
Foreword

Be Careful What You Wish For. You May Get It.

A common theme in folk tales is the story of a man who is given three
wishes. After spending the first two wishes on a golden castle and a beau-
tiful princess, and discovering the operations and maintenance implica-
tions of each, he is happy to spend the third wish getting back to where
he came from.

This kind of story happens a lot in software development. Much of it
is due to an overfixation in hurrying to get a set of requirements tem-
plates completely filled out by the Software Requirements Review dead-
line. The deadline is usually set very early by the upper management,
based on such self-fulfilling logic as, “We need to hurry up and start cod-
ing, because we will have a lot of debugging to do.”

This pushes the requirements analysts into a hurried activity to mini-
mize such dysfunctional progress metrics as “percentage of incomplete
requirements” so that the requirements can be signed off and the “real
software work” can begin. As a result, the project gets locked into re-
quirements for hasty and later-regretted wishes.

Suzanne and James Robertson have seen a lot of software projects fail
in this way. They have seen it happen with teams misapplying the
Robertsons’ own requirements templates (named Volere after the Italian
word for “to wish or want”), and have written this book in response. The
book rightly emphasizes that the main purpose of the requirements ac-
tivity is not template-filling. It is rather a mutual learning activity in which

ix

30729 00 ppi-xviii r5jm 7/21/04 3:28 PM Page ix

2
3
4

6
7
8
9
0

2
3
4

6
7
8
9
0

2
3
4

6
7
8
9
0

2
3
4

6
7
8
9
0

2
3

specialists from different areas and cultures try to fit what people in a user
culture need to what people in a development culture can produce, subject to
some real-world constraints that people in an ownership and management cul-
ture need to live within.

These real-world constraints lead to another important conclusion
about software requirements.

It is not a requirement if you cannot afford it.

A good example of this happened on a project I was involved in at
TRW. A hasty requirements activity had locked the project into a com-
mitment to a 1-second response time to user queries. This was based
largely on marketing enthusiasm and some small-scale COTS product
demos.

Belatedly, the designers found that the COTS products could only
achieve a 2.5-second response time when scaled up to the customer’s full
workload. The best custom solution they could find carried a price tag of
$100 million, as compared to the customer’s real-world constraint of a
$30 million budget.

Belatedly, the customer commissioned some prototypes. These deter-
mined that a 4-second response time was adequate for 90% of the queries,
and that the COTS product could be used to provide an acceptable solu-
tion within the $30 million budget constraint. Fortunately, this was dis-
covered before delivery, but only after 18 months and a lot of money
spent on a design that had to be thrown away.

This experience leads to some further important conclusions about
software requirements (and requirements for a system in general).

Don’t lock yourself into a set of requirements until you’re sure
you have a design that will satisfy them.

This is covered very well by the Robertsons in Chapter 11 on the need
for strong overlap between requirements, design, building, and integra-
tion activities; and in Chapters 5 and 6 emphasizing the importance of
early prototypes and simulations to validate requirements before com-
mitting to them. Also in Chapter 9, they emphasize the importance of
“signing on” to requirements and solution commitments rather than
“signing off” on a set of requirements templates.

Watch out for nonfunctional requirements (NFRs).

The best design solution is often a discontinuous function of the NFR
level, and you don’t want to get caught in the wrong side of the disconti-

x • Foreword

30729 00 ppi-xviii r5jm 7/21/04 3:28 PM Page x

nuity, as did our project in the 1-second response time, $100 million cost
situation. NFRs are emphasized by the Robertsons in Chapters 6 and 11,
and covered more in their previous book, Mastering the Requirements
Process. Again, they require a lot of caution because:

A tiny change in NFRs can cause a huge change in the cost.

Just think. All it takes is changing one character from a “4” to a “1” in
a 1000-page requirements specification to turn a $30 million project into
a $100 million project.

In Chapter 8, the Robertsons advocate using function points to esti-
mate the cost of the requirements activity. Note the restricted target of
this estimate, as they are aware of the flawed notion advanced by overen-
thusiastic function point advocates that you can estimate costs from the
requirements without thinking about the design. As we saw in the
example above, one character change in a 1000-page requirements speci-
fication changed cost by a factor of over three. The big thing that
changed was the design, which is the preferred basis for estimating costs.

Thus, when following the Robertsons’ excellent guidance in Chapter 2
on developing a return on investment (ROI) analysis for your system and
its requirements, it is important to recognize that:

• An ROI analysis is based on both benefit and cost estimates.
• Benefits are best estimated from the requirements, which tell you

what the system will do for the users, and how well.
• Costs are best estimated from the design, which tells you how the

system will be built (including the cost implications of using very
high-level languages and using COTS, open source, or product-line
components, none of which are included in the estimation formu-
las in Chapter 8).

That said, you’ll find this book a treasure trove of experience-based
guidelines and illustrative examples on how to get the requirements
right on your project. These include guidelines and examples on treating
the requirements as an investment activity in Chapter 2; getting the
right people involved and understanding their cultures in Chapter 3;
techniques for stimulating mutual learning and a shared vision among
stakeholders in Chapter 4; the use of prototypes and simulations in
Chapters 5 and 6; dealing with legacy systems in Chapter 7; and manag-
ing systems requirements, systems of systems requirements, and require-
ments processes in Chapters 9, 10, and 11. Each chapter concludes with a
nicely balanced set of “What do I do right now?” and “What’s the least
that I can get away with?” checklists.

Foreword • xi

30729 00 ppi-xviii r5jm 7/21/04 3:28 PM Page xi

2
3
4

6
7
8
9
0

2
3
4

6
7
8
9
0

2
3
4

6
7
8
9
0

2
3
4

6
7
8
9
0

2
3

As a bottom line, the book does a wonderful job of lifting its readers
from a focus on templates and objects to a focus on people’s needs, capa-
bilities, and ability to work together to achieve a shared vision of the re-
quirements (and the design) for a system that will satisfy all their needs
and constraints. I hope you have the opportunity to use its practices on
your next project.

Barry Boehm

xii • Foreword

30729 00 ppi-xviii r5jm 7/21/04 3:28 PM Page xii

