety of new strategic solu-
tions, including:

■ Rapid application integration.

■ Automated business processes.

■ Multi-channel access to applications, including fixed and mobile devices.

An SOA facilitates the composition of services across disparate pieces of soft-
ware, whether old or new; departmental, enterprise-wide, or inter-enterprise;
mainframe, mid-tier, PC, or mobile device, to streamline IT processes and
eliminate barriers to IT environment improvements.

These composite application solutions are within reach because of the wide-
spread adoption of Web services and the transformational power of an SOA.
The Web Services Description Language (WSDL) has become a standard pro-
gramming interface to access any application, and SOAP has become a stan-
dard interoperability protocol to connect any application to any other. These
two standards are a great beginning, and they are followed by many additional
Web services specifications that define security, reliability, transactions, orches-
tration, and metadata management to meet additional requirements for enter-
prise features and qualities of service. Altogether, the Web services standards the
best platform on which to build an SOA—the next-generation IT infrastructure.

The Service-Oriented Enterprise

Driven by the convergence of key technologies and the universal adoption of
Web services, the service-oriented enterprise promises to significantly improve
corporate agility, speed time-to-market for new products and services, reduce IT
costs, and improve operational efficiency.

Newcomer_01.qxd 11/22/04 8:26 AM Page 2

The Service-Oriented Enterprise 3

As illustrated in Figure 1-1, several industry trends are converging to drive
fundamental IT changes around the concepts and implementation of service
orientation. The key technologies in this convergence are:

■ Extensible Markup Language (XML)—A common, independent data
format across the enterprise and beyond that provides:

■ Standard data types and structures, independent of any programming
language, development environment, or software system.

■ Pervasive technology for defining business documents and exchanging
business information, including standard vocabularies for many
industries.

■ Ubiquitous software for handling operations on XML, including
parsers, queries, and transformations.

■ Web services—XML-based technologies for messaging, service descrip-
tion, discovery, and extended features, providing:

■ Pervasive, open standards for distributed computing interface descrip-
tions and document exchange via messages.

■ Independence from the underlying execution technology and applica-
tion platforms.

■ Extensibility for enterprise qualities of service such as security,
reliability, and transactions.

■ Support for composite applications such as business process flows,
multi-channel access, and rapid integration.

■ Service-oriented architecture (SOA)—A methodology for achieving
application interoperability and reuse of IT assets that features:

■ A strong architectural focus, including governance, processes, model-
ing, and tools.

■ An ideal level of abstraction for aligning business needs and technical
capabilities, and creating reusable, coarse-grain business functionality.

Newcomer_01.qxd 11/22/04 8:26 AM Page 3

4 Introduction to SOA with Web Services

■ A deployment infrastructure on which new applications can quickly
and easily be built.

■ A reusable library of services for common business and IT functions.

■ Business process management (BPM)—Methodologies and technologies
for automating business operations that:

■ Explicitly describe business processes so that they are easier to under-
stand, refine, and optimize.

■ Make it easier to quickly modify business processes as business
requirements change.

■ Automate previously manual business processes and enforce business
rules.

■ Provide real-time information and analysis on business processes for
decision makers.

Individually, each of these technologies has had a profound effect on one or
more aspects of business computing. When combined, they provide a compre-
hensive platform for obtaining the benefits of service orientation and taking the
next step in the evolution of IT systems.

Business Process
Management

Service-Oriented
Architecture

XML Web Services

Service-Oriented
Enterprise

Figure 1-1 Trends converging to create the service-oriented enterprise.

Newcomer_01.qxd 11/22/04 8:26 AM Page 4

Service-Oriented Development 5

Service-Oriented Development

Software vendors have widely adopted the paradigm of service-oriented devel-
opment based on Web services. Service-oriented development is complemen-
tary to the object-oriented, procedure-oriented, message-oriented, and
database-oriented development approaches that preceded it.

Service-oriented development provides the following benefits:

■ Reuse—The ability to create services that are reusable in multiple
applications.

■ Efficiency—The ability to quickly and easily create new services and
new applications using a combination of new and old services, along
with the ability to focus on the data to be shared rather than the
implementation underneath.

■ Loose technology coupling—The ability to model services independently
of their execution environment and create messages that can be sent to
any service.

■ Division of responsibility—The ability to more easily allow business peo-
ple to concentrate on business issues, technical people to concentrate on
technology issues, and for both groups to collaborate using the service
contract.

Developing a service is different from developing an object because a service is
defined by the messages it exchanges with other services, rather than a method
signature. A service must be defined at a higher level of abstraction (some might
say at the lowest common denominator) than an object because it’s possible to
map a service definition to a procedure-oriented language such as COBOL or
PL/I, or to a message queuing system such as JMS or MSMQ, as well as to an
object-oriented system such as J2EE or the .NET Framework.

It’s also important to understand the granularity at which the service is to be
defined. A service normally defines a coarse-grained interface that accepts more
data in a single invocation than an object and consumes more computing
resources than an object because of the need to map to an execution

Newcomer_01.qxd 11/22/04 8:26 AM Page 5

6 Introduction to SOA with Web Services

environment, process the XML, and often access it remotely. Of course, object
interfaces can be very coarse-grained. The point is that services are designed to
solve interoperability problems between applications and for use in composing
new applications or application systems, but not to create the detailed business
logic for the applications.

It’s possible to create an aggregation of Web services such that the published
Web service encapsulates multiple other Web services. This allows a coarse-
grained interface to be decomposed into a number of finer-grained services (or
multiple finer-grained services to be composed into a coarse-grained interface).
The coarse-grained service may make more sense to publish, while the finer-
grained services may make more sense as “private” Web services that can be
invoked only by the coarse-grained Web service.

Services are executed by exchanging messages according to one or more sup-
ported message exchange patterns (MEPs), such as request/response, one-way
asynchronous, or publish/subscribe.

At a project level, an architect typically oversees the development of reusable
services and identifies a means to store, manage, and retrieve service descrip-
tions when and where they are needed. The reusable services layer insulates
business operations such as “get customer” or “place an order” from variations
in the underlying software platform implementations, just as Web servers and
browsers insulate the World Wide Web from variations in operating systems and
programming languages. The ability of reusable services to be composed into
larger services quickly and easily is what provides the organization the benefits
of process automation and the agility to respond to changing conditions.

How XML Helps Simplify Systems Development and
Integration

The use of XML in Web services provides a clear separation between the
definition of a service and its execution. This separation in the standards is
intentional so that Web services can work with any software system. The

continues

Newcomer_01.qxd 11/22/04 8:26 AM Page 6

Service-Oriented Development 7

One way to help accomplish this significant turnaround in the way we think
about how to design, develop, and deploy applications using services may be
to divide the responsibility within IT departments between those who:

■ Create the services—Dealing with the complexity of the underlying
technology on which the service is being deployed and ensuring that the
XML/Web services descriptions are what the service consumer needs and
that they share the right data.

■ Consume the services—Assembling new composite applications and
business process flows, ensuring that the shared data and process flows
accurately reflect operational and strategic business requirements.

This potential division of responsibility more cleanly separates the technical
issues from the business issues.

XML representation, provided through an XML Schema, of the data types
and structures of a service allows the developer to think about the data
being passed among services without necessarily having to consider the
details of a given service implementation. This represents a change in the
nature of the integration problem from having to figure out the implemen-
tation of the service in order to talk to it. Whether the service’s execution
environment is an object, message queue, or stored procedure doesn’t
matter. The data is seen through the filter of a Web service, which includes
a layer that maps the Web service to whatever execution environment is
implementing the service.

Organizational Implications of SOA

Previously, the same individuals in the IT department were responsible for
understanding both business and technical functions—and this remains a
classic problem for IT, that is, getting the same person or persons to bridge
business and technology domains. To gain the full benefit of Web services,

continues

Newcomer_01.qxd 11/22/04 8:26 AM Page 7

8 Introduction to SOA with Web Services

Service Abstraction
A service is a location on the network that has a machine-readable description
of the messages it receives and optionally returns. A service is therefore defined
in terms of the message exchange patterns it supports. A schema for the data
contained in the message is used as the main part of the contract (i.e., descrip-
tion) established between a service requester and a service provider. Other
items of metadata describe the network address for the service, the operations it
supports, and its requirements for reliability, security, and transactionality.

Figure 1-2 illustrates the relationship among the parts of a service, including the
description, the implementation, and the mapping layer between the two. The
service implementation can be any execution environment for which Web
services support is available. The service implementation is also called the exe-
cutable agent. The executable agent is responsible for implementing the Web
services processing model as defined in the various Web services specifications.
The executable agent runs within the execution environment, which is typically
a software system or programming language.

