
211

7
T-SQL Enhancements

SQ L S E RV E R 2005 includes new Transact-SQL (T-SQL) functionality.
The enhancements span the range from an alternative mechanism for

transaction isolation to declarative support for hierarchical queries. And
statement-level recompilation even improves existing T-SQL applications
that were written before 2005.

Improvements to Transact-SQL
Microsoft has continually improved the Transact SQL language and the
infrastructure of SQL Server itself. In brief, the improvements include the
following:

• SNAPSHOT isolation—Additional isolation level that does not use
write locks

• Statement-level recompile—More efficient recompilation of stored
procedures

• Event notifications—Integration of Data Definition Language (DDL)
and DML operations with Service Broker

• Large data types—New data types that deprecate TEXT and IMAGE

• DDL triggers—Triggers that fire on DDL operations

• Common Table Expressions—Declarative syntax that makes a
reusable expression part of a query

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 211

• Hierarchical queries—Declarative syntax for tree-based queries

• PIVOT—Declarative syntax aggregations across columns and con-
verting columns to rows

• APPLY—New JOIN syntax made for use with user-defined functions
and XML

• TOP—Row count based on an expression

• Transaction abort—TRY/CATCH syntax for handling errors

SNAPSHOT Isolation
SQL Server changes the state of a database by performing a transaction on
it. Each transaction is a unit of work consisting of one or more steps. A
“perfect” transaction is ACID, meaning it is atomic, consistent, isolated,
and durable. In short, this means that the result of performing two transac-
tions on a database, even if they are performed simultaneously by inter-
leaving some of the steps that make them up, will not corrupt the database.

Atomic means that a transaction will perform all of its steps or fail and
perform none of its steps. Consistent means that the transaction must not
leave the results of a partial calculation in the database; for example, if a
transaction is to move money from one account to another, it must not termi-
nate after having subtracted money from one account but not having added
it to another. Isolated means that none of the changes a transaction makes to
a database become visible to other transactions until the transaction making
the changes completes, and then they all appear simultaneously. Durable
means that changes made to the database by a transaction that completes are
permanent, typically by being written to a medium like a disk.

A transaction need not always be perfect. The isolation level of a trans-
action determines how close to perfect it is. Prior to SQL Server 2005, SQL
Server provided four levels of isolation: READ UNCOMMITTED, REPEATABLE
READ, READ COMMITTED, and SERIALIZABLE.

A SERIALIZABLE transaction is a perfect transaction. Functionally, a
database could always use SERIALIZABLE—that is, perfect transactions,
but doing so would typically adversely affect performance. Judicious use
of isolation levels other than SERIALIZABLE, when analysis of an appli-
cation shows that it does not require perfect transactions, will improve
performance in these cases.

SQL Server uses the isolation level of a transaction to control concur-
rent access to data through a set of read and write locks. It applies these

T-SQL ENHANCEMENTS212

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 212

locks pessimistically; that is, they physically prevent any access to data
that might compromise the required isolation level. In some cases, this will
delay a transaction as it waits for a lock to be freed, or may even cause it to
fail because of a timeout waiting for the lock.

SQL Server 2005 adds SNAPSHOT isolation that, in effect, provides alter-
nate implementations of SERIALIZABLE and READ COMMITTED levels of
isolation that use optimistic locking to control concurrent access rather
than pessimistic locking. For some applications, SNAPSHOT isolation may
provide better performance than pre–SQL Server 2005 implementations
did. In addition, SNAPSHOT isolation makes it much easier to port database
applications to SQL Server from database engines that make extensive use
of SNAPSHOT isolation.

SQL Server 2005 has two kinds of SNAPSHOT isolation: transaction-level
and statement level. Transaction-level SNAPSHOT isolation makes trans-
actions perfect, the same as SERIALIZABLE does. Statement-level SNAPSHOT
isolation makes transactions that have the same degree of isolation as
READ COMMITTED does.

The transaction-level SNAPSHOT isolation optimistically assumes that if
a transaction operates on an image of that database’s committed data
when the transaction started, the result will be the same as a transaction
run at the SERIALIZABLE isolation level. Some time before the transaction
completes, the optimistic assumption is tested, and if it proves not to be
true, the transaction is rolled back.

Transaction-level SNAPSHOT isolation works by, in effect, making a ver-
sion of the database by taking a snapshot of it when a transaction starts.
Figure 7-1 shows this.

There are three transactions in Figure 7-1: transaction 1, transaction 2,
and transaction 3. When transaction 1 starts, it is given a snapshot of the ini-
tial database. Transaction 2 starts before transaction 1 finishes, so it is also
given a snapshot of the initial database. Transaction 3 starts after transac-
tion 1 finishes but before transaction 2 does. Transaction 3 is given a snap-
shot of the initial database plus all the changes committed by transaction 1.

The result of using SERIALIZABLE or transaction-level SNAPSHOT isola-
tion is the same; some transactions will fail and have to be retried, and may
fail again, but the integrity of the database is always guaranteed.

Of course, SQL Server can’t actually make a snapshot of the entire data-
base, but it gets that effect by keeping track of each change to the database
until all transactions that were started before the change was made are
completed. This technique is called row versioning.

SNAPSHOT ISOLATION 213

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 213

The row versioning model is built upon having multiple copies of the
data. When reading data, the read happens against the copy, and no locks
are held. When writing the data, the write happens against the “real” data,
and it is protected with a write lock. For example, in a system implement-
ing row versioning, user A starts a transaction and updates a column in a
row. Before the transaction is committed, user B wants to read the same
column in the same row. He is allowed to do the read but will read an older
value. This is not the value that A is in the process of updating to, but the
value A is updating from.

In statement-level SNAPSHOT isolation, the reader always reads the last
committed value of a given row, just as READ COMMITTED does in a version-
ing database. Let’s say we have a single-row table (called tab) with two
columns: ID and name. Table 7-1 shows a versioning database at READ
COMMITTED isolation.

The other transaction isolation level in a versioning database, SERIAL-
IZABLE, is always implemented by the behavior that the reader always
reads the row as of the beginning of the transaction, regardless of whether
other users’ changes are committed during the duration of the trans-
action or not. This was shown qualitatively in Figure 7-1. Table 7-2 shows
a specific example of how two transactions interoperate when the
SERIALIZABLE level of SNAPSHOT isolation is used.

The difference between this table and Table 7-1 occurs at step 5.
Even though user 2 has updated a row and committed the update, user 1,
using the SERIALIZABLE transaction isolation level, does not “see” the

T-SQL ENHANCEMENTS214

Transaction 1

Transaction 2

Snapshot

Transaction 3

Initial
Database

Snapshot

Snapshot

Figure 7-1: Snapshot Versioning

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 214

next value until user 1 commits his transaction. He sees the new value
only in step 7. In SQL Server this is called “transaction-level SNAPSHOT
isolation.”

Both statement- and transaction-level SNAPSHOT isolation require that
SNAPSHOT be enabled by using the SNAPSHOT isolation option of the ALTER
DATABASE command. The following SQL batch does this for the pubs
database.

ALTER DATABASE pubs

SET ALLOW_SNAPSHOT_ISOLATION ON

SNAPSHOT isolation can be turned on or off as needed.
Once SNAPSHOT isolation has been enabled, transaction-level isolation

is used by specifically setting the transaction isolation level to SNAPSHOT.
The following SQL batch does this.

SNAPSHOT ISOLATION 215

Step User 1 User 2

1 BEGIN TRAN

SELECT name FROM tab WHERE id = 1

**value is ‘Name’

2 BEGIN TRAN

UPDATE tab SET name =
‘Newname’

WHERE id = 1

3 SELECT name FROM tab WHERE id = 1

**value is ‘Name’

4 COMMIT

5 SELECT name FROM tab WHERE id = 1

**value is ‘NewName’

6 COMMIT

7 SELECT name FROM tab WHERE id = 1

**value is ‘NewName’

Table 7-1: Versioning Database at READ COMMITTED Isolation

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 215

ALTER DATABASE pubs

SET ALLOW_SNAPSHOT_ISOLATION ON

GO

USE pubs

GO

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

BEGIN TRANS

— SQL Expressions

COMMIT TRANS

The SQL expression in the preceding batch will be executed, in effect,
against a snapshot of the database that was taken when BEGIN TRANS was
executed.

Statement-levelSNAPSHOT isolation requires the use of an additional data-
base option, READ_COMMITTED_SNAPSHOT. If this database option and ALLOW_

SNAPSHOT_ISOLATION are ON, all transactions done at the READ UNCOMMITTED

or READ COMMITTED levels will be executed as READ COMMITTED–level

T-SQL ENHANCEMENTS216

Step User 1 User 2

1 BEGIN TRAN

SELECT name FROM tab WHERE id = 1

**value is ‘Name’

2 BEGIN TRAN

UPDATE tab SET name =
‘Newname’

WHERE id = 1

3 SELECT name FROM tab WHERE id = 1

**value is ‘Name’

4 COMMIT

5 SELECT name FROM tab WHERE id = 1

**value is ‘Name’

6 COMMIT

7 SELECT name FROM tab WHERE id = 1

**value is ‘NewName’

Table 7-2: Versioning Database at SERIALIZABLE Isolation

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 216

transactions using versioning instead of locking. Both transactions shown
in the SQL batch that follows will be executed as READ COMMITTED using
versioning.

— alter the database

ALTER DATABASE pubs

SET ALLOW_SNAPSHOT_ISOLATION ON

SET READ_COMMITTED_SNAPSHOT ON

GO

USE pubs

GO

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

BEGIN TRAN

— SQL expression will be executed as READ COMMITTED using versioning

END TRAN

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

BEGIN TRAN

— SQL expression will be executed as READ COMMITTED using versioning

END TRAN

Whether ALLOW_SNAPSHOT_ISOLATION is ON or not can be checked for a
particular database by the DATABASEPROPERTYEX command. This com-
mand returns the current database option or setting for a particular data-
base. The setting to check is the SnapshotIsolationFramework setting, as
in following code for the pubs database:

SELECT DATABASEPROPERTYEX (‘pubs’, ‘SnapshotIsolationFramework’)

As stated earlier, SQL Server does not actually make a copy of a data-
base when a SNAPSHOT transaction is started. Whenever a record is
updated, SQL Server stores in TEMPDB a copy (version) of the previously
committed value and maintains these changes. All the versions of a record
are marked with a timestamp of the transactions that made the change,
and the versions are chained in TEMPDB using a linked list. The newest
record value is stored in a database page and linked to the version store in
TEMPDB. For read access in a SNAPSHOT isolation transaction, SQL Server
first accesses from the data page the last committed record. It then
retrieves the record value from the version store by traversing the chain of
pointers to the specific record version of the data.

The code in Table 7-3 shows an example of how SNAPSHOT isolation
works. The example uses a table, snapTest, looking like this.

