
13

Inheritance

O
ften, types in a program share the same characteristics. For example,
a program may contain types that represent a customer and an

employee.

Class Customer

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

Public CustomerID As Integer

End Class

Class Employee

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

Public Salary As Integer

End Class

In this situation, both the Customer and Employee classes contain a
number of identical fields. This is because the two classes each describe a
person, and a person has certain characteristics, such as a name and
address, that exist independent of whether or not they are a customer or an
employee.

245

Vick_ch13.qxd 1/28/04 2:00 PM Page 245

This commonality between the Customer type and the Employee type
can be expressed through inheritance. Instead of repeating the same infor-
mation in both types, you can create a class called Person that contains the
common characteristics of a person.

Class Person

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

End Class

The class Person represents all the characteristics of a person that exist
independent of whether the person is a customer or an employee. Once the
Person class is defined, the Customer and Employee classes can inherit all
the members of the Person class. This means that the classes have to define
only the members that are unique to each class.

Class Customer

Inherits Person

Public CustomerID As Integer

End Class

Class Employee

Inherits Person

Public Salary As Integer

End Class

When one class inherits members from another class, the inheriting class
derives from the other type. The type being derived from is called the base
type. A type inherits all the members that the base type defines, including
methods and events. So the Employee and Customer classes still have
fields named Name, Address, City, State, ZIP, and Phone, even though
they don’t explicitly declare them, because they inherit them from Person.
For example, the classes can be used as follows.

Module Test

Sub Main()

Dim c As Customer = New Customer()

c.Name = "John Smith"

INHERITANCE246

Vick_ch13.qxd 1/28/04 2:00 PM Page 246

Dim e As Employee = New Employee()

e.Name = "Jane Doe"

End Sub

End Module

A class that derives from another class can in turn be derived from by
another class. For example, Employee can be further specialized by classes
such as Manager and Programmer.

Class Programmer

Inherits Employee

Public Project As String

End Class

Class Manager

Inherits Employee

Public Programmers() As Programmer

End Class

In this example, the Programmer class contains the members defined in
its immediate base class, Employee, as well the members defined in
Employee’s base class, Person. Related types can be viewed as a hierarchy
with a tree structure, as in Figure 13-1.

Obviously, a type cannot directly or indirectly inherit from itself. Also,
notice that the type Object is at the top of the inheritance hierarchy. If a
class does not explicitly inherit from another class, it inherits from Object
by default. Thus, Object is always the common root of all inheritance
hierarchies. Also notice that in this type hierarchy, the most general types
are at the top of the tree. As you move down the hierarchy, the classes at
each level become more specialized and specific. Inheritance is a very
powerful way of expressing the relationships between types.

INHERITANCE 247

Advanced

Visual Basic .NET supports only single inheritance, which means that a

class can derive from only one base type.

Vick_ch13.qxd 1/28/04 2:00 PM Page 247

Protected Accessibility

An important thing to keep in mind about inheritance and accessibility is
that a derived class does not have access to its base classes’ Private mem-
bers. Private members can be accessed only by the immediate type in which
they’re defined. Protected members, however, can be accessed within an
inheritance hierarchy. The Protected access level restricts access to a
member to only the class itself, but it extends access to all derived classes as
well. For example:

Class User

Private SSN As String

Protected Password As String

End Class

Class Guest

Inherits User

Sub New()

' Error: SSN is private to User

SSN = "123-45-7890"

' OK: Password is protected and can be accessed

Password = "password"

End Sub

End Class

The class Guest can access the Password field inherited from its base
class because it is Protected. However, it cannot access the SSN field,
because it is Private.

INHERITANCE248

Object

Person

Programmer

EmployeeCustomer

Manager

Figure 13-1: An Inheritance Hierarchy

Vick_ch13.qxd 1/28/04 2:00 PM Page 248

When a class accesses a Protected member, the access must take place
through an instance of that class or a more derived class. It cannot take
place through a base class. For example, the following code is incorrect.

Class User

Protected Name As String

Private SSN As String

Protected Password As String

End Class

Class Guest

Inherits User

Shared Sub ChangeName(ByVal u As User, ByVal Name As String)

' Error: Access to Name in User cannot go through

' base class User

u.Name = Name

End Sub

End Class

This rule may seem strange, but it is necessary to prevent unexpected
access to Protected members. Without the rule, it would be possible to
gain access to a Protected member of another type simply by deriving
from a common base class.