SOA, and BPM technologies, IT departments should consider the best orga-
nization and skill set mix. It’s important when adopting a new architecture
and a new technology to identify new roles and responsibilities. Among the
important considerations is that technical staff must be able to reorient
themselves from thinking about doing the entire job to doing a piece of the
job that will be completed by someone else. A service needs to be devel-
oped within a larger context than an object or a procedure because it is
more likely to be reused. In fact, defining services for reuse is probably the
most important part of service orientation. To obtain their highest value, ser-
vices must be developed in the context of other services and used in com-
bination with them to build applications. This change in thinking is likely to
require someone in a departmental or corporate leadership position to help
review designs and ensure that they are in line with these new IT goals.

Newcomer_01.qxd 11/22/04 8:26 AM Page 8

Service-Oriented Development 9

.NET

Service
Requester

J2EE

Mapping
Layers

Service
Implementation/

Executable Agent

Service
Descriptions

CORBA IMS

Service
Requests

Service
Implementation/

Executable Agent

Service
Implementation/

Executable Agent

Figure 1-2 Breakdown of service components.

An important part of the definition of a service is that its description is separated
from its executable agent. One description might have multiple different exe-
cutable agents associated with it. Similarly, one agent might support multiple
descriptions. The description is separated from the execution environment using
a mapping layer (sometimes also called a transformation layer). The mapping
layer is often implemented using proxies and stubs. The mapping layer is
responsible for accepting the message, transforming the XML data to the
native format, and dispatching the data to the executable agent.

Web services roles include requester and provider. The service requester initi-
ates the execution of a service by sending a message to a service provider. The
service provider executes the service upon receipt of a message and returns the
results, if any are specified, to the requester. A requester can be a provider, and
vice versa, meaning an execution agent can play either or both roles.

As shown in Figure 1-3, one of the greatest benefits of service abstraction is its
ability to easily access a variety of service types, including newly developed
services, wrapped legacy applications, and applications composed of other
services (both new and legacy).

Newcomer_01.qxd 11/22/04 8:26 AM Page 9

10 Introduction to SOA with Web Services

Service-Oriented Architecture

This section introduces the major concepts and definitions for services and
SOA.

What Are Services?
Before we continue to discuss technology, let’s discuss the notion of services
and processes from a business perspective. Most organizations (whether com-
mercial or government) provide services to customers, clients, citizens, employ-
ees, or partners. Let’s look at an example of service orientation in practice.

Service
Requester

Newly Developed Service

Wrapped Legacy Application

Composite Service

Figure 1-3 Requesting different types of services.

Separating the Service from the Product

Some software vendors still don’t separate the idea of a service from the idea
of an execution environment, and they continue to sell Web services imple-
mentations only as part of another, typically pre-existing product. This prac-
tice can make it more difficult to obtain the benefits of services because the
products have features that may not be required to execute Web services and
that may create incompatibilities if the products make the services dependent
upon them.

Newcomer_01.qxd 11/22/04 8:26 AM Page 10

Service-Oriented Architecture 11

As illustrated in Figure 1-4, bank tellers provide services to bank customers.
Different tellers may offer different services, and some tellers may be
specifically trained to provide certain types of services to the customer. Typical
services include:

■ Account management (opening and closing accounts).

■ Loans (application processing, inquiries about terms and conditions,
accepting payments).

■ Withdrawals, deposits, and transfers.

■ Foreign currency exchange.

Several tellers may offer the same set of services to provide load balancing and
high availability. What happens behind the counter does not matter to the cus-
tomer, as long as the service is completed. Processing a complex transaction
may require the customer to visit several tellers and therefore implement a
business process flow.

Figure 1-4 Service analogy at the bank.

Behind the counter are the IT systems that automate the bank’s services. The
services are provided to the customer via the tellers. The services implemented
by the IT systems must match and support the services provided by the tellers.

Newcomer_01.qxd 11/22/04 8:26 AM Page 11

12 Introduction to SOA with Web Services

A consistent approach to defining services on the IT systems that align with
business functions and processes makes it easier for the IT systems to support
the goals of the business and adapt more easily to providing the same service
through humans, ATMs, and over the Web.

Figure 1-5 shows how the same service can be accessed from customers at the
ATM, tellers on the office network, or Web users from their PCs. The services
are designed and deployed to match the services that customers need. The
implementation environments for the services don’t matter; it’s the service that’s
important. This figure also illustrates how two services can easily be combined
to create another service, such as how the withdrawal and deposit service are
composed into a transfer service.

ATM

Tellers

Web

Transfer

Balance
Check

Loan
Payment

Rate
CalculationWithdrawal Deposit

Figure 1-5 Accessing and composing services.

The definition of software services aligns with the business services that a bank
offers to ensure smooth business operations and to help realize strategic goals

Newcomer_01.qxd 11/22/04 8:26 AM Page 12

Service-Oriented Architecture 13

such as providing ATM and Web access to banking services in addition to
providing them in the branch office.

More complex applications can be composed from services, as we’ll see, such
as processing a purchase order or an insurance claim. Deploying services in the
context of an SOA makes it easier to compose services into simple as well as
complex applications, which can also be exposed as services that can be ac-
cessed by humans and IT systems alike.

What Is Service-Oriented Architecture?
A service-oriented architecture is a style of design that guides all aspects of cre-
ating and using business services throughout their lifecycle (from conception to
retirement). An SOA is also a way to define and provision an IT infrastructure
to allow different applications to exchange data and participate in business
processes, regardless of the operating systems or programming languages under-
lying those applications.

An SOA can be thought of as an approach to building IT systems in which
business services (i.e., the services that an organization provides to clients,
customers, citizens, partners, employees, and other organizations) are the key
organizing principle used to align IT systems with the needs of the business.
In contrast, earlier approaches to building IT systems tended to directly use
specific implementation environments such as object orientation, procedure
orientation, and message orientation to solve these business problems, resulting
in systems that were often tied to the features and functions of a particular
execution environment technology such as CICS, IMS, CORBA, J2EE, and
COM/DCOM.

Competitive Value of SOA

Businesses that successfully implement an SOA using Web services are
likely to have a competitive advantage over those who do not because those
who have services aligned with strategic IT business goals can react more
quickly to changing business requirements than those who have IT systems

continues

Newcomer_01.qxd 11/22/04 8:26 AM Page 13

14 Introduction to SOA with Web Services

SOA is the best way to capitalize on the value of service-oriented development.
Service orientation reduces project costs and improves project success rates by
adapting technology more naturally to the people who need to use it, rather
than focusing (as the previous generations of IT systems have) on the technol-
ogy itself, which forces people to adapt to the technology. The major difference
between service-oriented development and previous approaches is that service
orientation lets you focus on the description of the business problem, whereas
previous approaches require you to focus more on the use of a specific execu-
tion environment technology. The way in which services are developed better
aligns them with solving business problems than was the case with previous
generations of technology.

The concept of SOA isn’t new—what is new is the ability to mix and match
execution environments, clearly separating the service interface from the execu-
tion technology, allowing IT departments to choose the best execution environ-
ment for each job (whether it’s a new or existing application) and tying them
together using a consistent architectural approach. Previous implementations
of SOA were based on a single execution environment technology.

aligned to a particular execution environment. It’s easier to combine Web
services, easier to change Web services compositions, and cheaper to
change the Web services and XML data than it is to change execution envi-
ronments. The advantages and benefits of SOA with Web services include a
better return on investment for IT spending on projects, a faster time to re-
sults for the projects, and an ability to more quickly respond to changing
business and government requirements. Any business that can implement
an IT infrastructure that allows it to change more rapidly has an advantage
over a business that cannot do the same. Furthermore, the use of an SOA for
integration, business process management, and multi-channel access
should allow any enterprise to create a more strategic IT environment, one
that more closely matches the operational characteristics of the business.

Newcomer_01.qxd 11/22/04 8:26 AM Page 14

Service-Oriented Architecture 15

SOA Isn’t New, So What Is?