—it is necessary to run

—SET ALLOW_SNAPSHOT_ISOLATION ON

—if that’s not done already

SNAPSHOT ISOLATION 217

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 217

CREATE TABLE snapTest ([id] INT IDENTITY,

col1 VARCHAR(15))

—insert some data

INSERT INTO snapTest VALUES(1,’Niels’)

T-SQL ENHANCEMENTS218

Step User 1 User 2

1 SET TRANSACTION ISOLATION
LEVEL SNAPSHOT

BEGIN TRAN

UPDATE snapTest

SET col1 = ‘NewNiels’

WHERE id = 1

2 SET TRANSACTION ISOLATION
LEVEL SNAPSHOT

BEGIN TRAN

SELECT col1 FROM snapTest

WHERE id = 1

** receives value ‘Niels’

3 COMMIT TRAN

4 SELECT col1 FROM snapTest

WHERE id = 1

** receives value ‘Niels’

5 COMMIT TRAN

6 SELECT col1 FROM snapTest

WHERE id = 1

** receives value
‘NewNiels’

Table 7-3: Example of SNAPSHOT Isolation

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 218

The steps in Table 7-3 do the following:

1. We start a transaction under SNAPSHOT isolation and update one col-
umn in one row. This causes SQL Server to store a copy of the origi-
nal value in TEMPDB. Notice that we do not commit or roll back at this
stage, so locks are held. If we were to run sp_lock, we would see an
exclusive lock on the primary key.

2. We start a new transaction under a new session and try to read from
the same row that is being updated at the moment. This is the row
with an exclusive lock. If this had been previous versions of SQL
Server (running under at least READ COMMITTED), we would be
locked out. However, running in SNAPSHOT mode, SQL Server looks
in the version store in TEMPDB to retrieve the latest committed value
and returns “Niels”.

3. We commit the transaction, so the value is updated in the database
and another version is put into the version store.

4. User 2 does a new SELECT (from within his original transaction) and
will now receive the original value, “Niels”.

5. User 2 finally commits the transaction.

6. User 2 does a new SELECT (after his transaction commits) and will
now receive the new value, “NewNiels”.

SNAPSHOT isolation is useful for converting an application written for a
versioning database to SQL Server. When an application is developed for
a versioning database, the developer does not need to be concerned with
locking. Converting such an application to SQL Server may result in
diminished performance because more locking is done than is required.
Prior to SQL Server 2005, this sort of conversion may have required rewrit-
ing the application. In version 2005, in many cases the only thing that will
have to be done is to enable SNAPSHOT isolation and READ_COMMITTED_
SNAPSHOT.

SNAPSHOT isolation is also beneficial for applications that mostly read
and do few updates. It is also interesting to note that when SQL Server
2005 is installed, versioning is enabled in the MASTER and MSDB databases
by default.

SNAPSHOT ISOLATION 219

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 219

Drawbacks of Versioning
Versioning has the capability to increase concurrency but does come with a
few drawbacks of its own. Before you write new applications to use ver-
sioning, you should be aware of these drawbacks. You can then assess the
value of locking against the convenience of versioning.

It can be costly because record versions need to be maintained even if no
read operations are executing. This has the capability of filling up TEMPDB.
If a database is set up for versioning, versions are kept in TEMPDB whether
or not anyone is running a SNAPSHOT isolation–level transaction. Although
a “garbage collector” algorithm will analyze the older versioning transac-
tion and clean up TEMPDB eventually, you have no control over how often
that cleanup in done. Plan the size of TEMPDB accordingly; it is used to keep
versions for all databases with SNAPSHOT enabled. If you run out of space
in TEMPDB, long-running transactions may fail.

In addition, reading data will sometimes cost more because of the
need to traverse the version list. If you are doing versioning at the READ
COMMITTED isolation level, the database may have to start at the beginning
of the version list and read through it to attempt to read the last committed
version.

There is also the possibility of update concurrency problems. Let’s sup-
pose that in Table 7-1 user 1 decides to update the row also. Table 7-4 shows
how this would look.

In this scenario, user 1 reads the value “Name” and may base his update
on that value. If user 2 commits his transaction before user 1 commits his,
and user 1 tries to update, he bases his update on possibly bad data
(the old value he read in step 1). Rather than allowing this to happen, ver-
sioning databases produce an error. The error message in this case is as
follows:

Msg 3960, Level 16, State 1, Line 1. Cannot use snapshot isolation

to access table ‘tab’ in database ‘pubs’. Snapshot transaction aborted

due to update conflict. Retry transaction.

Obviously, retrying transactions often enough will slow down the
overall throughput of the application. In addition, the window of time for
a concurrency violation to occur increases the longer a transaction reads
old values. Because, at the SERIALIZABLE isolation level, the user always
reads the old value until he commits the transaction, the window is much
bigger—that is, concurrency violations are statistically much more likely
to occur. In fact, vendors of versioning databases recommend against

T-SQL ENHANCEMENTS220

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 220

using SERIALIZABLE isolation (SQL Server ISOLATION LEVEL SNAPSHOT) in
most cases. READ COMMITTED is a better choice with versioning.

Finally, as we said before, in versioning databases reads don’t lock
writes, which might be what we want. Is this possible with a versioning
database? Locking-database programmers, when using versioning, tend to
lock too little, introducing subtle concurrency problems. In a versioning
database, there must be a way to do insist on a lock on read. Ordinarily this
is done by doing a SQL SELECT FOR UPDATE. But SQL Server does not sup-
port SELECT FOR UPDATE with the appropriate semantic. There is, however,
a solution. Even when READ_COMMITTED_SNAPSHOT is on, you can ensure a
read lock by using SQL Server’s REPEATABLE READ isolation level, which
never does versioning. The SQL Server equivalent of ANSI’s SELECT FOR

UPDATE is SELECT with (REPEATABLEREAD). Note that this is different from
the SQL Server UPDLOCK (update lock), which is a special lock that has sim-
ilar semantics but only works if all participants in all transactions are using
UPDLOCK. This is one place where programs written for versioning data-
bases may have to change their code in porting to SQL Server 2005.

SNAPSHOT ISOLATION 221

Step User 1 User 2

1 BEGIN TRAN

SELECT name FROM tab
WHERE id = 1

**value is ‘Name’

2 BEGIN TRAN

UPDATE tab SET name =
‘Newname’

WHERE id = 1

3 COMMIT

4 UPDATE tab SET name =
‘Another name’

WHERE id = 1

** produces concurrency violation

5 ROLLBACK (and try update again?)

Table 7-4: Versioning Database at SERIALIZABLE Isolation—Concurrent Updates

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 221

Monitoring Versioning
Allowing versioning to achieve concurrency is a major change. We’ve
already seen how it can affect monitoring and capacity planning for
TEMPDB. Therefore, all the tools and techniques that we’ve used in the past
must be updated to account for this new concurrency style. Here are some
of the enhancements that make this possible.

There are the following new T-SQL properties and metadata views:

• DATABASEPROPERTYEX—Tells us if SNAPSHOT is on

• sys.fn_top_version_generators()—Tables with most versions

• sys.fn_transaction_snapshot()—Transaction active when a
SNAPSHOT transaction starts

• sys.fn_transactions()—Includes information about SNAPSHOT
transaction (or not), if SNAPSHOT includes information about version
chains and SNAPSHOT timestamps

There are new performance monitor counters for the following:

• Average version store data-generation rate (kilobytes per minute)

• Size of current version store (kilobytes)

• Free space in TEMPDB (kilobytes)

• Space used in the version store for each database (kilobytes)

• Longest running time in any SNAPSHOT transaction (seconds)

SNAPSHOT isolation information is also available during event tracing.
Because a SNAPSHOT transaction has to be aware of any updates committed
by other users, other users’ updates appear in SQL Profiler while tracing
a SNAPSHOT isolation transaction. Beware, since this can significantly
increase the amount of data collected by Profiler.

Statement-Level Recompilation
The next thing we’ll look at is a performance enhancement that is part of
the infrastructural improvements in T-SQL: statement recompilation. In
SQL Server 2000, the query plan architecture differs from previous ver-
sions, and it is divided into two structures: a compiled plan and an exe-
cutable plan.

T-SQL ENHANCEMENTS222

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 222

• Compiled plan (a.k.a. query plan)—A read-only data structure used
by any number of users. The plan is reentrant, which implies that all
users share the plan and no user context information (such as data
variable values) is stored in the compiled plan. There are never more
than one or two copies of the query plan in memory—one copy for
all serial executions and another for all parallel executions.

• Executable plan—A data structure for each user that concurrently
executes the query. This data structure, which is called the exe-
cutable plan or execution context, holds the data specific to each
user’s execution, such as parameter values.

This architecture, paired with the fact that the execution context is
reused, has very much improved the execution of not only stored proce-
dures but functions, batches, dynamic queries, and so on. However, there is
a common problem with executing stored procedures, and that is recompila-
tion. Examples of things that cause recompilation to occur are as follows:

• Schema changes

• Threshold changes in rows

• Certain SET options

A recompilation can incur a huge cost especially if the procedure,
function, or batch is large, because SQL Server 2000 does module-level
recompilation. In other words, the whole procedure is recompiled even if
the cause of the recompilation affects only a small portion of the pro-
cedure. In addition, if the recompilation happens because a SET option
changes, the executable plan will be invalidated and not cached. The
code in Listing 7-1 is extremely simple, but it can be used to illustrate
the problem.

Listing 7-1 is a stored procedure which in the middle of the proce-
dure changes the CONCAT_NULL_YIELDS_NULL option. When this runs
against SQL Server 2000, a recompilation happens for each execution of
the procedure.

Listing 7-1: Procedure That Causes Recompilation

CREATE PROCEDURE test2

AS

SELECT ‘before set option’

STATEMENT-LEVEL RECOMPILATION 223

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 223

—//change a set option

SET CONCAT_NULL_YIELDS_NULL OFF

SELECT ‘after set option’

To verify that recompilation happens on SQL Server 2000, do the
following:

1. Catalog the procedure in Listing 7-1.

2. Open the SQL Server Profiler and from the File menu, select New |
Trace.

3. When the Trace Properties dialog comes up, choose the Events tab.

4. In the Stored Procedures event group, choose the SP:Recompile
event, click the Add button, as shown in Figure 7-2, and then click
Run.

T-SQL ENHANCEMENTS224

Figure 7-2: Trace Properties Dialog for SQL Profiler

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 224

5. Execute the procedure a couple of times from Query Analyzer and
view the trace output.

6. The output from the trace will show a couple of entries in the Event
Class column with the value of SP:Recompile, as in Figure 7-3. This
indicates that the procedure has been recompiled.

As mentioned before, the cost of recompilation can be very high for
large procedures, and in the SQL Server 2005 release, Microsoft has
changed the model to statement-level re-compilation. At this stage you
may worry that performance will suffer if each statement in a procedure is
individually recompiled. Rest assured that the initial compilation is still on
the module level, so only if a recompile is needed is it done per statement.