Class User

Protected Name As String

Private SSN As String

Protected Password As String

End Class

Class Administrator

Inherits User

End Class

Class Guest

Inherits User

Public Sub PrintAdministratorPassword(ByVal u As User)

' Error: Access to Password in User cannot go through

' base class User

Console.WriteLine(u.Password)

End Sub

End Class

PROTECTED ACCESSIBILITY 249

Vick_ch13.qxd 1/28/04 2:00 PM Page 249

In this example, Guest cannot access Administrator’s protected field
Password—it can only access the Password field of instances of Guest.

Conversions

When a class derives from another class, it automatically inherits all the
members of the base class. As a result, a derived class can always be safely
converted to one of its base classes. For example:

Class Person

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

End Class

Class Employee

Inherits Person

Public Salary As Integer

End Class

Module Test

Sub Main()

Dim p As Person = New Employee()

p.Name = "John Doe"

End Sub

End Module

In this example, the Framework can allow an instance of Customer to be
assigned to a variable of type Person because it knows that a Customer is
also a Person. Thus, a Customer can be treated like a Person, and the
fields that Customer inherits from Person can be changed. If the preceding
example had tried to access fields that were specific to Customer or
Employee, however, an error would be given because when an instance is
viewed as as a Person, only the members defined by Person can be used,
as the following example illustrates.

INHERITANCE250

NOTE
Protected and Friend access levels can also be combined—the
Protected Friend access level is the union of the two access levels.

Vick_ch13.qxd 1/28/04 2:00 PM Page 250

Module Test

Sub Main()

Dim p As Person

p = New Customer()

' Error: CustomerID is not a member of Person

p.CustomerID = 10

p = New Employee()

' Error: Salary is not a member of Person

p.Salary = 34923.23

End Sub

End Module

Conversely, an instance of a base class can be converted to a derived
class, but the conversion is not always guaranteed to succeed. A variable
typed as Person could contain an instance of the Employee class, but it
could also contain an instance of some other type.

Module Test

Sub Main()

Dim p As Person = New Employee()

' Error: Can't convert Employee to Customer

Dim c As Customer = CType(p, Customer)

End Sub

End Module

The Customer class also inherits from Person, so it can be converted to
Person. However, the instance stored in the variable is still a Customer; as
such, it cannot be treated as an instance of the Employee class. In this case,
the Framework will throw a System.InvalidCastException exception at
runtime when the conversion is executed.

The important principle to keep in mind is that when you create an
instance of a class, it always stays that type, no matter what it is con-
verted to. A Customer class converted to Person is still a Customer, even
if the additional fields that Customer adds to the Person class are not
visible. The power of inheritance is that it allows code to be written that
works on the most general type in a hierarchy, which means that code can
be written very broadly. For example, a method that takes a Person and
prints the name and address of that Person can take a Customer or an
Employee, instead of having to write separate methods for Customer and
Employee.

CONVERSIONS 251

Vick_ch13.qxd 1/28/04 2:00 PM Page 251

Module Test

Sub PrintAddress(ByVal p As Person)

Console.WriteLine(p.Name)

Console.WriteLine(p.Address)

Console.WriteLine(p.City & ", " & p.State & " " & p.ZIP)

End Sub

Sub Main()

Dim c As Customer

Dim e As Employee

PrintAddress(c)

PrintAddress(e)

End Sub

End Module

Array Covariance
Inheritance conversions extend to arrays as well. In general, an array of a
particular type cannot be converted to any other type, because the array
storage is allocated based on the type of the array. For example, it is not pos-
sible to covert a one-dimensional array of Integer to a one-dimensional
array of Long, because Integer and Long do not have the same size. Thus,
an array of ten Integer values could not hold ten Long values within the
same space. However, because classes are reference types, the size of an
array that holds ten Customer instances is the same size as an array that
holds ten Employee instances. Thus, an array of a reference type may be
converted to an array of another reference type, provided that the element
types themselves convert to one another. For example:

Module Test

Sub Main()

Dim Customers(9) As Customer

Dim People() As Person

For Index As Integer = 0 To 9

Customers(Index) = New Customer()

Next Index

People = Customers

For Index As Integer = 0 To 9

People(Index).Name = "John Doe"

Next Index

End Sub

End Module

INHERITANCE252

Vick_ch13.qxd 1/28/04 2:00 PM Page 252

The one-dimensional array of Customer can be converted to a one-
dimensional array of Person because a Customer can be converted to a
Person.