Everyone is talking about SOA, although the concepts behind it aren’t new.
The idea of separating an interface from its implementation to create a soft-
ware service definition has been well proven in J2EE, CORBA, and COM,
and even DCE before that. But the ability to more cleanly and completely
separate—basically by interpreting a text file—a service description from its
execution environment is new. This ability is part of what Web concepts and
technologies bring to Web services. The traditional implementations of the
interface concept might not have considered such a “loose” separation
because the performance implications are negative. However, in many
cases, the performance issue is less important than the ability to more eas-
ily achieve interoperability, something the industry has long strived for but
only partially achieved until now. The success or failure of SOA, however,
does not depend upon the advance in IT software brought about by Web
services. Rather, it depends upon a change in approach. The greater sepa-
ration of interface from execution environment in Web services facilitates
the separation of work responsibilities as well. Separating the service
description from its technology implementation means that businesses can
think about and plan IT investments around the realization of operational
business considerations, as represented by the description, more so than the
capabilities of any individual product or software technology chosen to exe-
cute the description. In this case, the description becomes the definition of
a kind of lowest common denominator—a set of features and functions that
everything can support. But this is achievable only if businesses change their
way of thinking about IT. A service is something that’s just available—just
there for the consumption. Of course, this is an exaggeration; plenty of ser-
vices and applications still have to be developed to reach the ideals of
automating a business operation so quickly and flexibly that it just becomes
a given, like office-software automation. No single software solution can
address every requirement any more than the same computer system can
run a car and calculate the trajectory for the Mars Rover. The same type of
computer system cannot, and should not, operate an insulin pump and
process orders for Amazon.com and tracks Web links for Google. The world

continues

Newcomer_01.qxd 11/22/04 8:26 AM Page 15

16 Introduction to SOA with Web Services

is by its very nature diverse, and SOA with Web services embraces this
diversity and provides the ability to create IT systems that map better to busi-
ness operations than anything previously. However, this will take a signifi-
cant change in thinking, not just for IT departments, but also for the entire
software industry. It’s equally hard to imagine that a single software vendor
would be an expert in all aspects of software as it is to imagine that a single
hardware vendor is an expert in all aspects of computing. Specialization is
what the industry needs, along with the ability to create reusable assemblies
of those components. In this vision of a future environment, software ven-
dors are likely to become even more specialized, perhaps shipping assem-
blies of services instead of complete products. In an SOA-enabled world,
enterprises very likely will have to learn not only to think about services as
distinct from execution environments, but also how to assemble applica-
tions out of components from a variety of vendors.

The real value of SOA comes from the later stages of deployment, when new
applications can be developed entirely, or almost entirely, by composing exist-
ing services. When new applications can be assembled out of a collection of
existing, reusable services, the best value for effort can be realized (that is, the
lowest cost and fastest time to results and best ROI). But it takes some time to
reach this point, and significant investment in service development may be
required.

It’s easy to understand the benefit of reusing common business services such as
customer name lookup, ZIP Code validation, or credit checking. In a pre-
service oriented development environment, these functions might be performed
by reusable code libraries or class libraries that are loaded or linked into new
applications. In SOA-based applications, common functions such as these, as
well as typical system functions such as security checks, transaction coordina-
tion, and auditing are instead implemented using services. Using services not
only reduces the amount of deployed code, but it also reduces the manage-
ment, maintenance, and support burden by centralizing the deployed code and
managing access to it. However, the performance implications of accessing
services instead of using internal functions must be assessed because using a

Newcomer_01.qxd 11/22/04 8:26 AM Page 16

Service-Oriented Architecture 17

service typically consumes more computing resources than reusable code li-
braries.

The key to a successful SOA is determining the correct design and function of
the services in the reusable service library, which should ultimately reflect the
operational characteristics of the organization, such as how grants are applied
for, how cash is managed overnight, or how containers are transferred from
ships to trucks. The operational characteristics of the business are what need to
be automated, and the successful SOA project will ensure that the reusable
software services are properly aligned with the operational business processes.
The successful alignment of business services and their implementation in soft-
ware ensures that operational business processes can be changed quickly and
easily as external environmental changes cause an organization to adapt and
evolve.

CORBA vs. Web Services for SOA

People familiar with the CORBA standard often remark that Web services
are simply CORBA implemented using XML and note the number of features
Web services are missing compared to CORBA. Many CORBA deployments
are SOAs, in fact, and the original goals of CORBA are very similar to the
goals of Web services. Cynics say that CORBA didn’t succeed widely be-
cause of vendor politics, and there’s some truth to that. However, CORBA
also hurt itself in its early days by not defining a standard for interoperabil-
ity. When asked about this, OMG presenters used to say, “It’s an exercise left
up to the vendors and the customers to work out.” The implication, and
sometimes the direct statement, was that interoperability didn’t matter if you
had a standard interface. Web services actually started with SOAP, which is
an interoperability standard. Many people still use SOAP without WSDL,
which is perfectly possible, indicating another contrast between the two. In
CORBA, it’s impossible to use the interoperability transport without the
interface definition language (IDL)—in fact, everything is generated from the
IDL. Many Web services toolkits also generate proxies and stubs from WSDL
and also generate the SOAP messages. But this is an implementation choice,

continues

Newcomer_01.qxd 11/22/04 8:26 AM Page 17

18 Introduction to SOA with Web Services

Challenges to Adoption
The main challenges to adoption of SOA include ensuring adequate staff train-
ing and maintaining the level of discipline required to ensure the services that
are developed are reusable. Any technology, no matter how promising, can be
abused and improperly used. Services have to be developed not simply for im-
mediate benefit, but also (and perhaps primarily) for long-term benefit. To put it
another way, the existence of an individual service isn’t of much value unless it
fits into a larger collection of services that can be consumed by multiple appli-
cations, and out of which multiple new applications can be composed. In addi-
tion, the definition of a reusable service is very difficult to get right the first time.

Another challenge is managing short-term costs. Building an SOA isn’t cheap;
reengineering existing systems costs money, and the payback becomes larger
over time. It requires business analysts to define the business processes, systems
architects to turn processes into specifications, software engineers to develop
the new code, and project managers to track it all.

Another challenge is that some applications may need to be modified in order
to participate in the SOA. Some applications might not have a callable interface
that can be service-enabled. Some applications are only accessible via file
transfer or batch data input and output and may need additional programs for
the purpose of service-enablement.

Of course, incrementally adopting SOA and leveraging SOA where it will have
the greatest business impact can mitigate the challenges and amortize their

not part of the SOAP standard. From a technical perspective, it is certainly
true that you can use CORBA for almost everything you can use Web ser-
vices for. And for many applications, CORBA remains a better choice.
However, from a human perspective, which is what really counts in the end,
if someone is unfamiliar with CORBA or new to distributed computing, Web
services are much easier to learn and use, and the missing features don’t
matter as much as the interoperability.

Newcomer_01.qxd 11/22/04 8:26 AM Page 18

Service-Oriented Architecture 19

costs, especially when services can be used to solve tactical problems along
the way. Part of adopting Web services and SOA therefore is to identify those
projects that provide immediate value by solving an immediate problem (such
as integrating J2EE and .NET Framework applications) and at the same time lay
the foundation for a departmental or enterprise SOA.

What Web Services Are Good For

Sometimes in the Web services literature, you will see a lot of discussion
about things that Web services are not good for, such as developing and
deploying mission-critical applications. It’s a mistake, however, to assume
that they never will be good for this. Other times, you’ll see talk about iden-
tifying the “golden copy” or “single reference” data item instance for a par-
ticular data type, such as customer ID or customer name. This is indeed a
problem that needs solving, but it also isn’t part of the job of the Web services.
This means it needs to be solved at the SOA level rather than at the Web ser-
vices level. These discussions often indicate unfamiliarity with Web services
and the problems they are trying to solve. The same people who would
never imagine that a single tool in a workshop could be used for every pur-
pose often make the mistake of thinking that Web services must be good for
everything that all other technologies that preceded them are good for. This
represents thinking that each new technology wave somehow obsoletes the
previous wave or takes over everything that came before. Web services are
not just adding more technology to the problems of IT; they are proposing a
different approach to solving some of the problems of IT, especially around
integration, because of new capabilities offered by the technology. Web ser-
vices are not really a replacement technology; they are not the same thing
as a new programming language like Java or C#, which you could reason-
ably assume must include all the major features of other successful pro-
gramming languages. Web services are not really a new middleware system
in the sense that J2EE, CORBA, and the .NET Framework are middleware
systems. Web services are XML-based interface technologies; they are not
executable; they do not have an execution environment—they depend
upon other technologies for their execution environments. If you don’t

continues

Newcomer_01.qxd 11/22/04 8:26 AM Page 19

20 Introduction to SOA with Web Services

SOA and Web Services

The major advantages of implementing an SOA using Web services are that
Web services are pervasive, simple, and platform-neutral.

As shown in Figure 1-6, the basic Web services architecture consists of specifi-
cations (SOAP, WSDL, and UDDI) that support the interaction of a Web service
requester with a Web service provider and the potential discovery of the Web
service description. The provider typically publishes a WSDL description of its
Web service, and the requester accesses the description using a UDDI or other
type of registry, and requests the execution of the provider’s service by sending
a SOAP message to it. The basic Web services standards are good for some
SOA-based applications but are not adequate for many others.