Another performance benefit in SQL Server 2005 is the fact that when
statement recompilation is done, the execution context will not be invali-
dated. The procedure in Listing 7-1 can be used in SQL Server 2005 to com-
pare the differences between SQL Server 2000 and 2005. In SQL Server
2005, follow the steps listed earlier and notice in the trace how a recompile
happens only the first time; for each subsequent execution, there is no
recompile. This is due to the fact that an execution plan will be created
after the initial recompile. Run the following code after you have executed
the procedure a couple of times, and notice that the result you get consists
of both a compiled plan and an executable plan.

SELECT * FROM syscacheobjects

WHERE dbid = db_id(‘pubs’)

AND objid = object_id(‘test2’)

STATEMENT-LEVEL RECOMPILATION 225

Figure 7-3: Trace Output

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 225

To be certain that you get the correct result, you can clean out the cache
before you execute the procedure by executing dbcc freeproccache.

When setting up the trace, you will see how the SQL Profiler allows
you to trace more events than in SQL Server 2000. Figure 7-4 shows the
Events Selection tab from the Trace Properties dialog.

As mentioned in the beginning of this chapter, the statement-level
recompilation can be seen as a purely infrastructural enhancement. As a
developer or DBA, you will not explicitly use it even though you implic-
itly benefit from it, and it may change the way you develop stored proce-
dures. No longer do recompiles have as much of a negative impact on
performance.

DDL Triggers
A trigger is a block of SQL statements that are executed based on the fact
that there has been an alteration (INSERT, UPDATE, or DELETE) to a table or
on a view. In previous versions of SQL Server, the statements had to be
written in T-SQL, but in version 2005, as we saw in Chapter 3, they can also
be written using .NET languages. As we mentioned, the triggers are fired
based on action statements (DML) in the database.

T-SQL ENHANCEMENTS226

Figure 7-4: Trace Properties Dialog in SQL Server 2005

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 226

What about changes based on Data Definition Language statements,
changes to the schema of a database or database server? It has not been
possible to use triggers for that purpose—that is, until SQL Server 2005. In
SQL Server 2005 you can create triggers for DDL statements as well as
DML.

The syntax for creating a trigger for a DDL statement is shown in List-
ing 7-2, and as with a DML trigger, DDL triggers can be written using .NET
languages as well.

Listing 7-2: Syntax for a DDL Trigger

CREATE TRIGGER trigger_name

ON { ALL SERVER | DATABASE }

[WITH ENCRYPTION]

{ FOR | AFTER } { event_type [,...n] | DDL_DATABASE_LEVEL_EVENTS }

[WITH APPEND]

[NOT FOR REPLICATION]

{ AS

{ sql_statement [...n] | EXTERNAL NAME < method specifier > }

}

< method_specifier > ::=

assembly_name:class_name[::method_name]

The syntax for a DML trigger is almost identical to that for a DDL trig-
ger. There are, however, some differences.

• The ON clause in a DDL trigger refers to either the scope of the whole
database server (ALL SERVER) or the current database (DATABASE).

• A DDL trigger cannot be an INSTEAD OF trigger.

• The event for which the trigger fires is defined in the event_type
argument, which for several events is a comma-delimited list.
Alternatively, you can use the blanket argument
DDL_DATABASE_LEVEL_EVENTS.

The SQL Server Books Online has the full list of DDL statements, which
can be used in the event_type argument and also by default are included
in the DDL_DATABASE_LEVEL_EVENTS. A typical use of DDL triggers is for
auditing and logging. The following code shows a simple example where
we create a trigger that writes to a log table.

—first create a table to log to

CREATE TABLE ddlLog (id INT PRIMARY KEY IDENTITY,

logTxt VARCHAR(MAX))

GO

DDL TRIGGERS 227

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 227

—create our test table

CREATE TABLE triTest (id INT PRIMARY KEY)

GO

— create the trigger

CREATE TRIGGER ddlTri

ON DATABASE

AFTER DROP_TABLE

AS

INSERT INTO ddlLog VALUES(‘table dropped’)

You may wonder what the VARCHAR(MAX) is all about in creating the
first table—we’ll cover that later in this chapter. The trigger is created with
a scope of the local database (ON DATABASE), and it fires as soon as a table is
dropped in that database (ON DROP_TABLE). Run following code to see the
trigger in action.

DROP TABLE triTest

SELECT * FROM ddlLog

The DROP TABLE command fires the trigger and inserts one record in the
ddlLog table, which is retrieved by the SELECT command.

As mentioned previously, DDL triggers can be very useful for logging
and auditing. However, we do not get very much information from the
trigger we just created. In DML triggers, we have the inserted and
deleted tables, which allow us to get information about the data affected
by the trigger. So, clearly, we need a way to get more information about
events when a DDL trigger fires. The way to do that is through the event
data function.

Eventdata
The eventdata() function returns information about what event fired a
specific DDL trigger. The return value of the function is XML, and the XML is
typed to a particular schema (XSD). Depending on the event type, the XSD
includes different information. The following four items, however, are
included for any event type:

• The time of the event

• The SPID of the connection that caused the trigger to fire

• The login name and user name of the user who executed the
statement

• The type of the event

T-SQL ENHANCEMENTS228

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 228

The additional information included in the result from eventdata is
covered in SQL Server Books Online, so we will not go through each item
here. However, for our trigger, which fires on the DROP TABLE command,
the additional information items are as follows:

• Database

• Schema

• Object

• ObjectType

• TSQLCommand

In Listing 7-3 we change the trigger to insert the information from the
eventdata function into the ddlLog table. Additionally, we change the
trigger to fire on all DDL events.

Listing 7-3: Alter Trigger to Use eventdata

— alter the trigger

ALTER TRIGGER ddlTri

ON DATABASE

AFTER DDL_DATABASE_LEVEL_EVENTS

AS

INSERT INTO ddlLog VALUES CONVERT(VARCHAR(max)eventdata()

From the following code, we get the output in Listing 7-4.

—delete all entries in ddlLog

DELETE ddlLog

—create a new table

CREATE TABLE evtTest (id INT PRIMARY KEY)

—select the logTxt column with the XML

SELECT logTxt

FROM ddlLog

Listing 7-4: Output from eventdata

<EVENT_INSTANCE>

<PostTime>2004-01-30T11:58:47.217</PostTime>

<SPID>57</SPID>

<EventType>CREATE_TABLE</EventType>

<ServerName>ZMV44</ServerName>

<LoginName>ZMV44\Administrator</LoginName>

<UserName>ZMV44\Administrator</UserName>

DDL TRIGGERS 229

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 229

<DatabaseName>pubs</DatabaseName>

<SchemaName>dbo</SchemaName>

<ObjectName>foo</ObjectName>

<ObjectType>TABLE</ObjectType>

<TSQLCommand>

<SetOptions ANSI_NULLS=”ON” ANSI_NULL_DEFAULT=”ON”

ANSI_PADDING=”ON” QUOTED_IDENTIFIER=”ON”

ENCRYPTED=”FALSE” />

<CommandText>

CREATE TABLE evtTest (id int primary key)

</CommandText>

</TSQLCommand>

</EVENT_INSTANCE>

Because the data returned from the function is XML, we can use XQuery
queries to retrieve specific item information. This can be done both in the
trigger and from the table where we store the data. The following code
illustrates how to retrieve information about the EventType, Object, and
CommandText items in the eventdata information stored in the table
ddlLog. Notice that we first store it into an XML data type variable, before
we execute the XQuery statement against it.

DECLARE @data XML

SELECT @data = logTxt FROM ddlLog

WHERE id = 11

SELECT

CONVERT(NVARCHAR(100),

@data.query(‘data(//EventType)’)) EventType,

CONVERT(NVARCHAR(100),

@data.query(‘data(//Object)’)) Object,

CONVERT(NVARCHAR(100),

@data.query(‘data(//TSQLCommand/CommandText)’)) Command

If the syntax in the previous code snippet seems strange, that’s because
it is XML and XQuery; read Chapters 8 and 9, where the XML data type and
XQuery are covered in detail.

The programming model for both DML and DDL triggers is a synchro-
nous model, which serves well when the processing that the trigger does is
relatively short-running. This is necessary because DDL and DML triggers
can be used to enforce rules and can roll back transactions if these rules are
violated. If the trigger needs to do longer-running processing tasks, the
scalability inevitably suffers. Bearing this in mind, we can see that for

T-SQL ENHANCEMENTS230

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 230

certain tasks, it would be beneficial to have an asynchronous event model.
Therefore, in SQL Server 2005 Microsoft has included a new event notifica-
tion model that works asynchronously: event notifications.

Event Notifications
Event notifications differ from triggers by the fact that the actual notifica-
tion does not execute any code. Instead, information about the event is
posted to a SQL Server Service Broker (SSB) service and is placed on a
message queue from where it can be read by some other process.1 Another
difference between triggers and event notifications is that the event notifi-
cations execute in response to not only DDL and DML statements but also
some trace events.

The syntax for creating an event notification is as follows.

CREATE EVENT NOTIFICATION event_notification_name

ON { SERVER | DATABASE |

[ENABLED | DISABLED]

{ FOR { event_type |

DDL_DATABASE_LEVEL_EVENTS } [,...n]

TO broker_service

The syntax looks a little like the syntax for creating a DDL trigger, and
the arguments are as follows.

• event_notification_name—This is the name of the event
notification.

• SERVER—The scope of the event notification is the current server.

• DATABASE—The scope of the event notification is the current
database.

• ENABLED—This specifies that the event notification is active when
the CREATE statement has executed.

• DISABLED—This specifies that the event notification is inactive
until the notification is activated by executing an ALTER EVENT
NOTIFICATION statement.

EVENT NOTIFICATIONS 231

1 SQL Server Service Broker is a new technology in SQL Server 2005 that facilitates
sending messages in a secure and reliable way. It is covered in Chapter 15.

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 231

• event_type—This is the name of an event that, after execution,
causes the event notification to execute. SQL Server Books Online
has the full list of events included in event_type.

• DDL_DATABASE_LEVEL_EVENTS—The event notification fires after
any of the CREATE, ALTER, or DROP statements that can be indicated
in event_type execute.

• broker_service—This is the SSB service to which SQL Server
posts the data about an event.

The event notification contains the same information received from the
eventdata function mentioned previously. When the event notification
fires, the notification mechanism executes the eventdata function and
posts the information to the Service Broker. For an event notification to be
created, an existing SQL Server Service Broker instance needs to be located
either locally or remotely. The steps to create the SQL Server Service Broker
are shown in Listing 7-5. Chapter 15 covers SSB in detail and also covers
how to create queues, services, and so on.