This conversion behavior of arrays is called covariance. Covariance is
useful in the same way that inheritance is.

Module Test

Sub SetCityState(ByVal People() As Person, ByVal City As String, _

ByVal State As String)

For Each Person As Person In People

Person.City = City

Person.State = State

Next Person

End Sub

Sub Main()

Dim Employees(9) As Employee

...

SetCityState(Employees, "Akron", "OH")

End Sub

End Module

In this example, the base class Person provides a method that will
set the City and State fields for an array of Person instances. The
Main method can pass an array of Employee instances to the method
because an array of Employee can be converted to an array of Person. One
important thing to note, though, is that even though the array has been
converted to an array of Person, it still can only hold Employee instances.
Thus, an attempt to assign any other type into the array will cause a
System.InvalidCastException exception. For example:

Module Test

Sub FillArray(ByVal People() As Person)

For Index As Integer = 0 To People.Length -1

People(Index) = New Person()

Next Index

End Sub

Sub Main()

Dim Employees(9) As Employee

FillArray(Employees)

End Sub

End Module

CONVERSIONS 253

Vick_ch13.qxd 1/28/04 2:00 PM Page 253

This example will throw an exception because the array being passed
in to FillArray is an array of Employee, not Person, so only Employee
instances can be stored in the array.

The .NET Framework Type Hierarchy

As previously discussed, if a class does not have an explicitly stated base
class, its base class is Object. This means that all classes ultimately derive
from Object. Indeed, all types in the Framework type system—even the
fundamental types, structures, enumerations, delegates, and arrays—
derive from Object through special base classes that cannot otherwise be
inherited from (see Figure 13-2). Structures and the predefined types derive
from the type System.ValueType. Enumerations derive from the type
System.Enum. Delegates derive from the type System.Delegate. Arrays
derive from the type System.Array. And all these types inherit from
Object.

What this means is that any type in the type system can be converted to
Object. This makes Object a universal type. A method that takes Object
can accept any type, while a field typed as Object can store any type.

One interesting aspect of this design is that Object is a reference type.
This raises the question: How can structures and fundamental types like
Integer and Double, all of which are value types, inherit from a reference
type? More specifically, how can a value type like Integer be converted to
its base class, Object, when Object is a reference type? The Framework
solves this conundrum through a process called boxing. When a value type
is converted to Object, the Framework copies the value stored in the value
type to the heap and returns a reference to the value. This process is called
boxing the value type (see Figure 13-3). The reference can then be used to
access the boxed value on the heap.

INHERITANCE254

Compatibility

The Object type combines the capabilities that used to be split between

the Object type and the Variant type in previous versions of Visual

Basic.

Vick_ch13.qxd 1/28/04 2:00 PM Page 254

When a reference to a boxed value type is converted back to the value
type, the Framework copies the value stored on the heap back into the vari-
able. This process is called unboxing a boxed value type (see Figure 13-4).

The following code shows an example of boxing and unboxing an
Integer.

Module Test

Sub Main()

Dim o As Object

Dim i As Integer

i = 5

o = i ' Copies the value to the heap

THE .NET FRAMEWORK TYPE HIERARCHY 255

Figure 13-2: The .NET Framework Type Hierarchy

Vick_ch13.qxd 1/28/04 2:00 PM Page 255

Console.WriteLine(o)

i = CInt(o) ' Copies the value back from the heap

Console.WriteLine(i)

End Sub

End Module

DirectCast
In general, a boxed value type can only be unboxed back to its specific
type. For example, the following code will throw an exception because
a boxed value of structure X cannot be unboxed into a variable typed as
structure Y.