Why UDDI Is Not a Core Web Services Specification

It’s safe to say that the original vision of UDDI has not been realized. When
UDDI was launched in late 2000, it was intended to become a public
directory. Companies were supposed to register their Web services with
UDDI, and other companies were to come along later and dynamically dis-
cover the services they needed to access over the Internet. The assumption,
which has not proven true, was that companies would be interested in dis-
covering and requesting services from providers with whom they had no
prior relationship. Also UDDI was developed before WSDL, so initially

rethink your approach to IT based on the features, functions, and capabili-
ties of Web services, of course you’re not going to get the value out of them
that you should. Using Web services successfully requires a change in think-
ing about technology, not simply learning a new grammar for the same old
way of building and deploying systems. Web services currently and will
always require a mix of technologies. Therefore, Web services need to be
understood in terms of what they add to the picture, not only in the context
of what they replace.

continues

Newcomer_01.qxd 11/22/04 8:26 AM Page 20

SOA and Web Services 21

Registry

UDDI

SOAP
WSDL

Requester Provider

Figure 1-6 Basic Web services architecture.

WSDL was not well supported. The data structures proved to be problem-
atic because they are so open-ended with very little required information
and a structure based on categorization data that isn’t universally recog-
nized. UDDI was also positioned as an inside-the-enterprise technology,
and here it has gained some measure of success; however, the standards
remain incomplete for this purpose. Companies adopting UDDI for internal
use have to define their own naming conventions and categorization struc-
ture and metadata, which inhibits adoption. While SOAP and WSDL have
gone on to tremendous success and widespread adoption, UDDI still strug-
gles to find its proper place in the Web services universe. It is clear that a
service registry is a required part of the Web services platform, but it isn’t
clear that UDDI will ever truly become that solution.

Besides the core Web services specifications (SOAP and WSDL), a wide array of
extended Web services specifications for security, reliability, transactions, meta-
data management, and orchestration are well on their way toward standardiza-
tion, providing SOA-based solutions the necessary enterprise-level qualities of
service to support a wide variety of mission-critical, corporate-wide projects.

Newcomer_01.qxd 11/22/04 8:26 AM Page 21

22 Introduction to SOA with Web Services

Figure 1-7 illustrates the features and capabilities of the complete Web services
platform on which the broad range of SOA-based applications can be built. It
includes the basic and extended Web services specifications. See Chapter 2,
“Overview of Service-Oriented Architecture,” for a complete description of the
Web services platform.

The Web services platform contains the basic and extended features necessary
to support an SOA, along with an enterprise service bus (ESB) to connect the
services.

Borrowing from the Web

Some of the important advantages of using Web services as the technology
platform for an SOA are derived from the way in which the World Wide
Web achieved its tremendous success; in particular, the fact that a simple
document markup language approach such as HTML (or XML) can provide
a powerful interoperability solution and the fact that a lightweight document
transfer protocol such as HTTP can provide an effective, universal data
transfer mechanism. On the Web, it doesn’t matter whether the operating
system is Linux, Windows, OS390, HP NonStop, or Solaris. It doesn’t mat-
ter whether the Web server is Apache or IIS. It doesn’t matter whether the
business logic is coded in Java, C#, COBOL, Perl, or LISP. It doesn’t matter
whether the browser is Netscape, Internet Explorer, Mozilla, or the W3C’s
Amaya. All that matters is that the Web servers understand an HTTP request
for an HTML file and that the browser understands how to render the HTML
file into the display. Web services provide the same level of abstraction for
IT systems. Similarly, all that matters for Web services is that they can
understand and process an XML-formatted message received using a
supported communications transport and return a reply if one is defined.
Just as HTML and HTTP can be added to any computer system with a TCP
connection, Web services can be added to any computer that understands
XML and HTTP or XML and most other popular communications transports.

Newcomer_01.qxd 11/22/04 8:26 AM Page 22

Rapid Integration 23

Rapid Integration

A few years ago, businesses finding themselves in need of comprehensive inte-
gration solutions turned to products and practices developed specifically for
that purpose. However, these enterprise application integration (EAI) products
proved to be expensive, consumed considerable time and effort, and were sub-
ject to high project failure rates. Furthermore, because these various special
purpose products are proprietary, many of the projects resulted in additional
difficulties whenever a company invested in more than one of them.

Recent experience shows that a better answer is available by using Web ser-
vices standards. Instead of dealing with the complexity of multiple incompatible
applications on multiple computers, programming languages, and application
packages by introducing an EAI product, it’s possible to add a layer of abstrac-
tion that’s open, standards-based, and easy to integrate with virtually any new
and existing environment.

Service
Requester

Service Contract

Service
Requester

Service Contract

Service
Requester

Service Contract

Service
Requester

Service Contract

Service
Requester

Service Contract

Service
Requester

Service Contract

Service
Requester

Service Contract

Service
Requester

Service Contract

Service
Requester

Service Contract

Web Services Platform

Core Facilities
Provided by the
Web Services Platform

Service Contracts

Service-Level
Data Model

Service-Level
QoS

Service-Level
Security

Service-Level
Comm Model

Service-Level
Management

Multi-Language
Bindings

Service
Registry/Lookup

Service
Proxies/Stubs

Service
Requester

Service Contract

Service
Provider

Service
Provider

Service Contract Service Contract

Figure 1-7 Web services platform.

Newcomer_01.qxd 11/22/04 8:26 AM Page 23

24 Introduction to SOA with Web Services

A new generation of integration products from BEA, IBM, IONA, Microsoft, SAP,
SeeBeyond, Systinet, Tibco, WebMethods, and others, enabled by Web services
technology, is emerging around the concepts of service-oriented integration.

The combination of Web services and SOA provides a rapid integration solution
that more quickly and easily aligns IT investments and corporate strategies by
focusing on shared data and reusable services rather than proprietary integra-
tion products.

To illustrate the benefits of service-oriented integration, consider the example of
three fairly typical financial industry database applications, perhaps supporting
retail banking, commercial banking, and mutual fund investment operations.
The applications were developed using a classic three-tier architecture, separat-
ing presentation logic, business logic, and database logic.

As shown in Figure 1-8, it’s possible to reuse a traditional three-tier application
as a service-oriented application by creating services at the business logic layer
and integrating that application with other applications using the service bus.
Another benefit of service orientation is that it’s easier to separate the presenta-
tion logic from the business logic when the business logic layer is service-
enabled. It’s easier to connect various types of GUIs and mobile devices to the
application when the business logic layer is service-enabled than if a separate
tightly coupled presentation logic layer has to be written for each. Instead of
running the presentation logic tier as a tightly coupled interface on the same
server, the presentation logic can be hosted on a separate device, and commu-
nication with the application can be performed using the service bus.

Applications can more easily exchange data by using a Web service defined at
the business logic layer than by using a different integration technology because
Web services represent a common standard across all types of software. XML
can be used to independently define the data types and structures. And finally,
the development of service-oriented entry points at the business logic tier
allows a business process management engine to drive an automatic flow of
execution across the multiple services.

Newcomer_01.qxd 11/22/04 8:26 AM Page 24

Rapid Integration 25

Creating a common Web services layer or “overlay” of services into the busi-
ness logic tiers of applications also allows you to use a common service reposi-
tory in which to store and retrieve service descriptions. If a new application
wishes to use an existing service into one of these applications, it can query the
repository to obtain the service description and easily generate SOAP messages
to interact with it.

Commercial
Banking
Database

Retail Banking
Database

Mutual Fund
Investments

Database

Business Logic
Layer

Windows GUI for
Local Users

Java GUI for
Remote
Workers

Mobile
Workers

Business Process
Engine

Tightly
Coupled Legacy

GUI

Presentation
Layer

Business Logic
Layer

Data Access
Layer

Data Access
Layer

Business Logic
Layer

Data Access
Layer

Service
Repository

Service Bus

Figure 1-8 Designing for service-oriented integration.

Newcomer_01.qxd 11/22/04 8:26 AM Page 25

26 Introduction to SOA with Web Services

Multi-Channel Access

The primary purpose of most organizations (commercial, government, non-
profits, and so on) is to deliver services to clients, customers, partners, citizens,
and other agencies. These organizations often use many channels for service
delivery to reach their customers to ensure good service and maintain customer
loyalty. Just as a bank prefers to offer services in a variety of ways for the conve-
nience of their customers, whether using the Web, an ATM, or a teller window,
many other organizations similarly benefit from being able to deliver a mixture
of direct and indirect customer services over a mixture of access channels.

In general, business services change much less frequently than the delivery
channels through which they are accessed. Business services represent opera-
tional functions such as account management, order management, and billing,
whereas client devices and access channels are based on new technologies,
which tend to change more frequently.