Listing 7-5: Steps to Create a Service Broker Instance

—first we need a queue

CREATE QUEUE queue evtDdlNotif

WITH STATUS = ON

—then we can create the service

CREATE SERVICE evtDdlService

ON QUEUE evtDdlNotif

—this is a MS supplied contract

—which uses an existing message type

—{http://schemas.microsoft.com/SQL/Notifications}EventNotification

(http://schemas.microsoft.com/SQL/Notifications/PostEventNotification)

First, the message queue that will hold the eventdata information is
created. Typically, another process listens for incoming messages on this
queue, or another process will kick off when a message arrives. A service
is then built on the queue. When a SQL Server Service Broker service is
created, there needs to be a contract to indicate what types of messages
this service understands. In a SQL Server Service Broker application, the
developer usually defines message types and contracts based on the

T-SQL ENHANCEMENTS232

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 232

application’s requirements. For event notifications, however, Microsoft
has a predefined message type, {http://schemas.microsoft.com/SQL/
Notifications}EventNotification, and a contract, http://schemas.
microsoft.com/SQL/Notifications/PostEventNotification.

The following code shows how to create an event notification for DDL
events scoped to the local database, sending the notifications to the evt
DdlService.

CREATE EVENT NOTIFICATION ddlEvents

ON DATABASE

FOR DDL_DATABASE_LEVEL_EVENTS

TO SERVICE evtDdlService

With both the event notification and the service in place, a new process
can now be started in SQL Server Management Studio, using the WAITFOR
and RECEIVE statements (more about this in Chapter 15) as in the follow-
ing code.

WAITFOR(

RECEIVE * FROM evtDdlNotif

)

You can now execute a DDL statement, and then switch to the process
with the WAITFOR statement and view the result. Running CREATE TABLE

evtNotifTbl(id INT) shows in the WAITFOR process a two-row resultset,
where one of the rows has a message_type_id of 20. This is the {http://
schemas.microsoft.com/SQL/Notifications}EventNotification mes-
sage type. The eventdata information is stored as a binary value in the
message_body column. To see the actual data, we need to change the
WAITFOR statement a little bit.

DECLARE @msgtypeid INT

DECLARE @msg VARBINARY(MAX)

WAITFOR(

RECEIVE TOP(1)

@msgtypeid = message_type_id,

@msg = message_body

FROM evtDdlNotif

)

—check if this is the correct message type

IF @msgtypeid = 20

EVENT NOTIFICATIONS 233

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 233

BEGIN

—do something useful WITH the message

—here we just select it as a result

SELECT CONVERT(NVARCHAR(MAX), @msg)

END

Running this code against the CREATE TABLE statement shown earlier
produces the same output as in Listing 7-4. An additional benefit with
event notifications is that they can be used for both system level and trace
events in addition to DDL events. The following code shows how to create
an event notification for SQL Server logins.

CREATE EVENT NOTIFICATION loginEvents ON SERVER

FOR audit_login TO SERVICE evtLoginService

For system-level event notifications, the ON SERVER keyword needs to
be explicitly specified; it cannot be used at the database level. Listing 7-6
shows the eventdata information received after executing a login.

Listing 7-6: eventdata Output from Login

<EVENT_INSTANCE>

<PostTime>2003-06-29T09:46:23.623</PostTime>

<SPID>51</SPID>

<EventType>AUDIT_LOGIN</EventType>

<ServerName>ZMV44</ServerName>

<LoginName>ZMV44\Administrator</LoginName>

<UserName>ZMV44\Administrator</UserName>

<Database>eventstest</Database>

<!— additional information elided —>

</EVENT_INSTANCE>

You may wonder what happens if the transaction that caused the noti-
fication is rolled back. In that case, the posting of the notification is rolled
back as well. If for some reason the delivery of a notification fails, the orig-
inal transaction is not affected.

Some of the previous code examples have used VARCHAR(MAX) as the
data type for a column. Let’s look at what that is all about.

T-SQL ENHANCEMENTS234

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 234

Large Value Data Types
In SQL Server 2000 (and 7) the maximum size for VARCHAR and VARBINARY
was 8,000 and for NVARCHAR 4,000. If you had data that potentially exceeded
that size, you needed to use the TEXT, NTEXT, or IMAGE data types (known as
Large Object data types, or LOBs). This was always a hassle because they
were hard to work with, in both retrieval and action statements.

This situation changes in SQL Server 2005 with the introduction of
the MAX specifier. This specifier allows storage of up to 231 bytes of data,
and for Unicode it is 230 bytes. When you use the VARCHAR(MAX) or
NVARCHAR(MAX) data type, the data is stored as character strings, whereas
for VARBINARY(MAX) it is stored as bytes. These three data types are com-
monly known as Large Value data types. The following code shows the use
of these data types in action.

CREATE TABLE largeValues (

lVarchar VARCHAR(MAX),

lnVarchar NVARCHAR(MAX),

lVarbinary VARBINARY(MAX)

)

We mentioned earlier that LOBs are hard to work with. Additionally,
they cannot, for example, be used as variables in a procedure or a function.
The Large Value data types do not have these restrictions, as we can see
in the following code snippet, which shows a Large Value data type
being a parameter in a function. It also shows how the data type can be
concatenated.

CREATE FUNCTION dovmax(@in VARCHAR(MAX))

RETURNS VARCHAR(MAX)

AS

BEGIN

— supports concatenation

RETURN @in + ‘12345’

END

SQL Server’s string handling functions can be used on VARCHAR(MAX)
and NVARCHAR(MAX) columns. So instead of having to read in the whole
amount of data, SUBSTRING can be used. By storing the data as character
strings (or bytes), the Large Value data types are similar in behavior to
their smaller counterparts VARCHAR, NVARCHAR, and VARBINARY, and offer a
consistent programming model. Using the Large Value data types instead
of LOBs is recommended; in fact, the LOBs are being deprecated.

LARGE VALUE DATA T YPES 235

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 235

When we first came across the enhanced size of the VARCHAR data type
in SQL Server 7 (from 256 to 8,000), we thought, “Great, we can now have a
table with several VARCHAR columns with the size of 8,000 instead of a text
column.” You probably know that this doesn’t work, because in SQL
Server 7 and 2000, you cannot have a row exceeding 8,060 bytes, the size of
a page. In SQL Server 2005 this has changed as well, and a row can now
span several pages.

T-SQL Language Enhancements
Even though this book is much about the CLR and outside access to SQL
Server, let’s not forget that Microsoft has enhanced the T-SQL language a lot
in SQL Server 2005. In this section, we will look at some of the improvements.

TOP
TOP was introduced in SQL Server 7. Until SQL Server 2005, the TOP clause
allowed the user to specify the number or percent of rows to be returned in
a SELECT statement. In SQL Server 2005, the TOP clause can be used also for
INSERT, UPDATE, and DELETE (in addition to SELECT), and the syntax is as
follows: TOP (expression) [PERCENT]. Notice the parentheses around the
expression; this is required when TOP is used for UPDATE, INSERT, and
DELETE.

The following code shows some examples of using TOP.

—create a table and insert some data

CREATE TABLE toptest (col1 VARCHAR(150))

INSERT INTO toptest VALUES(‘Niels1’)

INSERT INTO toptest VALUES(‘Niels2’)

INSERT INTO toptest VALUES(‘Niels3’)

INSERT INTO toptest VALUES(‘Niels4’)

INSERT INTO toptest VALUES(‘Niels5’)

—this returns ‘Niels1’ and ‘Niels2’

SELECT TOP(2) * FROM toptest

—this sets ‘Niels1’ and ‘Niels2’ to ‘hi’

UPDATE TOP(2) toptest SET col1 = ‘hi’

SELECT * FROM toptest

—the two rows with ‘hi’ are deleted

DELETE TOP(2) toptest

SELECT * FROM toptest

—create a new table and insert some data

CREATE TABLE toptest2 (col1 VARCHAR(150))

T-SQL ENHANCEMENTS236

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 236

INSERT INTO toptest2 VALUES(‘Niels1’)

INSERT INTO toptest2 VALUES(‘Niels2’)

INSERT INTO toptest2 VALUES(‘Niels3’)

INSERT INTO toptest2 VALUES(‘Niels4’)

INSERT INTO toptest2 VALUES(‘Niels5’)

—’Niels1’ and ‘Niels2’ are inserted

INSERT top(2) toptest

SELECT * FROM toptest2

SELECT * FROM toptest

An additional difference between the TOP clause in previous versions
of SQL Server and in SQL Server 2005 is that we now can use expressions
for number definition. The following code shows a couple of examples of
that (it uses the tables from the preceding example).

—declare 3 variables

DECLARE @a INT

DECLARE @b INT

DECLARE @c INT

—set values

SET @a = 10

SET @b = 5

SELECT @c = @a/@b

—use the calculated expression

SELECT TOP(@c)* FROM toptest

—insert some more data in toptest

INSERT INTO toptest VALUES(‘Niels6’)

INSERT INTO toptest VALUES(‘Niels7’)

INSERT INTO toptest VALUES(‘Niels8’)

—use a SELECT statement as expression

—this should return 5 rows

SELECT TOP(SELECT COUNT(*) FROM toptest2) *

FROM toptest

The next T-SQL enhancement we’ll look at is something completely
new in SQL Server: the OUTPUT clause.

OUTPUT
The execution of a DML statement such as INSERT, UPDATE, or DELETE does
not produce any results that indicate what was changed. Prior to SQL
Server 2005, an extra round trip to the database was required to determine

T-SQL LANGUAGE ENHANCEMENTS 237

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 237

the changes. In SQL Server 2005 the INSERT, UPDATE, and DELETE state-
ments have been enhanced to support an OUTPUT clause so that a single
round trip is all that is required to modify the database and determine
what changed. You use the OUTPUT clause together with the inserted and
deleted virtual tables, much as in a trigger. The OUTPUT clause must be
used with an INTO expression to fill a table. Typically, this will be a table
variable. The following example creates a table, inserts some data, and
finally deletes some records.

—create table and insert data

CREATE TABLE outputtbl

(id INT IDENTITY, col1 VARCHAR(15))

go

INSERT INTO outputtbl VALUES(‘row1’)

INSERT INTO outputtbl VALUES (‘row2’)

INSERT INTO outputtbl VALUES (‘row5’)

INSERT INTO outputtbl VALUES (‘row6’)

INSERT INTO outputtbl VALUES (‘row7’)

INSERT INTO outputtbl VALUES (‘row8’)

INSERT INTO outputtbl VALUES (‘row9’)

INSERT INTO outputtbl VALUES (‘row10’)

— make a table variable to hold the results of the OUTPUT clause

DECLARE @del AS TABLE (deletedId INT, deletedValue VARCHAR(15))

—delete two rows and return through

—the output clause

DELETE outputtbl

OUTPUT DELETED.id, DELETED.col1 INTO @del

WHERE id < 3

SELECT * FROM @del

GO

deletedId deletedValue

—————- ———————-

1 row1

2 row2

(2 row(s) affected)

The previous example inserted the id and col1 values of the rows that
were deleted into the table variable @del.