Structure X

Public Value As Integer

End Structure

INHERITANCE256

Figure 13-3: Boxing an Integer Value

Vick_ch13.qxd 1/28/04 2:00 PM Page 256

Structure Y

Public Value As Integer

End Structure

Module Test

Sub Main()

Dim o As Object

Dim x As X

Dim y As Y

' Box the value of x

o = x

' Error: Cannot unbox a value of type X into a variable of type Y

y = CType(o, Y)

End Sub

End Module

THE .NET FRAMEWORK TYPE HIERARCHY 257

Figure 13-4: Unboxing an Integer Value

Vick_ch13.qxd 1/28/04 2:00 PM Page 257

The exceptions to this rule are the fundamental types: It is possible to
unbox a boxed fundamental type into any other fundamental type that it
has a conversion to. For example, the following code is valid because the
Integer value in x can be unboxed into the Long variable y.

Module Test

Sub Main()

Dim o As Object

Dim x As Integer = 5

Dim y As Long

' Box the value of x

o = x

' OK: Can unbox the Integer value into a Long variable

y = CLng(o)

End Sub

End Module

This can be very useful, but it comes at a price. When any value is
converted from Object, the program must check at runtime to see whether
the value is a boxed fundamental type so that it can apply the special
unboxing behavior described in the previous paragraph. These checks add
a little bit of overhead to the conversion, which normally is not significant.
However, if it is known ahead of time that the conversion type exactly
matches the boxed type, there may be some advantage to avoiding the
overhead. For example, when lots of conversions are being performed, the
overhead could become significant.

The DirectCast operator works just like the CType operator, except
that it does not allow unboxing a boxed value type into anything but its
original type—even if the boxed value type is a fundamental type. The
advantage, though, is that the overhead of checking for the fundamental
types is avoided. For example, in the following code the second conversion
will be more efficient than the first.

Module Test

Sub Main()

Dim o As Object

Dim x As Integer = 5

Dim y, z As Integer

Dim a As Long

INHERITANCE258

Vick_ch13.qxd 1/28/04 2:00 PM Page 258

' Box the value of x

o = x

' Normal conversion

y = CInt(o)

' More efficient conversion

z = DirectCast(o, Integer)

' Error: Types do not match

a = DirectCast(o, Long)

End Sub

End Module

The last conversion emphasizes the fact that DirectCast can only
unbox boxed values to their original type. So, unlike in the previous exam-
ple, o cannot be unboxed into a Long variable.

Overriding

Defining an inheritance hierarchy is all about defining the types in a system
from most general to most specific. With inheritance, however, a derived
type can only add new members to those it inherits from its base type.
Sometimes, though, a derived type may want to change the behavior of
members that it inherits from a base type. For example, the base class
Personmay define a Printmethod that prints information about the class.

Class Person

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

Sub Print()

Console.WriteLine(Name)

OVERRIDING 259

Style

Unless code is particularly performance sensitive and doing a lot of unbox-

ing, CType is more general than DirectCast and is preferred.

Vick_ch13.qxd 1/28/04 2:00 PM Page 259

Console.WriteLine(Address)

Console.WriteLine(City & ", " & State & " " & ZIP)

End Sub

End Class

Class Employee

Inherits Person

Public Salary As Integer

End Class

In this example, though, calling the method Employee.Print will only
print the name and address of an employee, not the employee’s salary.
There is no way, using inheritance, to change the inherited implementation
of Person.Print.

Changing the implementation of derived methods is possible, however,
through overriding. A base class can declare that a particular method or
methods are Overridable, which means that a derived class can replace
the implementation that the base class provides. For example:

Class Person

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

Overridable Sub Print()

Console.WriteLine(Name)

Console.WriteLine(Address)

Console.WriteLine(City & ", " & State & " " & ZIP)

End Sub

End Class

Class Employee

Inherits Person

Overrides Sub Print()

Console.WriteLine(Name)

Console.WriteLine(Address)

Console.WriteLine(City & ", " & State & " " & ZIP)

Console.WriteLine("Salary = " & Salary)

End Sub

Public Salary As Integer

End Class

INHERITANCE260

Vick_ch13.qxd 1/28/04 2:00 PM Page 260

In this example, the Employee class overrides Person’s implementation
of the Print method with its own version of the Print method that prints
the salary as well as the employee’s name and address.