Web services interfaces are good for enabling multi-channel access because
they are accessible from a broad range of clients, including Web, Java, C#,
mobile devices, and so on. SOA with Web services is, therefore, well suited to
simplifying the task for any organization to enable these multiple channels of
access to their services.

Figure 1-9 illustrates an example of multi-channel access in which an organiza-
tion’s customer service application might expose various services for reporting a
problem, tracking the status of a problem report, or finding new patches and
error reports published to the user community. A customer account manager
might want to access the services from his cell phone, to discover any updates
to the customer’s problem report list, for example, before going on a sales call.
If the product was shipped through a reseller, the reseller might provide its own
customer service, which would be tied to the supplier company’s application to
provide first- and second-level support, respectively. The customer service man-
ager for a given major account might benefit from direct access to all of the
features, functionality, and information stored in the organization’s customer
service application. The customers themselves might want to check the status
of a trouble ticket from a mobile PDA device. And finally, the support center

Newcomer_01.qxd 11/22/04 8:26 AM Page 26

Multi-Channel Access 27

employees need access to the services in the application to perform their own
jobs of interacting with the customers who have problems.

Organization's
Customer
Service

Application

Customer
Service
Manager

Call
Center

Operator

Reseller's
Customer
Service

Application

Account
Manager

Customer
(Self-Service)

Figure 1-9 Multi-channel access to customer service.

In the past, organizations often developed solutions like this as monolithic ap-
plications tied to a single access channel, such as a 3270 terminal, PC interface,
or a browser. The proliferation of access channels, including new end-user de-
vices, represents an opportunity for a service-oriented enterprise to better serve
its customers, suppliers, and partners anytime and anywhere. However, it also
represents a significant challenge to IT departments to convert existing mono-
lithic applications to allow multi-channel access. The basic solution is, of
course, to service-enable these applications using an SOA with Web services.

Newcomer_01.qxd 11/22/04 8:26 AM Page 27

28 Introduction to SOA with Web Services

Occasionally Connected Computing
Integrating mobile devices into an SOA presents specific challenges because
the mobile devices may not always be connected to a network. Mobile devices
may also move through network connectivity zones, picking up new IP
addresses when they reconnect. Most applications in production today are not
designed to handle such variances in network connectivity. A new generation of
“mobilized” software is emerging to integrate mobile devices quickly and easily
into the service-oriented enterprise.

As shown in Figure 1-10, the SOAP messages in a mobile software solution are
transported from the mobile client to the server using a store-and-forward asyn-
chronous protocol that allows the mobile client to keep working even when a
network connection isn’t available. When the connection is available, transac-
tions flow to the server-side SOA-based application directly using the messaging
transport. When a connection isn’t available, transactions are stored locally so
that they can be transmitted when a connection becomes available.

SOAP Messages

XML
Files

Occasionally
Connected Client

Server
Applications

Mobile
Application

Server Admin/
Content Mgr

Backend
System/Apps

SOAP Messages

XML
Files

Intermittent
Connection

Intermediate
Persistent Storage

Live Connection
(Schedule Driven Pull/Push)

Agent for Mobile Apps Agent for Server Apps

Asynch SOAP Messaging (FTP, HTTP)

Figure 1-10 Occasionally connected architecture for mobile devices.

Newcomer_01.qxd 11/22/04 8:26 AM Page 28

Business Process Management 29

Business Process Management

A business process is a real-world activity consisting of a set of logically related
tasks that, when performed in the appropriate sequence and according to the
correct business rules, produce a business outcome, such as order-to-cash, pur-
chase order fulfillment, or insurance claim processing.

Business process management (BPM) is the name for a set of software systems,
tools, and methodologies that addresses how organizations identify, model,
develop, deploy, and manage such business processes. A business process may
include IT systems and human interaction or, when completely automated, sim-
ply the IT systems. Various BPM solutions have been in use for a long time,
starting with early workflow systems and progressing up to modern Web
services orchestration.

BPM techniques can exploit the foundation and the architectural work provided
by an SOA to better automate business processes. This is among the important
reasons for investing in a Web services-based SOA because Web services help
achieve the goals of BPM more quickly and easily.

BPM systems are designed to help align business processes with desirable busi-
ness outcomes and ensure that the IT systems support those business processes.
BPM systems let business users model their business processes graphically, for
example, in a way that the IT department can implement. All IT systems support
and implement business processes in one form or another. What makes BPM
unique is the explicit separation of business process logic from other applica-
tion code (this contrasts with other forms of system development where the
process logic is deeply embedded in the application code).

Separating business process logic from other application code helps increase
productivity, reduce operational costs, and improve agility. When implemented
correctly (for example, using BPM as a consumer of an SOA with Web services),
organizations can more quickly respond to changing market conditions and
seize opportunities for gaining a competitive advantage. Further efficiencies are
gained when the graphical depiction of a business process can be used to gen-
erate an executable specification of the process.

Newcomer_01.qxd 11/22/04 8:26 AM Page 29

30 Introduction to SOA with Web Services

BPM simplifies the problem of how to combine the execution of multiple Web
services to solve a particular business problem. If we think about a service as
the alignment of an IT system with a business function such as processing a
purchase order, we can think about the BPM layer as something that ties multi-
ple services together into a process flow of execution to complete the function,
such as validating the order, performing a credit history check on the customer,
calculating inventory to determine the ability to fill the order, and finally ship-
ping the order and sending the customer an invoice. By taking the process flow
out of the application-level code, the business process can be more easily
changed and updated for new application features and functions such as a
change in suppliers, inventory management, or the shipping process.

Figure 1-11 illustrates the kind of graph that a business analyst might produce
for automating the flow of purchase order processing. The flow starts with the
input of a purchase order document. The first processing step is responsible for
accepting the document, checking security credentials and providing acknowl-
edgment so that the sender knows the document was received.

Business Operational Changes

Most businesses have special operational characteristics derived from the
reasons they got into business in the first place. One example is a pizza shop
with a 30-minute delivery guarantee. To really make this happen without
losing money, all kinds of operational characteristics have to be taken into
account, such as pizza baking time, order-taking time, and delivery time
within a defined area. Obviously, this is not the kind of operation that can
be completely automated because it relies upon human drivers, but cer-
tainly many parts of the process could be automated, such as ordering from
the Web, automatically triggering the delivery of new supplies to the restau-
rant, and using robots to prepare and cook the pizzas. Ideally, you’d like to
be able to introduce as many operational efficiencies as possible with min-
imal cost to the IT systems involved. An SOA-based infrastructure can help.

Newcomer_01.qxd 11/22/04 8:26 AM Page 30

Business Process Management 31

A typical process engine persists the input document so that the subsequent
steps in the graph can access it. After the document is validated, a reference to
the document’s location in the database or file system is passed to the next step
so that it can check whether on-hand inventory is sufficient to fill the required
item quantities. If sufficient quantity is on hand, the next step in the flow ac-
knowledges receipt of the purchase order and lets the purchaser know that the
company can fill it. This acknowledgment can be sent using email or a Web
service message.

At this point, the customer may have an opportunity to reconfirm the order,
given the quoted price and delivery schedule. If the customer does not recon-
firm, the process is cancelled and moves to the cancellation step (which
basically erases the work of steps in the business process to that point, perhaps
including one or more compensating transactions to release inventory that had
been reserved for this customer and to remove the order from scheduled deliv-
eries). If the customer reconfirms, the next step is activated to prepare the order
for shipment. After the shipment confirmation has been received, the process
moves to the final step, which sends an invoice to the customer.

Process flows are typically broken into individual tasks that call a Web service.
Flows typically include tests that branch the flow based on the results of exec-
tuting a task. Branches of the flow can handle errors. For example, when an
item is out of stock from one supplier, the flow might branch to a task that
invokes a Web service request to another supplier to find out whether that
supplier has the item. Sometimes no one has the item, in which case, the flow
might raise an error to the operator or submitter so they can decide what to do.

Cancel
PO

Begin

Check
On Hand

Ack
PO

Ship
Order

Send
Invoice

End

Confirm
PO

Input PO

Check
Supplier

Figure 1-11 Example business process flow for a purchase order.

Newcomer_01.qxd 11/22/04 8:26 AM Page 31

32 Introduction to SOA with Web Services

With a common services-based solution available to IT managers, architects,
and developers, productivity increases will be much easier to achieve, and
business systems will support the kind of flexibility demanded by the constant
market and regulatory changes that are a fact of business and government life.
In particular, laying an SOA foundation for business process management
allows enterprises to concentrate on higher-level issues such as implementing
the best business processes, rather than worrying about the technical details of
application implementations.