When used with an UPDATE command, OUTPUT produces both a DELETED
and an INSERTED table. The DELETED table contains the values before the
UPDATE command, and the DELETED table has the values after the UPDATE
command. An example follows that shows OUTPUT being used to capture
the result of an UPDATE.

T-SQL ENHANCEMENTS238

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 238

—update records, this populates

—both the inserted and deleted tables

DECLARE @changes TABLE

(id INT, oldValue VARCHAR(15), newValue VARCHAR(15))

UPDATE outputtbl

SET col1 = ‘updated’

OUTPUT inserted.id, deleted.col1, inserted.col1

INTO @changes

WHERE id < 5

SELECT * FROM @changes

GO

id oldValue newValue

—————- ———————- ———————-

3 row5 updated

4 row6 updated

(2 row(s) affected)

Common Table Expressions and Recursive Queries
A Common Table Expression, or CTE, is an expression that produces a
table that is referred to by name within the context of a single query. The
general syntax for a CTE follows.

[WITH <common_table_expression> [,...n]]

<common_table_expression>::=

expression_name

[(column_name [,...n])]

AS

(<CTE_query_expression>)

The following SQL batch shows a trivial usage of a CTE just to give you
a feeling for its syntax.

WITH MathConst(PI, Avogadro)

AS

(SELECT 3.14159, 6.022e23)

SELECT * FROM MathConst

GO

PI Avogadro

——————————————— ———————————

3.14159 6.022E+23

(1 row(s) affected)

The WITH clause, in effect, defines a table and its columns. This example
says that a table named MathConst has two columns named PI and
Avogadro. This is followed by a SELECT statement enclosed in parentheses
after an AS keyword. And finally, all this is followed by a SELECT statement

T-SQL LANGUAGE ENHANCEMENTS 239

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 239

that references the MathConst table. Note that the syntax of the WITH clause
is very similar to that of a VIEW. One way to think of a CTE is as a VIEW that
lasts only for the life of the query expression at the end of the CTE. In the
example, MathConst acts like a VIEW that is referenced in the query expres-
sion at the end of the CTE.

It is possible to define multiple tables in a CTE. A SQL batch follows
that shows another trivial usage of a CTE that defines two tables, again
shown just to make the syntax clear.

WITH MathConst(PI, Avogadro)

AS

(SELECT 3.14159, 6.022e23),

— second table

Package(Length, Width)

AS (SELECT 2, 5)

SELECT * FROM MathConst, Package

PI Avogadro Length

Width

——————————————— ——————————— —————- ——

3.14159 6.022E+23 2 5

(1 row(s) affected)

In this example, the CTE produced two tables, and the query expres-
sion merely joined them.

Both of the previous examples could have been done without using
CTEs and, in fact, would have been easier to do without them. So what
good are they?

In once sense, a CTE is just an alternate syntax for creating a VIEW that
exists for one SQL expression, or it can be thought of as a more convenient
way to use a derived table—that is, a subquery. However, CTEs are part of
the SQL-92 standard, so adding them to SQL Server increases its standards
compliance. In addition, CTEs are implemented in other databases, so
ports from those databases may be easier with the addition of CTEs.

In some cases, CTEs can save a significant amount of typing and may
provide extra information that can be used when the query plan is opti-
mized. Let’s look at an example where this is the case.

For this example, we will use three tables from the AdventureWorks
database, a sample database that is distributed with SQL Server. We will
use the SalesPerson, SalesHeader, and SalesDetail tables. The Sales
Person table lists each salesperson that works for AdventureWorks. For
each sale made at AdventureWorks, a SalesHeader is entered along with

T-SQL ENHANCEMENTS240

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 240

a SalesDetail for each item that that was sold in that sale. Each Sales
Header lists the ID of the salesperson who made the sale. Each Sales
Detail entry lists a part number, its unit price, and the quantity of the
part sold.

The stock room has just called the Big Boss and told him that they are
out of part number 90. The Big Boss calls you and wants you to make a
report that lists the ID of each salesperson. Along with the ID, the Big Boss
wants the text “MakeCall” listed if a salesperson made a sale that depends
on part number 90 to be complete. Otherwise, he wants the text “Relax”
printed. Just to ensure that the report lights a fire under the salespeople,
the Big Boss also wants each line to list the value of the sale and the sales-
person’s sales quota.

Before we actually make use of the CTE, let’s first write a query that
finds all the IDs of salespeople who have sales that depend on part num-
ber 90.

SELECT DISTINCT SH.SalesPersonId FROM SalesOrderHeader SH JOIN

SalesOrderDetail SD ON SH.SalesOrderId = SD.SalesOrderId

AND SD.ProductID = 90

SalesPersonId

GO

SalesPersonId

——————-

14

21

22

more rows

(14 row(s) affected)

But the Big Boss has asked for a report with lines that look like this.

Action SalesPersonID SalesQuota Value

———— ——————- ——————————————— —————

MakeCall 22 250000.0000 2332.7784

... more lines

Relax 35 250000.0000 0

Each line number has the ID of a salesperson. If that salesperson has an
order that depends on part number 90, the first column says “MakeCall”
and the last column has the value involved in the order. Otherwise, the
first column says “Relax” and the last column has 0 in it.

Without CTEs, we could use a subquery to find the salespeople with
orders that depend on the missing part to make the report the Big Boss
wants, as in the SQL batch that follows.

T-SQL LANGUAGE ENHANCEMENTS 241

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 241

SELECT ‘MakeCall’ AS Action, S.SalesPersonID, S.SalesQuota,

(SELECT SUM(SD.UnitPrice * SD.OrderQty) FROM SalesOrderHeader SH

JOIN SalesOrderDetail SD ON

SH.SalesOrderId = SD.SalesOrderId

AND SD.ProductID=90 AND SH.SalesPersonID=S.SalesPersonID

)

FROM SalesPerson S

WHERE EXISTS

(

SELECT * FROM SalesOrderHeader SH JOIN SalesOrderDetail SD ON

SH.SalesOrderID = SD.SalesOrderID AND SD.ProductID = 90

AND SH.SalesPersonID = S.SalesPersonID

)

UNION

SELECT ‘Relax’ AS Action, S.SalesPersonID, S.SalesQuota, 0

FROM SalesPerson S

WHERE NOT EXISTS

(

SELECT * FROM SalesOrderHeader SH JOIN SalesOrderDetail SD ON

SH.SalesOrderID = SD.SalesOrderID AND SD.ProductID = 90

AND SH.SalesPersonID = S.SalesPersonID

)

Notice that the subquery is reused in a number of places—once in the
calculation of the value of the sales involved in the missing part and then
again, twice more, in finding the salespeople involved in sales with and
without the missing part.

Now let’s produce the same report using a CTE.

WITH Missing(SP, AMT)

AS(

SELECT SH.SalesPersonID, SUM(SD.UnitPrice * SD.OrderQty) FROM

SalesOrderHeader SH

JOIN SalesOrderDetail SD ON SH.SalesOrderId = SD.SalesOrderId

AND SD.ProductID=90 GROUP BY SH.SalesPersonID

)

SELECT ‘MakeCall’ AS Action, S.SalesPersonID, S.SalesQuota,

Missing.AMT

FROM Missing JOIN SalesPerson S ON Missing.SP = S.SalesPersonID

UNION

SELECT ‘Relax’ AS Action, S.SalesPersonID, S.SalesQuota, 0

FROM SalesPerson S WHERE S.SalesPersonID NOT IN (SELECT SP FROM

Missing)

The Missing CTE is a table that has a row for each salesperson who has
an order that depends on the missing part, and the value of what is miss-
ing. Notice that the Missing table is used in one part of the query to find
the value of the missing parts and in another to determine whether a sales
person should “MakeCall” or “Relax”.

T-SQL ENHANCEMENTS242

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 242

Although your opinion may differ, the CTE syntax is a bit clear and
more encapsulated; that is, there is only one place that defines what orders
are missing part number 90. Also, in theory, the CTE is giving the opti-
mizer a bit more information in that it is telling the optimizer it plans on
using Missing more than once.

The CTE is also part of another feature of SQL Server 2005 that is also
part of the SQL:1999 standard. It is called a recursive query. This is espe-
cially useful for a chart of accounts in an accounting system or a parts
explosion in a bill of materials. Both of these involve tree-structured data.
In general, a recursive query is useful anytime tree-structured data is
involved. We will look at an example of a chart of accounts to see how
recursive queries work.

Figure 7-5 shows a simple chart of accounts containing two kinds of
accounts: detail accounts and rollup accounts. Detail accounts have an
actual balance associated with them; when a posting is made to an
accounting system, it is posted to detail accounts. In Figure 7-5, account
4001 is a detail account that has a balance of $12.

Rollup accounts are used to summarize the totals of other accounts,
which may be detail accounts or other rollup accounts. Every account,
except for the root account, has a parent. The total of a rollup account is the
sum of the accounts that are its children. In Figure 7-5 account 3002 is a
rollup account, and it represents the sum of its two children, accounts 4001
and 4002.

In practice, one of the ways to represent a chart of accounts is to have
two tables: one for detail accounts and the other for rollup accounts. A
detail account has an account number, a parent account number, and a
balance for columns. A rollup account has an account number and a parent

T-SQL LANGUAGE ENHANCEMENTS 243

1000

2001 2002 2003

3001 3002 3004 3005 3006 3007 3008

4001 4002

$10

$12 $14

$17 $10 $25 $7 $9$26

$36 $52 $16

$104

Detail Accounts

Rollup Accounts

Figure 7-5: A Chart of Accounts

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 243

but no balance associated with it. The SQL batch that follows builds and
populates these two tables for the accounts shown in Figure 7-5.

CREATE TABLE DetailAccount(id INT PRIMARY KEY,

parent INT, balance FLOAT)

CREATE TABLE RollupAccount(id INT PRIMARY KEY,

parent INT)

INSERT INTO DetailAccount VALUES (3001, 2001, 10)

INSERT INTO DetailAccount VALUES(4001, 3002, 12)

INSERT INTO DetailAccount VALUES(4002, 3002, 14)

INSERT INTO DetailAccount VALUES(3004, 2002, 17)

INSERT INTO DetailAccount VALUES(3005, 2002, 10)

INSERT INTO DetailAccount VALUES(3006, 2002, 25)

INSERT INTO DetailAccount VALUES(3007, 2003, 7)

INSERT INTO DetailAccount VALUES(3008, 2003, 9)

INSERT INTO RollupAccount VALUES(3002, 2001)

INSERT INTO RollupAccount VALUES(2001, 1000)

INSERT INTO RollupAccount VALUES(2002, 1000)

INSERT INTO RollupAccount VALUES(2003, 1000)

INSERT INTO RollupAccount VALUES(1000, 0)

Note that this example does not include any referential integrity con-
straints or other information to make it easier to follow.