One interesting thing to note is that when a type overrides a base type’s
member, that override applies to all instances of the type, no matter what
their stated type is. In other words, Employee’s implementation of Print is
the one that will be called on an Employee instance, even if it is typed as a
Person. The following example:

Module Test

Sub Main()

Dim e As Employee = New Employee()

Dim p As Person

e.Name = "John Doe"

e.Address = "123 Main St."

e.City = "Toledo"

e.State = "OH"

e.ZIP = "48312"

e.Salary = 43912

p = e

p.Print()

End Sub

End Module

will print this:

John Doe
123 Main St.
Toledo, OH 48312
Salary = 43912

even though the type of the variable that Print is being called on is Person
instead of Employee.

Properties can also be overridden. The following is an example of over-
riding a property.

Class Order

Public Cost As Double

Public Quantity As Integer

Public Overridable ReadOnly Property Total() As Double

Get

Return Cost * Quantity

OVERRIDING 261

Vick_ch13.qxd 1/28/04 2:00 PM Page 261

End Get

End Property

End Class

Class ForeignOrder

Inherits Order

Public ConversionRate As Double

Public Overrides ReadOnly Property Total() As Double

Get

Return MyBase.Total * ConversionRate

End Get

End Property

End Class

When you are overriding a read-write property, both the Get and the
Set accessors must be provided, even if you wish to override only one of
them. Only methods and properties can be overridden, and they can be
overridden only if they specify the Overrides keyword in their declaration.
This is to prevent programmers from accidentally letting derived classes
override methods that they did not intend to be overridden.

Only accessible members from a base type can be overridden. Thus, a
Friend Overridable method cannot be overridden outside the assembly
it is declared in. (It is not valid to declare a method Private Overridable,
because no derived type could override such a method.) When you are
overriding a method, the access of the overriding method must be the same
as the method being overridden.

Sometimes it is desirable to override a method but prevent any further
derived classes from overriding the method. Adding the NotOverridable
keyword to a method that is overriding another method prevents any fur-
ther derived classes from overriding the method.

INHERITANCE262

NOTE
When you are overriding a Protected Friendmethod from a derived
class that is not in the same assembly as the class, the overriding
method specifies just Protected instead of Protected Friend.

Vick_ch13.qxd 1/28/04 2:00 PM Page 262

MyBase and MyClass
In the example in the previous section, Employee.Print had to supply the
entire implementation of Person.Print so that the name and address
would still be printed—if it hadn’t done that, only the salary would have
been printed. In this situation, the keyword MyBase can be used to call the
methods of the base class, allowing Employee.Print to call Person.
Print. Calling methods off of MyBase calls the base class’s implementation
of a method, even if the derived class has overridden it. So the example
could be rewritten as follows.

Class Person

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

Overridable Sub Print()

Console.WriteLine(Name)

Console.WriteLine(Address)

Console.WriteLine(City & ", " & State & " " & ZIP)

End Sub

End Class

Class Employee

Inherits Person

Overrides Sub Print()

MyBase.Print()

Console.WriteLine("Salary = " & Salary)

End Sub

Public Salary As Integer

End Class

The result would be the same: First, Person.Print would be called to
print the name and address, and then Employee.Print would print the
salary.

Sometimes it is desirable to call the particular implementation of a
method that your class provides, regardless of whether the instance might
be of a type that overrides it. Qualifying the method call with the keyword

OVERRIDING 263

Vick_ch13.qxd 1/28/04 2:00 PM Page 263

MyClass will always call the containing class’s implementation of a
method, ignoring any further implementation. The following example:

Class Person

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

Sub CallPrint()

Print()

End Sub

Sub CallMyClassPrint()

MyClass.Print()

End Sub

Overridable Sub Print()

Console.WriteLine(Name)

Console.WriteLine(Address)

Console.WriteLine(City & ", " & State & " " & ZIP)

End Sub

End Class

Class Employee

Inherits Person

Overrides Sub Print()

Console.WriteLine(Name)

Console.WriteLine(Address)

Console.WriteLine(City & ", " & State & " " & ZIP)

Console.WriteLine("Salary = " & Salary)

End Sub

Public Salary As Integer

End Class

Module Test

Sub Main()

Dim e As Employee = New Employee()

Dim p As Person

e.Name = "John Doe"

e.Address = "123 Main St."

e.City = "Toledo"

e.State = "OH"

e.ZIP = "48312"

e.Salary = 43912

p = e

INHERITANCE264

Vick_ch13.qxd 1/28/04 2:00 PM Page 264

Console.WriteLine("CallPrint:")

p.CallPrint()

Console.WriteLine()

Console.WriteLine("CallMyClassPrint:")

p.CallMyClassPrint()

End Sub

End Module

will print the following information.