Extended Web Services Specifications

Following the broad adoption and use of the basic Web services specifications—
SOAP and WSDL—requirements have grown for the addition of extended tech-
nologies such as security, transactions, and reliability that are present in existing
mission-critical applications. These extended features are sometimes also called
qualities of service because they help implement some of the harder IT prob-
lems in the SOA environment and make Web services better suited for use in
more kinds of SOA-enabled applications.

A class of applications will find the core specifications sufficient, while other
applications will be blocked or hampered by the lack of one or more of the
features in the extended specifications. For example, companies may not wish
to publish their Web services without adequate security or may not wish to
accept purchase orders without reliable messaging guarantees.

The core specifications were defined with built-in extensibility points such as
SOAP headers in anticipation of the need to add the extended features.

Standardization
Web services specifications progress toward standardization through a variety of
ways, including small groups of vendors and formally chartered technical com-
mittees. As a general rule of thumb, most specifications are started by a small
group of vendors working together and are later submitted to a standards body
for wider adoption. Specifications initially created by Microsoft and IBM,

Newcomer_01.qxd 11/22/04 8:26 AM Page 32

Extended Web Services Specifications 33

together with one or more of their collaborators (these vary by specification,
but typically include BEA, Intel, SAP, Tibco, and Verisign), tend to gain the most
market traction. Microsoft and IBM are the de facto leaders of the Web services
specification movement and have defined or helped to define all the major
specifications. Several of the WS-* specifications remain under private control
at the time of writing, but we expect them to be submitted to a standards body
in the near future.

Standards bodies currently active in Web services include:

■ World Wide Web Consortium (W3C)—Making its initial name on pro-
gressing Web standards, notably HTTP, HTML, and XML, the W3C is
home to SOAP, WSDL, WS-Choreography, WS-Addressing, WS-Policy,
XML Encryption, and XML Signature.

■ Organization for the Advancement of Structured Information Standards
(OASIS)—Originally started to promote interoperability across Structured
Generic Markup Language (SGML1) implementations, OASIS changed its
name in 1998 to reflect its new emphasis on XML. OASIS is currently
home to UDDI, WS-Security, WS-BPEL, WS-Composite Application
Framework, WS-Notification, WS-Reliability, Web Services Policy
Language (part of the Extensible Access Control Markup Language TC),
and others such as Web Services for Remote Portlets, Web Services
Distributed Management, and Web Services Resource Framework,
which are not covered in this book.2

■ Web Services Interoperability (WS-I)—Established in 2002 specifically
to help ensure interoperability across Web services implementations,
WS-I sponsors several working groups to try to resolve incompatibilities
among Web services specifications. WS-I produces specifications called
profiles that provide a common interpretation of other specifications and
provides testing tools to help Web services vendors ensure conformance
to WS-I specifications.

1 Both HTML and XML are derived from SGML.

2 These specifications are not all covered in this book because the book is focused on SOA.

Newcomer_01.qxd 11/22/04 8:26 AM Page 33

34 Introduction to SOA with Web Services

■ Internet Engineering Task Force (IETF)—The IETF is responsible for
defining and maintaining basic Internet specifications such as TCP/IP and
SSL/TLS. Their relationship to Web services is indirect in that TCP/IP is
the most common communications protocol used for the HTTP transport,
and basic IETF security mechanisms are used in Web services. The IETF
collaborated with the W3C on XML Signature.

■ Java Community Process (JCP)—Established by Sun to promote the
adoption of Java and control its evolution, the JCP is home to several
Java Specification Requests (JSRs) that define various Java APIs for Web
services, including JAX-RPC for the Java language bindings for SOAP,
JAX-B for XML data binding, and Java APIs for WSDL.

■ Object Management Group (OMG)—Initially established to create and
promote specifications for the Common Object Request Broker (CORBA),
the OMG is home to specifications that define WSDL language mappings
to C++ and CORBA to WSDL mappings.

Web services standardization started with the submission of the SOAP 1.1 spec-
ification to the W3C in mid-2000. After that, SOAP with Attachments, XKMS,
and WSDL were submitted to W3C. At the same time, UDDI was launched in
a private consortium and was later submitted to OASIS. Other major specifica-
tions submitted to OASIS include WS-Security, WS-BPEL, WS-CAF, and WS-
Notification. More recently, WS-Addressing and WS-Policy were submitted to
W3C, signaling a potential shift back toward W3C as the home of most of the
major specifications.

Historically, OASIS is also the home of the ebXML set of specifications, which
overlap to a large extent with the Web services stack. Web Services and ebXML
share SOAP, but beyond that, the stacks diverge. ebXML has its own registry
and its own orchestration (or choreography) language.

Standardization and Intellectual Property Rights

One of the difficulties with respect to Web services standardization is the
fact that no single standards body is clearly in a leadership position.

continues

Newcomer_01.qxd 11/22/04 8:26 AM Page 34

Extended Web Services Specifications 35

Specifications work is split across W3C, OASIS, WS-I, IETF, and OMG. How
does a specification become an adopted standard? If anyone had a magic
formula for this, they would be millionaires. In the end, it’s market
acceptance and adoption that makes the difference, and this means the eco-
nomic factors become paramount, both in terms of vendor investment and
customer procurement. Web services vendors often initiate work on speci-
fications informally in small teams for the sake of rapid progress, publish the
specifications themselves, and then submit the specifications to a standards
body. Microsoft pioneered this approach with SOAP 1.1, and other vendors
including BEA, HP, IBM, IONA, Oracle, SAP, Sun, Tibco, WebMethods, and
others have significantly contributed to specifications this way. However, a
major question with this approach often arises when it’s time to submit the
specification to an open standards body. In particular, it’s necessary to
resolve issues related to intellectual property (IP) rights, including copyrights
and patents. It’s an important step in a specification’s lifetime, even if the
standards body doesn’t change it very much. Only when a specification is
submitted to an open standards body and the IP issues resolved (or at least
publicly declared) can that specification truly achieve widespread adoption.
Without this step, software vendors not among the initial authoring com-
munity have no visibility into specification changes, which could invalidate
their investments in products, and they might be faced with potential IP
licensing fees, whether royalties or otherwise, that the specification owners
might wish to charge.

Specification Composability
As mentioned previously, the SOAP and WSDL specifications are designed to
be extended by other specifications. Two or more of the extended specifications
can be combined within a single SOAP message header. For example:

<S:Header>

<wsse:Security>
...
</wsse:Security>

<wsrm:Sequence>

Newcomer_01.qxd 11/22/04 8:26 AM Page 35

36 Introduction to SOA with Web Services

...
</wsrm:Sequence>

</S:Header>

This example illustrates the use of extended headers for security and reliability.
The security header typically includes information such as the security token
that can be used to ensure the message is from a trusted source. The reliability
header typically includes information such as a message ID and sequence
number to ensure the message (or set of messages) is reliably received.

Note the separate namespaces used for the security and reliability headers,
wsse: and wsrm:, respectively. The headers use different namespaces so that
they can be added incrementally to a SOAP message without concern over
potential name clashes. Duplicate element and attribute names are not permit-
ted in an XML document (and a SOAP message is an XML document, after all).
Namespace prefixes provide a unique qualifier for XML element and
attribute names, thus protecting names from duplication. This is one way in
which SOAP header extensions work composably with each other.

Adding extended features may or may not require modification to existing Web
services—that is, the extended features can be added into the SOAP headers
without changing the SOAP body in many cases. But the execution environ-
ments and mapping layers may need to change in order to handle the exten-
sions. Certainly at least adding SOAP headers for extended features must be
done within the context of knowing whether the execution environment can
support them and how; otherwise, the extended headers will not work.

Web service extensions are also added to the responsibility of the SOAP proces-
sors in the execution environment. Policy declarations associated with the
WSDL contracts can be used during the generation of SOAP messages to deter-
mine what should go into the headers to help the execution environment nego-
tiate the appropriate transport protocol or to agree on features such as
transaction coordination.

As illustrated in Figure 1-12, each additional extended feature added to the
Web service invocation results in additional processing before sending the

Newcomer_01.qxd 11/22/04 8:26 AM Page 36

Extended Web Services Specifications 37

message or after receiving it. Later chapters provide further detail on each of
these extended features. The extended features may also be related to require-
ments from a business process engine and may need to be supported by the
registry.

Application

Messages

Authentication/
Authorization

Headers

Register
Transaction

Reliability

Encryption

SOAP

Process Flow

Registry

Figure 1-12 Adding extended features to SOAP.