A typical thing to do with a chart of accounts it to calculate the value of
all the rollup accounts or, in some cases, the value of a particular rollup
account. In Figure 7-5 (shown earlier) the value of the rollup accounts is
shown in gray, next to the account itself. We would like to be able to write a
SQL batch like the one that follows.

SELECT id, balance FROM Rollup — a handy view

id balance

—————- ———————————

1000 104

2001 36

2002 52

2003 16

3001 10

3002 26

3004 17

3005 10

3006 25

3007 7

3008 9

4001 12

4002 14

(13 row(s) affected)

T-SQL ENHANCEMENTS244

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 244

SELECT id, balance FROM Rollup WHERE id = 2001

id balance

—————- ———————————

2001 36

(1 row(s) affected)

This query shows a view name, Rollup, that we can query to find the
values of all the accounts in the chart of accounts or an individual account.
Let’s look at how we can do this.

To start with, we will make a recursive query that just lists all the
account numbers, starting with the top rollup account, 1000. The query
that follows does this.

WITH Rollup(id, parent)

AS

(

— anchor

SELECT id, parent FROM RollupAccount WHERE id = 1000

UNION ALL

— recursive call

SELECT R1.id, R1.parent FROM

(

SELECT id, parent FROM DetailAccount

UNION ALL

SELECT id, parent FROM RollupAccount

) R1

JOIN Rollup R2 ON R2.id = r1.parent

)

— selecting results

SELECT id, parent FROM Rollup

GO

id parent

—————- —————-

1000 0

2001 1000

2002 1000

2003 1000

3007 2003

3008 2003

3004 2002

3005 2002

3006 2002

3001 2001

3002 2001

4001 3002

4002 3002

(13 row(s) affected)

T-SQL LANGUAGE ENHANCEMENTS 245

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 245

The previous batch creates a CTE named Rollup. There are three parts
to a CTE when it is used to do recursion. The anchor, which initializes the
recursion, is first. It sets the initial values of Rollup. In this case, Rollup is
initialized to a table that has a single row representing the rollup account
with id = 1000. The anchor may not make reference to the CTE Rollup.

The recursive call follows a UNION ALL keyword. UNION ALL must be
used in this case. It makes reference to the CTE Rollup. The recursive call
will be executed repeatedly until it produces no results. Each time it is
called, Rollup will be the results of the previous call. Figure 7-6 shows the
results of the anchor and each recursive call.

First the anchor is run, and it produces a result set that includes only the
account 1000. Next the recursive call is run and produces a resultset that con-
sists of all the accounts that have as a parent account 1000. The recursive call
runs repeatedly, each time joined with its own previous result to produce the
children of the accounts selected in the previous recursion. Also note that
the recursive call itself is a UNION ALL because the accounts are spread out
between the DetailAccount table and the RollupAccount table.

After the body of the CTE, the SELECT statement just selects all the
results in Rollup—that is, the UNION of all the results produced by calls in
the CTE body.

Now that we can produce a list of all the accounts by walking through
the hierarchy from top to bottom, we can use what we learned to calculate
the value of each account.

To calculate the values of the accounts, we must work from the bottom
up—that is from the detail accounts up to the rollup account 1000. This

T-SQL ENHANCEMENTS246

Query Result
SELECT id, parent FROM RollupAccount WHERE id = 1000

SELECT id, parent FROM DetailAccount . . . RollupAccount

SELECT id, parent FROM DetailAccount . . . RollupAccount

SELECT id, parent FROM DetailAccount . . . RollupAccount

SELECT id, parent FROM DetailAccount . . . RollupAccount

1000 0
2001 1000

 2002 1000
 2003 1000

3007 2003
3008 2003
3004 2002
3005 2002
3006 2002
3001 2001
3002 2001
4001 3002

 4002 3002

Anchor
Recursive Call 1
 Children of 1000

Recursive Call 2
 Children of 2001,
 2002, and 2003

Recursive Call 3
 Children of previous
Recursive Call 4
 No results,
 recursion stops

Figure 7-6: Recursive Query

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 246

means that our anchor must select all the detail accounts, and the recursive
calls must progressively walk up the hierarchy to account 1000. Note that
there is no requirement that the anchor produce a single row; it is just a
SELECT statement.

The query that follows produces the values of all the accounts, both
detail and rollup.

WITH Rollup(id, parent, balance)

AS

(

— anchor

SELECT id, parent, balance FROM DetailAccount

UNION ALL

— recursive call

SELECT R1.id, R1.parent, R2.balance

FROM RollupAccount R1

JOIN Rollup R2 ON R1.id = R2.parent

)

SELECT id, SUM(balance) balance FROM Rollup GROUP BY id

GO

id balance

—————- ———————————

1000 104

2001 36

2002 52

2003 16

3001 10

3002 26

3004 17

3005 10

3006 25

3007 7

3008 9

4001 12

4002 14

(13 row(s) affected)

This query starts by having the anchor select all the detail accounts.
The recursive call selects all the accounts that are parents, along with any
balance produced by the previous call. This results in a table in which
accounts are listed more than once. In fact, the table has as many rows for
an account as that account has descendant accounts that are detail
accounts. For example, if you looked at the rows produced for account
2001, you would see the three rows shown in the following diagram.

T-SQL LANGUAGE ENHANCEMENTS 247

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 247

id balance

—————- ———————————

2001 14

2001 12

2001 10

The balances 14, 12, and 10 correspond to the balances in the detail
accounts 3001, 4001, and 4002, which are all decedents of account 2001. The
query that follows the body of the CTE then groups the rows that are pro-
duced by account ID and calculates the balance with the SUM function.

There are other ways to solve this problem without using CTEs. A
batch that uses a stored procedure that calls itself or a cursor could pro-
duce the same result. However, the CTE is a query, and it can be used to
define a view, something a stored procedure or a cursor-based batch can-
not. The view definition that follows defines a view, which is the recursive
query we used earlier, and then uses it to get the balance for a single
account, account 2001.

CREATE VIEW Rollup

AS

WITH Rollup(id, parent, balance)

AS

(

SELECT id, parent, balance FROM DetailAccount

UNION ALL

SELECT R1.id, R1.parent, R2.balance

FROM RollupAccount R1

JOIN Rollup R2 ON R1.id = R2.parent

)

SELECT id, SUM(balance) balance FROM Rollup GROUP ID id

GO

— get the balance for account 2001

SELECT balance FROM rollup WHERE id = 2001

GO

balance

———————————

36

(1 row(s) affected)

One of the strengths of a recursive query is the fact that it is a query and
can be used to define a view. In addition, a single query in SQL Server is
always a transaction, which means that a recursive query based on a CTE
is a transaction.

Recursive queries, like any recursive algorithm, can go on forever. By
default, if a recursive query attempts to do more than 100 recursions, it

T-SQL ENHANCEMENTS248

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 248

will be aborted. You can control this with an OPTION(MAXRECURSION 10),
for example, to limit recursion to a depth of 10. The example that follows
shows its usage.

WITH Rollup(id, parent, balance)

AS

(

— body of CTE removed for clarity

)

SELECT id, SUM(balance) balance FROM Rollup GROUP BY id

OPTION (MAXRECURSION 10)

GO

APPLY Operators
T-SQL adds two specialized join operators: CROSS APPLY and OUTER APPLY.
Both act like a JOIN operator in that they produce the Cartesian product of
two tables except that no ON clause is allowed. The following SQL batch is
an example of a CROSS APPLY between two tables.

CREATE TABLE T1

(

ID int

)

CREATE TABLE T2

(

ID it

)

GO

INSERT INTO T1 VALUES (1)

INSERT INTO T1 VALUES (2)

INSERT INTO T2 VALUES (3)

INSERT INTO T2 VALUES (4)

GO

SELECT COUNT(*) FROM T1 CROSS APPLY T2

————————-

4

The APPLY operators have little utility with just tables or views; a CROSS
JOIN could have been substituted in the preceding example and gotten the
same results. It is intended that the APPLY operators be used with a table-
valued function on their right, with the parameters for the table-valued
function coming from the table on the left. The following SQL batch shows
an example of this.

CREATE TABLE Belt

(

model VARCHAR(20),

T-SQL LANGUAGE ENHANCEMENTS 249

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 249

length FLOAT

)

GO

— fill table with some data

DECLARE @index INT

SET @index = 5

WHILE(@index > 0)

BEGIN

INSERT INTO BELT VALUES (‘B’ + CONVERT(VARCHAR, @index), 10 * @index)

SET @index = @index – 1

END

GO

— make a table-valued function

CREATE FUNCTION Stretch (@length FLOAT)

RETURN @T TABLE

(

MinLength FLOAT,

MaxLength FLOAT

)

AS BEGIN

IF (@length > 20)

INSERT @T VALUES (@length – 4, @length + 5)

RETURN

END

GO

SELECT B.* S.MinLength, S.MaxLength FROM Belt AS B

CROSS APPLY Stretch(B.Length) AS S

GO

————————————

B30, 26, 35

B40, 36, 45

B50, 46, 55

The rows in the Belt table are cross-applied to the Stretch function.
This function produces a table with a single row in it if the @length param-
eter passed into it is greater than 20; otherwise, it produces a table with no
rows in it. The CROSS APPLY operator produces output when each table
involved in the CROSS APPLY has at least one row in it. It is similar to a
CROSS JOIN in this respect.

OUTER APPLY is similar to OUTER JOIN in that it produces output for all
rows involved in the OUTER APPLY. The following SQL batch shows the
results of an OUTER APPLY involving the same Belt table and Stretch
function as in the previous example.

T-SQL ENHANCEMENTS250

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 250

SELECT B.* S.MinLength, S.MaxLength FROM Belt AS B

CROSS APPLY Stretch(B.Length) AS S

GO

————————————

B10, 6, 15

B20, 16, 25

B30, 26, 35

B40, 36, 45

B50, 46, 55

The preceding example could have been done using CROSS and OUTER

JOIN.CROSSAPPLY is required, however, when used in conjunction with XML
data types in certain XML operations that will be discussed in Chapter 9.

PIVOT Command
SQL Server 2005 adds the PIVOT command to T-SQL, so named because it
can create a new table by swapping the rows and columns of an existing
table. PIVOT is part of the OLAP section of the SQL:1999 standard. There
are two general uses for the PIVOT command. One it to create an analytical
view of some data, and the other is to implement an open schema.

A typical analytical use of the PIVOT command is to covert temporal
data into categorized data in order to make the data easier to analyze. Con-
sider a table used to record each sale made as it occurs; each row represents
a single sale and includes the quarter that indicates when it occurred. This
sort of view makes sense for recording sales but is not easy to use if you
want to compare sales made in the same quarter, year over year.