CallPrint:

John Doe

123 Main St.

Toledo, OH 48312

Salary = 43912

CallMyPrint:

John Doe

123 Main St.

Toledo, OH 48312

When the method Person.CallPrint calls the overridable Print
method, what Print method ends up getting called depends on the actual
type instance at runtime. Since the instance in this case is actually an
Employee, Person.CallPrint ends up calling Employee.Print. How-
ever, because CallMyClassPrint qualifies the call to Printwith MyClass,
it always calls Person.Print, even if the instance is a more derived class.

Abstract Classes and Methods

In the examples we’ve been using so far in this chapter, Person, Employee,
and Customer have all been classes that can be created using the New oper-
ator. However, there may be situations where a base class should never be
created—perhaps there should only be instances of the Employee type and
Customer type and never an instance of the Person type. It’s possible just
to add a comment saying Person should never be created, or Personmight
have a Private constructor to make it impossible to create. However,
Person can also be designated as an abstract type. An abstract type is the
same as a regular (or concrete) type in all respects except for one: An abstract

ABSTRACT CLASSES AND METHODS 265

Vick_ch13.qxd 1/28/04 2:00 PM Page 265

type can never directly be created. In the following example, Person is now
declared as an abstract type, using the MustInherit modifier.

MustInherit Class Person

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

Sub Print()

Console.WriteLine(Name)

Console.WriteLine(Address)

Console.WriteLine(City & ", " & State & " " & ZIP)

End Sub

End Class

Class Customer

Inherits Person

Public CustomerID As Integer

End Class

Class Employee

Inherits Person

Public Salary As Integer

End Class

Abstract classes are special in that they can also define abstract methods.
Abstract methods are overridable methods that are declared with the
MustOverride keyword and provide no implementation. A class that
inherits from a class with abstract methods must provide an implementa-
tion for the abstract methods or must be abstract itself. For example, the

INHERITANCE266

NOTE
Just because a class is abstract and cannot be created, it does not mean
that it cannot have constructors. An abstract class may have con-
structors to initialize methods or pass values along to base class
constructors.

Vick_ch13.qxd 1/28/04 2:00 PM Page 266

Person class could define an abstract PrintNamemethod that each derived
class has to implement to display the person’s name correctly.

MustInherit Class Person

Public Name As String

Public Address As String

Public City As String

Public State As String

Public ZIP As String

MustOverride Sub PrintName()

Sub Print()

PrintName()

Console.WriteLine(Address)

Console.WriteLine(City & ", " & State & " " & ZIP)

End Sub

End Class

Class Customer

Inherits Person

Overrides Sub PrintName()

Console.Write("Customer ")

Console.WriteLine(Name)

End Sub

Public CustomerID As Integer

End Class

Class Employee

Inherits Person

Overrides Sub PrintName()

Console.Write("Employee ")

Console.WriteLine(Name)

End Sub

Public Salary As Integer

End Class

In this example, Person.Print can call the PrintName method, even
though Person supplies no implementation for the method, because it is
guaranteed that any derived class that can be instanced must provide an
implementation.

ABSTRACT CLASSES AND METHODS 267

Vick_ch13.qxd 1/28/04 2:00 PM Page 267

Conclusion

Inheritance is a powerful way of expressing the relationships between
types and reusing code across multiple types. The .NET Framework class
libraries make extensive use of inheritance, and understanding inheritance
is essential to understanding those libraries. Overridable methods and
abstract methods provide a way for derived classes to specialize the behav-
ior of their base classes. In the next chapter, we will discuss another way of
reusing code across types: interfaces.

Here are some style points to keep in mind.

• The Object type combines the capabilities that used to be split
between the Object type and the Variant type in previous versions
of Visual Basic.

• Unless code is particularly performance sensitive and doing a lot of
unboxing, CType is more general than DirectCast and is preferred.

INHERITANCE268

Vick_ch13.qxd 1/28/04 2:00 PM Page 268