Composability and Complexity

Supposedly, the composability of extended Web services specifications
allows their incremental use or “progressive discovery” of new concepts
and features. IBM and Microsoft, as the de facto leaders of the Web services
specifications development, are obviously keen to avoid making them too
complex. A large part—if not the largest part—of the value of Web services
derives from their relative simplicity. CORBA, for example, is often criti-
cized for being too complex and too hard to use. Of course, CORBA is

continues

Newcomer_01.qxd 11/22/04 8:26 AM Page 37

38 Introduction to SOA with Web Services

easier than what preceded it, but CORBA is relatively complex compared to
Web services. The issue with complexity is finding people well enough
trained to use the technology productively, and because the highest IT cost
is still labor, complexity typically means additional project expense. So for
Web services to keep their promises, and to avoid having the whole effort
fall apart, IBM and Microsoft want to preserve simplicity even as they start
adding complex features to the basic specifications. One argument is that
Web services are designed to inherently support composition of new fea-
tures, meaning existing applications can be extended instead of being
changed. However, this is a relatively untested assertion because products
that fully implement the extended specifications are not yet available, and
it isn’t at all clear that the products will implement the extended features in
the same way. Furthermore, there is no overall architecture for Web services
that defines how the extended features really work with each other. When
you receive a complex SOAP message full of headers for security, reliabil-
ity, and transactions, what do you process first? The security header? The
reliability header? The transaction header? No one really knows. If this all
proves too complex, people may just go back to plain old XML over HTTP
and hand code the extensions.

Metadata Management
Metadata management includes the description information about a Web ser-
vice necessary to construct a message body (including its data types and struc-
tures) and message headers so that a service requester can invoke a service. The
provider of the service publishes the metadata so that a requester can discover
it and use it to construct messages that can be successfully processed by the
provider.

When invoking a service, it’s important to understand not only the data types
and structures to send but also the additional qualities of service provided (if
any), such as security, reliability, or transactions. If one or more of these features
are missing from the message, it may prevent successful message processing.

Newcomer_01.qxd 11/22/04 8:26 AM Page 38

Extended Web Services Specifications 39

Metadata specifications include:

■ XML Schema—For message data typing and structuring and expressing
policy information.

■ WSDL—For associating messages and message exchange patterns with
service names and network addresses.

■ WS-Addressing—For including endpoint addressing and reference prop-
erties associated with endpoints. Many of the other extended specifica-
tions require WS-Addressing support for defining endpoints and reference
properties in communication patterns.

■ WS-Policy—For associating quality of service requirements with a WSDL
definition. WS-Policy is a framework that includes policy declarations for
various aspects of security, transactions, and reliability.

■ WS-MetadataExchange—For querying and discovering metadata associ-
ated with a Web service, including the ability to fetch a WSDL file and
associated WS-Policy definitions.

Service binding is different for an SOA based on Web services compared to an
SOA based on J2EE or CORBA, for example. Instead of binding via reference
pointers or names, Web services bind using discovery of services, which may
be dynamic. If the service requester can understand the WSDL and associated
policy files supplied by the provider, SOAP messages can be generated dynami-
cally to execute the provider’s service. The various metadata specifications are
therefore critical to the correct operation of an SOA based on Web services.

Addressing
Addressing is an important requirement of extended Web services because no
directory of Web services endpoint addresses exists on the Web. SOAP mes-
sages must include the endpoint address information within the message for all
but the simplest MEP. WS-Addressing replaces earlier proposals called WS-
Routing and WS-Referral.

Without an addressing solution, when you send a Web service request to a
provider, typically the only address the provider has is the return address to the
requester, and then only for the duration of the session. If anything goes wrong

Newcomer_01.qxd 11/22/04 8:26 AM Page 39

40 Introduction to SOA with Web Services

on the reply, there’s no good way to retry it—basically the requester’s address
can be lost when there’s a communication failure. Also there’s no good way to
specify a different return address than the requester’s address. And finally,
there’s no way to define address schemes or to identify endpoint addresses for
complicated message exchange patterns or multi-transport support.

Policy
Policy is necessary for expressing any extended Web services features of a
service so that the requester can provide the necessary security, transaction,
or reliability context in addition to the data requirements for the messages
expressed in the WSDL file.

Policy provides a machine-readable expression of assertions that a service
requester must adhere to in order to invoke upon a provider. Does the service
require security or support transactions? The latter can be very important when
trying to figure out whether or not a long running, complex interaction can
involve a transaction, or whether a transaction can span across all the Web
services identified for it.

WS-Policy is necessary for achieving interoperability for the extended features
because the policy declarations are the only way in which a requester can dis-
cover whether a provider requires some or all of the extended features. In the
case of security, for example, different providers may support different kinds of
tokens, such as X.509 or Kerberos. WS-Security is designed as a kind of open
framework that can carry any token type. However, if the token type the
provider expects isn’t declared, the requester can only guess at what it must be.

When making the decision to invoke the provider’s service, it may also be im-
portant to discover whether it supports reliability or transactions. You might
want to know, for example, whether the provider’s service can accept retries if
the original submission fails and whether it will let you know when it has suc-
cessfully received a message. Finally, you may want to know whether or not to
send a transaction context to the provider to enroll the provider Web service in
the transaction.

Newcomer_01.qxd 11/22/04 8:26 AM Page 40

Extended Web Services Specifications 41

Acquiring Metadata
It’s possible that a requester will obtain the metadata it needs using WS-
MetadataExchange or another similar mechanism that queries the WSDL
and associated policy files directly. WS-MetadataExchange uses a feature of
WS-Addressing called “actions” to access the metadata published by a service
provider. WS-MetadataExchange is designed to provide any and all information
about a Web service description—essentially replacing UDDI for most
applications.

Developers may or may not use UDDI, despite its existence. It’s fair to say that
the public UDDI does not provide the metadata management facilities required
to support interoperability requirements at the extended specification level and
that WS-MetadataExchange may be needed for requesters to ensure they have
the information they need to achieve interoperability with providers using
extended features.

Security
Security concerns apply at every level of the Web services specification stack
and require a variety of mechanisms to guard against the numerous challenges
and threats that are a part of distributed computing. The mechanisms may have
to be used in combination to guard against a particular threat or combination of
threats. In the Web services and SOA world, it’s particularly important to evalu-
ate the need for protection at the network layer, the message layer, and for the
data in the message.

Basic security protection mechanisms are built around encryption, authentica-
tion, and authorization mechanisms and typically include comprehensive log-
ging for problem tracking. The industry has achieved consensus around a single
specification framework, WS-Security, although ongoing work is necessary to
complete the profiles and additional related specifications.

WS-Security was developed to provide message-level security on an end-to-end
basis for Web services messages. Typical HTTP-based security mechanisms,
such as SSL, provide only transport-level point-to-point protection. Sometimes
additional security may be provided through the use of an alternative transport
mapping, such as CORBA’s IIOP or WebSphere MQ, but as with the rest of the

Newcomer_01.qxd 11/22/04 8:26 AM Page 41

42 Introduction to SOA with Web Services

extended features, the security specifications are written for HTTP as a kind of
default or lowest common denominator transport and therefore can be applied
to any transport.

WS-Security headers include the ability to carry strong authentication
formats such as Kerberos tickets and X.509 certificates and can use XML
Encryption and XML Signature technologies for further protecting the message
contents. Although a WS-Security authorization profile for the Security Assertion
Markup Language (SAML) is being developed, SAML can also be used on its
own for exchanging authorization information.

Additional specifications from IBM, Microsoft, Verisign, and others further
extend and complement WS-Security, including:

■ WS-SecurityPolicy—Defines security assertions detailing a Web service’s
requirements so that the service requester can meet them.

■ WS-Trust—Defines how to establish overall trust of the security system
by acquiring any needed security tokens (such as Kerberos tickets) from
trusted sources.

■ WS-SecureConversation—Defines how to establish and maintain a per-
sistent context for a secure session over which multiple Web service
invocations might be sent without requiring expensive authentication
each time.

■ WS-Federation—Defines how to bridge multiple security domains into
a federated session so that a Web service only has to be authenticated
once to access Web services deployed in multiple security domains.

Because Web services are XML applications, and because XML has security chal-
lenges of its own (it is basically human-readable text sent over the Internet), XML-
based security technologies are also often important for protecting the XML data
before and after it’s included in a SOAP message. These technologies include:

■ XML Encryption—Designed to provide confidentiality, using a variety of
supported encryption algorithms, of part or all of an XML document to
ensure that the contents of a document cannot be intercepted and read
by unauthorized persons.

Newcomer_01.qxd 11/22/04 8:26 AM Page 42

Extended Web Services Specifications 43

■ XML Signature—Designed to provide integrity, using a variety of encryp-
tion and signature mechanisms, to ensure that service providers can
determine whether or not documents have been altered in transit and
that they are received once and only once.

XML Encryption and XML Signature can be used to protect Web services meta-
data as well as data.