Table 7-5 lists temporally recorded sales. You want to analyze same-
quarter sales year by year from the data in the table. Each row represents a
single sale. Note that this table might be a view of a more general table of
individual sales that includes a date rather than a quarterly enumeration.

The PIVOT command, which we will look at shortly, can convert this
temporal view of individual sales into a view that has years categorized by
sales in a quarter. Table 7-6 shows this.

Presenting the data this way makes it much easier to analyze same-
quarter sales. This table aggregates year rows for each given year in the pre-
vious table into a single row. However, the aggregated amounts are broken
out into quarters rather than being aggregated over the entire year.

The other use of the PIVOT command is to implement an open schema.
An open schema allows arbitrary attributes to be associated with an entity.
For example, consider a hardware store; its entities are the products that it
sells. Each product has a number of attributes used to describe it. One com-
mon attribute of all products it the name of the product.

T-SQL LANGUAGE ENHANCEMENTS 251

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 251

The hardware store sells “Swish” brand paint that has attributes of
quantity, color, and type. It also sells “AttachIt” fastener screws, and these
have attributes of pitch and diameter. Over time, it expects to add many
other products to its inventory. With this categorization “Swish, 1 qt,
green, latex” would be one product or entity, and “Swish, 1qt, blue, oil”
would be another.

A classic solution to designing the database the hardware store will use
to maintain its inventory is to design a table per product. For example, a

T-SQL ENHANCEMENTS252

Year Quarter Amount

2001 Q1 100

2001 Q2 120

2001 Q2 70

2001 Q3 55

2001 Q3 110

2001 Q4 90

2002 Q1 200

2002 Q2 150

2002 Q2 40

2002 Q2 60

2002 Q3 120

2002 Q3 110

2002 Q4 180

Table 7-5: Individual Sales, Including Quarter of Sale

Year Q1 Q2 Q3 Q4

2001 100 190 165 90

2002 200 250 230 180

Table 7-6: Yearly Sales Broken Down by Quarter

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 252

table named Swish with columns for quantity, color, and type. This, of
course, requires products and their attributes to be known and for those
attributes to remain constant over time. What happens if the manufacturer
of the Swish paint adds a new attribute, “Drying Time”, but only to certain
colors of paint?

An alternate solution is to have only two tables, regardless of the num-
ber of products involved or the attributes they have. In the case of the
hardware store, there would be a Product table and a Properties table. The
Product table would have an entry per product, and the Properties table
would contain the arbitrary attributes of that product. The properties of a
product are linked to it via a foreign key. This is called an open schema.
Figure 7-7 shows the two ways of designing tables to represent the inven-
tory of the hardware store.

The PIVOT operator can easily convert data that is stored using an
open schema to a view that looks the same as the table-per-product solu-
tion. Next, we will look at the details of using PIVOT to analyze data and
support open schemas, and then how to use PIVOT to work with open
schemas. There is also an UNPIVOT operator, which can be used to produce
the original open schema format from previously pivoted results.

Using PIVOT for Analysis
In this example, we are going to use PIVOT to analyze the sales data we
showed in an earlier table. To do this, we build a SALES table and populate
it with data, as is shown in the following SQL batch.

CREATE TABLE SALES

(

[Year] INT,

Quarter CHAR(2),

Amount FLOAT

)

GO

T-SQL LANGUAGE ENHANCEMENTS 253

Product Table Properties Table
Open Schema

AttachIt Table Swish Table
Table per Product

Figure 7-7: Tables for Hardware Store

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 253

INSERT INTO SALES VALUES (2001, ‘Q2’, 70)

INSERT INTO SALES VALUES (2001, ‘Q3’, 55)

INSERT INTO SALES VALUES (2001, ‘Q3’, 110)

INSERT INTO SALES VALUES (2001, ‘Q4’, 90)

INSERT INTO SALES VALUES (2002, ‘Q1’, 200)

INSERT INTO SALES VALUES (2002, ‘Q2’, 150)

INSERT INTO SALES VALUES (2002, ‘Q2’, 40)

INSERT INTO SALES VALUES (2002, ‘Q2’, 60)

INSERT INTO SALES VALUES (2002, ‘Q3’, 120)

INSERT INTO SALES VALUES (2002, ‘Q3’, 110)

INSERT INTO SALES VALUES (2002, ‘Q4’, 180)

GO

To get a view that is useful for quarter-over-year comparisons, we want
to pivot the table’s Quarter column into a row heading and aggregate the
sum of the values in each quarter for a year. The SQL batch that follows
shows a PIVOT command that does this.

SELECT * FROM SALES

PIVOT

(SUM (Amount) — Aggregate the Amount column using SUM

FOR [Quarter] — Pivot the Quarter column into column headings

IN (Q1, Q2, Q3, Q4)) — use these quarters

AS P

GO

Year Q1 Q2 Q3 Q4

——- ——————- ——————- ——————- ——————

2001 100 190 165 90

2002 200 250 230 180

The SELECT statement selects all the rows from SALES. A PIVOT clause
is added to the SELECT statement. It starts with the PIVOT keyword fol-
lowed by its body enclosed in parentheses. The body contains two parts
separated by the FOR keyword. The first part of the body specifies the
kind of aggregation to be performed. The argument of the aggregate func-
tion must be a column name; it cannot be an expression as it is when an
aggregate function is used outside a PIVOT. The second part specifies the
pivot column—that is, the column to pivot into a row—and the values
from that column to be used as column headings. The value for a particu-
lar column in a row is the aggregation of the column specified in the first
part, over the rows that match the column heading.

Note that it is not required to use all the possible values of the pivot
column. You only need to specify the Q2 column if you wish to analyze just
the year-over-year Q2 results. The SQL batch that follows shows this.

T-SQL ENHANCEMENTS254

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 254

SELECT * FROM SALES

PIVOT

(SUM (Amount)

FOR [Quarter]

IN (Q2))

AS P

GO

Year Q2

—————- ———————————

2001 190

2002 250

Note that the output produced by the PIVOT clause acts as though
SELECT has a GROUP BY [Year] clause. A pivot, in effect, applies a GROUP
BY to the SELECT that includes all the columns that are not either the ag-
gregate or the pivot column. This can lead to undesired results, as shown
in the SQL batch that follows. It uses essentially the same SALES table
as the previous example, except that it has an additional column named
Other.

CREATE TABLE SALES2

(

[Year] INT,

Quarter CHAR(2),

Amount FLOAT,

Other INT

)

INSERT INTO SALES2 VALUES (2001, ‘Q2’, 70, 1)

INSERT INTO SALES2 VALUES (2001, ‘Q3’, 55, 1)

INSERT INTO SALES2 VALUES (2001, ‘Q3’, 110, 2)

INSERT INTO SALES2 VALUES (2001, ‘Q4’, 90, 1)

INSERT INTO SALES2 VALUES (2002, ‘Q1’, 200, 1)

INSERT INTO SALES2 VALUES (2002, ‘Q2’, 150, 1)

INSERT INTO SALES2 VALUES (2002, ‘Q2’, 40, 1)

INSERT INTO SALES2 VALUES (2002, ‘Q2’, 60, 1)

INSERT INTO SALES2 VALUES (2002, ‘Q3’, 120, 1)

INSERT INTO SALES2 VALUES (2002, ‘Q3’, 110, 1)

INSERT INTO SALES2 VALUES (2002, ‘Q4’, 180, 1)

SELECT * FROM Sales2

PIVOT

(SUM (Amount)

FOR Quarter

IN (Q3))

AS P

GO

T-SQL LANGUAGE ENHANCEMENTS 255

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 255

Year Other Q3

—————- —————- ———————————

2001 1 55

2002 1 115

2001 2 110

Note that the year 2001 appears twice, once for each value of Other. The
SELECT that precedes the PIVOT keyword cannot specify which columns to
use in the PIVOT clause. However, a subquery can be used to eliminate the
columns not desired in the pivot, as shown in the SQL batch that follows.

SELECT * FROM

(Select Amount, Quarter, Year from Sales2

) AS A

PIVOT

(SUM (Amount)

FOR Quarter

IN (Q3))

AS P

GO

Year Q3

—————- ———————————

2001 165

2002 230

A column named in the FOR part of the PIVOT clause may not corre-
spond to any values in the pivot column of the table. The column will be
output, but will have null values. The following SQL batch shows this.

SELECT * FROM SALES

PIVOT

(SUM (Amount)

FOR [Quarter]

IN (Q2, LastQ))

As P

GO

Year Q2 LastQ

—————- ——————————— ———————————

2001 190 NULL

2002 250 NULL

Note that the Quarter column of the SALES table has no value “LastQ”,
so the output of the PIVOT lists all the values in the LastQ column as NULL.

Using PIVOT for Open Schemas
Using PIVOT for an open schema is really no different from using PIVOT for
analysis, except that we don’t depend on PIVOT’s ability to aggregate a
result. The open schema has two tables, a Product table and a Properties

T-SQL ENHANCEMENTS256

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 256

table, as was shown in Figure 7-7. What we want to do is to take selected
rows from the Properties table and pivot them—that is, rotate them—and
then add them as columns to the Product table. This is shown in Figure 7-8.

Figure 7-9 shows the PIVOT we will use to select the line from the Prod-
uct table for “Swish” products and joint them with the corresponding piv-
oted lines from the Properties table.

This query selects row from the Properties table that have a string equal
to “color”, “type”, or “amount” in the value column. They are selected from
the value column because value is the argument of the MAX function that
follows the PIVOT keyword. The strings “color”, “type”, and “amount” are
used because they are specified as an argument of the IN clause after the FOR
keyword. Note that the arguments of the IN clause must be literal; there is no
way to calculate them—for example, by using a subquery.

The results of the pivot query in Figure 7-9 are shown in Figure 7-10.
Note that the columns that were selected from the Properties table now

appear as rows in the output.

T-SQL LANGUAGE ENHANCEMENTS 257

Product Table

Properties Table
Swish Table Created from

Product and Properties Tables

Column Turned
into Row

Pivot

Figure 7-8: Rotating Properties

SELECT * FROM properties
PIVOT (
MAX(value)
FOR name IN
([color], [type], [amount])
)
AS P
WHERE id IN
(SELECT id FROM products
WHERE name='Swish')

Pivot
Column

Value
Column

1

1

1

2

2

color

type

amount

pitch

diameter

blue

oil

1 gal

12-3

.25 in

Properties Table

Value Column
Pivot Column

Make column
where name =

one of these

Select only
properties for the

Swish product

Figure 7-9: Basic PIVOT

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 257

Ranking and Windowing Functions
SQL Server 2005 adds support for a group of functions known as ranking
functions. At its simplest, ranking adds an extra value column to the
resultset that is based on a ranking algorithm being applied to a column of
the result. Four ranking functions are supported.

ROW_NUMBER() produces a column that contains a number that corre-
sponds to the row’s order in the set. The set must be ordered by using an
OVER clause with an ORDER BY clause as a variable. The following is an
example.