Reliability and Messaging
Messaging includes SOAP and its various message exchange patterns (MEP).
The industry has not achieved consensus on a single, unified set of specifica-
tions for advanced messaging. However, competing specifications in the cate-
gories of reliability and notification work essentially the same way, and so an
amalgam of the two is used here for the sake of introduction.

In general, reliable messaging is the mechanism that guarantees that one or
more messages were received the appropriate number of times. Reliable mes-
saging specifications include:

■ WS-Reliability.

■ WS-ReliableMessaging (from IBM and Microsoft).

Reliable messaging is designed to ensure reliable delivery of SOAP messages
over potentially unreliable networks such as the HTTP-based Internet.

Reliable messaging is a protocol for exchanging SOAP messages with guaran-
teed delivery, no duplicates, and guaranteed message ordering. Reliable mes-
saging works by grouping messages with the same ID, assembling messages
into groups based on message number, and ordering them based on sequence
number.

Reliable messaging automates recovery from certain transport-level error
conditions that the application would otherwise have to deal with on its own.
Reliable messaging also supports the concept of bridging two proprietary mes-
saging protocols over the Internet.

Newcomer_01.qxd 11/22/04 8:26 AM Page 43

44 Introduction to SOA with Web Services

Also in the general messaging area are specifications for extended MEPs such as
event notification and publish/subscribe, which basically extend the asynchro-
nous messaging capability of Web services. Specifications in this area include:

■ WS-Eventing.

■ WS-Notification.

Notification delivers messages through an intermediary often called a message
broker or event broker. Subscribers identify the channels or topics for which
they wish to receive messages. Publishers send messages to the channels or
topics on which subscribers are listening. Notification is a messaging mecha-
nism that can be used to set up broadcast and publish/subscribe messaging.

Transactions
Transactions allow multiple operations, usually on persistent data, to succeed or
fail as a unit, such as processing an order or transferring funds. One of the most
important aspects of transaction processing technologies is their ability to
recover an application to a known state following an operating system or hard-
ware failure. For example, if any failure occurs before a funds transfer operation
is completed (that is, both the debit and credit operations), transactions ensure
the bank account balances are what they were before the funds transfer opera-
tion started.

Many Web services applications may require only the transaction processing
capabilities inherent in the underlying execution environment, such as those
provided by application servers and databases. Others may require multiple
Web service invocations to be grouped into a larger transactional unit, includ-
ing a transactional context within SOAP headers so that the transaction can be
coordinated across multiple execution environments.

Web services transaction specifications extend the concept of the transaction
coordinator, adapt the familiar two-phase commit protocol for Web services,
and define new extended transaction protocols for more loosely coupled Web
services and orchestration flows. Transaction coordinators currently exist in
most execution environments, including J2EE, the .NET Framework, and

Newcomer_01.qxd 11/22/04 8:26 AM Page 44

Extended Web Services Specifications 45

CORBA. Web services specifications define extensions for these (and other)
coordinators for compensation-based protocols and long-running coordinator-
coordinator protocols that bridge software domains.

Coordination is a general mechanism for determining a consistent, predefined
outcome for composite Web service applications. The coordinator model
includes two major phases: the acquisition phase in which Web services that
are participating in the composite are enrolled with the coordinator for a spe-
cific protocol (such as two-phase commit, compensation, or business process)
and a second phase in which the coordinator drives the agreed-upon protocol
to completion following the end of the execution of the set of services in the
composite. When a failure occurs, the coordinator is responsible for driving the
recovery protocol (if any).

The specifications in this area include:

■ WS-Transactions family from BEA, IBM, and Microsoft:

■ WS-AtomicTransactions—Defines volatile and durable variations of a
standard two-phase commit protocol for short-lived executions.

■ WS-BusinessActivity—Defines variations on the idea of tentative
commit and compensation-based undo protocols for longer-lived
executions.

■ WS-Coordination—Defines the coordinator for the two pluggable
protocols (and their variations).

■ WS-Composite Application Framework (WS-CAF) from OASIS:

■ WS-Context—Defines a standalone context management system for
generic context (that is, for non-transaction protocol contexts such as
security, device and network IDs, or database and file IDs).

■ WS-CoordinationFramework—Defines a coordinator for the basic
context specification and the pluggable transaction protocols in the
WS-TransactionManagement specification.

■ WS-TransactionManagement—Defines three transaction protocols for
the pluggable coordinator: ACID, long-running actions (compensa-
tion), and business process management.

Newcomer_01.qxd 11/22/04 8:26 AM Page 45

46 Introduction to SOA with Web Services

Both sets of specifications are centered on an extended coordinator with plug-
gable transaction protocols. Both sets of specifications define atomic transac-
tions (i.e., two-phase commit) and compensation-based transactions. WS-CAF
breaks context management into a separate specification and adds a third trans-
action protocol specifically designed for business process management.

Orchestration
Web services can and eventually will be published for most software systems
and applications within a given IT environment, and in fact across multiple
organizations’ IT environments. Rather than have Web services invoke each
other using one or more of the message exchange patterns supported by SOAP
and WSDL, an orchestration engine can be used to create more complex inter-
action patterns in long-running business process flows with exception handling,
branching, and parallel execution. To accomplish this, the orchestration engine
has to preserve context and provide correlation mechanisms across multiple
services.

A Web service orchestration may also be published as a Web service, providing
an interface that encapsulates a sequence of other Web services. Using the
combination of MEPs and orchestration mechanisms, entire application suites
can be built up out of Web services at multiple levels of encapsulation, from
those that encapsulate a single software module to those that encapsulate a
complex flow of other Web services.

The industry has reached a consensus around a single orchestration specifica-
tion: the OASIS Web Services Business Process Execution Language (WS-BPEL).
WS-BPEL assumes that Web services are defined using WSDL and policy asser-
tions that identify any extended features.

Typically, a flow is initiated by the arrival of an XML document, and so the doc-
ument-oriented Web services style tends to be used for modeling the entry point
to a flow. Parts of the document are typically extracted and operated upon by
the individual tasks in the flow, such as checking on the inventory availability
for each line item from a different supplier, meaning the steps in the flow may
be implemented using a combination of request/response and document-
oriented Web services.

Newcomer_01.qxd 11/22/04 8:26 AM Page 46

Extended Web Services Specifications 47

The WS-BPEL specification differs from other extended specifications in that it
defines an executable language compatible with various software systems that
drive business process automation. Whereas most other Web services specifica-
tions are XML representations of existing distributed computing features and
capabilities that extend SOAP headers, orchestration represents the requirement
for composing Web services in a declarative manner.

The W3C’s Web Services Choreography Definition Language (WS-CDL) is an-
other specification in the general area of orchestration. Choreography is defined
as establishing the formal relationship between two or more external trading
partners. One difference between WS-CDL and WS-BPEL is that WS-CDL does
not require Web services infrastructure at all of the endpoints being integrated.

Strategic Value of Orchestration

Some people say orchestration is where Web services gain their strategic
value. Web services have intrinsic value because of the relative ease with
which they allow developers to solve interoperability problems across dis-
parate types of software. Web services orchestration can be used in a vari-
ety of ways ranging from creating composite services in a declarative
(non-programmatic) manner to full-blown business process management.
Using Web services orchestration for BPM is clearly more difficult because
it requires a deep understanding of an enterprise’s business processes. In any
case, it is true that the orchestration layer is where everyone expects the
solution to be found to the hard problems of data type and structure
incompatibilities, semantic data matching, and correlating the results of
multiple Web services. It will take a while to prove whether or not these
problems can really be solved at the orchestration layer and whether or not
automated business process management is something companies really
want or need at either the departmental or enterprise level.

Newcomer_01.qxd 11/22/04 8:26 AM Page 47

48 Introduction to SOA with Web Services

Summary

So, we can see that the Web services standards, both the core and extended
specifications, contribute significantly to the ability to create and maintain ser-
vice-oriented architectures on which to build new enterprise applications.
These applications are often called composite applications because they work
through a combination of multiple services.

We’ve seen that SOA is not an end in itself but a preparation for a longer jour-
ney. It’s a set of maps and directions to follow that lead to a better IT environ-
ment. It’s a blueprint for an infrastructure that aligns IT with business, saves
money through reuse of assets, rapid application development, and multi-
channel access.

Web services have had an initial success with the core standards and are now
on to the next step in the journey, which is to define extended features and
functions that will support more and more kinds of applications.

Service orientation provides a different perspective and way of thinking than
object orientation. It’s as significant a change as going from procedure-oriented
computing to object-oriented computing. Services tend toward complementary
rather than replacement technology, and are best suited for interoperability
across arbitrary execution environments, including object oriented, procedure
oriented, and other systems.

Newcomer_01.qxd 11/22/04 8:26 AM Page 48