SELECT orderid, customerid,

ROW_NUMBER() OVER(ORDER BY orderid) AS num

FROM orders

WHERE orderid < 10400

AND customerid <= ‘BN’

produces

orderid customerid num

—————- ————— ——————————

10248 VINET 1

10249 TOMSP 2

10250 HANAR 3

10251 VICTE 4

10252 SUPRD 5

10253 HANAR 6

10254 CHOPS 7

10255 RICSU 8

... more rows

Note that if you apply the ROW_NUMBER function to a nonunique col-
umn, such as customerid in the preceding example, the order of cus-
tomers with the same customerid (ties) is not defined. In any case,

T-SQL ENHANCEMENTS258

Properties grouped by id

id color type amount

-- ------- -------- -------
1 blue oil 1 gal

3 red latex 1 qt

4 white oil 1 pt

Pivoted properties of Swish product

id not mentioned
in pivot expression

Figure 7-10: Results of Open Schema Pivot

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 258

ROW_NUMBER produces a monotonically increasing number; that is, no rows
will ever share a ROW_NUMBER.

SELECT orderid, customerid,

ROW_NUMBER() OVER(ORDER BY customerid) AS num

FROM orders

WHERE orderid < 10400

AND customerid <= ‘BN’

produces

orderid customerid num

—————- ————— ——————————

10308 ANATR 1

10365 ANTON 2

10355 AROUT 3

10383 AROUT 4

10384 BERGS 5

10278 BERGS 6

10280 BERGS 7

10265 BLONP 8

10297 BLONP 9

10360 BLONP 10

RANK() applies a monotonically increasing number for each value in
the set. The value of ties, however, is the same. If the columns in the
OVER(ORDER BY) clause have unique values, the result produced by
RANK() is identical to the result produced by ROW_NUMBER(). RANK() and
ROW_NUMBER() differ only if there are ties. Here’s the second earlier ex-
ample using RANK().

SELECT orderid, customerid,

RANK() OVER(ORDER BY customerid) AS [rank]

FROM orders

WHERE orderid < 10400

AND customerid <= ‘BN’

produces

orderid customerid rank

—————- ————— ——————————

10308 ANATR 1

10365 ANTON 2

10355 AROUT 3

10383 AROUT 3

10384 BERGS 5

10278 BERGS 5

10280 BERGS 5

10265 BLONP 8

T-SQL LANGUAGE ENHANCEMENTS 259

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 259

10297 BLONP 8

10360 BLONP 8

... more rows

Note that multiple rows have the same rank if their customerid is the
same. There are holes, however, in the rank column value to reflect the ties.
Using the DENSE_RANK() function works the same way as RANK() but gets
rid of the holes in the numbering. NTILE(n) divides the resultset into “n”
approximately even pieces and assigns each piece the same number.
NTILE(100) would be the well-known (to students) percentile. The fol-
lowing query shows the difference between ROW_NUMBER(), RANK(),
DENSE_RANK(), and TILE(n).

SELECT orderid, customerid,

ROW_NUMBER() OVER(ORDER BY customerid) AS num,

RANK() OVER(ORDER BY customerid) AS [rank],

DENSE_RANK() OVER(ORDER BY customerid) AS [denserank],

NTILE(5) OVER(ORDER BY customerid) AS ntile5

FROM orders

WHERE orderid < 10400

AND customerid <= ‘BN’

produces

orderid customerid num rank denserank ntile5

—————- ————— ——— ——— ————- ———

10308 ANATR 1 1 1 1

10365 ANTON 2 2 2 1

10355 AROUT 3 3 3 2

10383 AROUT 4 3 3 2

10278 BERGS 5 5 4 3

10280 BERGS 6 5 4 3

10384 BERGS 7 5 4 4

10265 BLONP 8 8 5 4

10297 BLONP 9 8 5 5

10360 BLONP 10 8 5 5

The ranking functions have additional functionality when combined
with windowing functions. Windowing functions divide a resultset into
partitions, based on the value of a PARTITION BY clause inside the OVER
clause. The ranking functions are applied separately to each partition.
Here’s an example.

SELECT *,

RANK() OVER(PARTITION BY COUNTRY ORDER BY age) AS [rank]

FROM

(

T-SQL ENHANCEMENTS260

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 260

SELECT lastname, country,

DATEDIFF(yy,birthdate,getdate())AS age

FROM employees

) AS a

produces

lastname country age rank

—————————— ———————- —————- ———

Dodsworth UK 37 1

Suyama UK 40 2

King UK 43 3

Buchanan UK 48 4

Leverling USA 40 1

Callahan USA 45 2

Fuller USA 51 3

Davolio USA 55 4

Peacock USA 66 5

There are separate rankings for each partition. An interesting thing to
note about this example is that the subselect is required because any col-
umn used in a PARTITION BY or ORDER BY clause must be available from the
columns in the FROM portion of the statement. In our case, the seemingly
simpler statement that follows:

SELECT lastname, country,

DATEDIFF(yy,birthdate,getdate())AS age,

RANK() OVER(PARTITION BY COUNTRY ORDER BY age) AS [rank]

FROM employees

wouldn’t work; instead, you’d get the error “Invalid column name ‘age’”.
In addition, you can’t use the ranking column in a WHERE clause, because it
is evaluated after all the rows are selected, as shown next.

— 10 rows to a page, we want page 40

— this won’t work

SELECT

ROW_NUMBER() OVER (ORDER BY customerid, requireddate) AS num,

customerid, requireddate, orderid

FROM orders

WHERE num BETWEEN 400 AND 410

— this will

SELECT * FROM

(

SELECT

ROW_NUMBER() OVER (ORDER BY customerid, requireddate) AS num,

customerid, requireddate, orderid

T-SQL LANGUAGE ENHANCEMENTS 261

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 261

FROM orders

) AS a

WHERE num BETWEEN 400 AND 410

Although the preceding case looks similar to selecting the entire result-
set into a temporary table, with num as a derived identity column, and
doing a SELECT of the temporary table, in some cases the engine will be
able to accomplish this without the complete set of rows. Besides being
usable in a SELECT clause, the ranking and windowing functions are also
usable in the ORDER BY clause. This gets employees partitioned by country
and ranked by age, and then sorted by rank.

SELECT *,

RANK() OVER(PARTITION BY COUNTRY ORDER BY age)) AS [rank]

FROM

(

SELECT lastname, country,

DATEDIFF(yy,birthdate,getdate())AS age

FROM employees

) AS a

ORDER BY RANK() OVER(PARTITION BY COUNTRY ORDER BY age), COUNTRY

produces

lastname country age rank

—————————— ———————- —————- ——————————

Dodsworth UK 37 1

Leverling USA 40 1

Suyama UK 40 2

Callahan USA 45 2

King UK 43 3

Fuller USA 51 3

Buchanan UK 48 4

Davolio USA 55 4

Peacock USA 66 5

You can also use other aggregate functions (either system-defined
aggregates or user-defined aggregates that you saw in Chapter 5) with the
OVER clause. When it is used in concert with the partitioning functions,
however, you get the same value for each partition. This is shown next.

— there is one oldest employee age for each country

SELECT *,

RANK() OVER(PARTITION BY COUNTRY ORDER BY age) AS [rank],

MAX(age) OVER(PARTITION BY COUNTRY) AS [oldest age in country]

FROM

(

SELECT lastname, country,

T-SQL ENHANCEMENTS262

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 262

DATEDIFF(yy,birthdate,getdate())AS age

FROM employees

) AS a

produces

lastname country age rank oldest age

in country

—————————— ———————- —————- ——— —————-

Dodsworth UK 37 1 48

Suyama UK 40 2 48

King UK 43 3 48

Buchanan UK 48 4 48

Leverling USA 40 1 66

Callahan USA 45 2 66

Fuller USA 51 3 66

Davolio USA 55 4 66

Peacock USA 66 5 66

Transaction Abort Handling
Error handling in previous versions of SQL Server has always been seen as
somewhat arcane, compared with other procedural languages. You had to
have error handling code after each statement, and to have centralized
handling of errors, you need GOTO statements and labels. SQL Server 2005
introduces a modern error handling mechanism with TRY/CATCH blocks.
The syntax follows.

BEGIN TRY

{ sql_statement | statement_block }

END TRY

BEGIN CATCH TRAN_ABORT

{ sql_statement | statement_block }

END CATCH

The code you want to execute is placed within a TRY block. The TRY
block must be immediately followed by a CATCH block in which you place
the error handling code. The CATCH block can only handle transaction
abort errors, so the XACT_ABORT setting needs to be on in order for any
errors with a severity level less than 21 to be handled as transaction abort
errors. Errors with a severity level of 21 or higher are considered fatal and
cause SQL Server to stop executing the code and sever the connection.

When a transaction abort error occurs within the scope of a TRY block,
the execution of the code in the TRY block terminates and an exception is
thrown. The control is shifted to the associated CATCH block. When the code
in the CATCH block has executed, the control goes to the statement after the

TRANSACTION ABORT HANDLING 263

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 263

CATCH block. TRY/CATCH constructs can be nested, so to handle exceptions
within a CATCH block, write a TRY/CATCH block inside the CATCH. The fol-
lowing code shows a simple example of the TRY/CATCH block.

—make sure we catch all errors

SET XACT_ABORT ON

BEGIN TRY

—start the tran

BEGIN TRAN

—do something here

COMMIT TRAN

END TRY

BEGIN CATCH TRAN_ABORT

ROLLBACK

—cleanup code

END CATCH

Notice how the first statement in the CATCH block is the ROLLBACK. It is
necessary to do the ROLLBACK before any other statements that require a
transaction. This is because SQL Server 2005 has a new transactional state:
“failed” or “doomed.” The doomed transaction acts like a read-only trans-
action. Reads may be done, but any statement that would result in a write
to the transaction log will fail with error 3930:

Transaction is doomed and cannot make forward progress. Rollback

Transaction.

However, work is not reversed and locks are not released until the transac-
tion is rolled back.

We mentioned previously that errors had to be transactional abort
errors in order to be caught. This raises the question: What about errors
created through the RAISERROR syntax—in other words, errors that you
raise yourself? In SQL Server 2005, RAISERROR has a new option called
TRAN_ABORT, which tags the raised error as a transactional abort error,
which therefore will be handled in the CATCH block.

Where Are We?
With the inclusion of the CLR in SQL Server 2005 and the ability to use
.NET languages natively from within SQL Server, there has been specula-
tion on the future of T-SQL. T-SQL continues to be advanced and remains
the best (and in some cases the only) way to accomplish many things. We
firmly believe that the enhancements to T-SQL in this release of SQL Server
show the importance of T-SQL and its power and future.

T-SQL ENHANCEMENTS264

30610 07 pp. 211-264 r4jm.ps 6/3/04 5:01 PM Page 264

