INDEX

A
Abstractions, key, 324
Acceptance tests. See Product acceptance tests
Activities
 architect, 323–328
 defined, 13, 383
 iteration, 238–239
 overview of, 14–15
 project manager, 280–282
 RUP lifecycle, 88–90
 SEI CMM framework, 55
 steps in, 15
 tester, 373–379
Actors
 defined, 383
 detailing in Inception, 101–102, 299
 identifying/describing in Inception, 98–100, 297–298
Adaptive development, 51–52
Adopting RUP, 197–222
 assessment, 199–200
 configuring/customizing, 203–204
 evaluating, 206–207
 executing, 205–206
 in large organizations, 208–215
 overview of, 197–199
 paying lip service to RUP vs., 252
 planning, 200–203
 in programs for major change, 217–221
 in programs for moderate change, 215–217
 tool automation and, 208
Adopting RUP, mistakes
 customization, 251
 doing too much, 244–246
 not adopting incrementally, 246–249
 not planning implementation, 249–250
 overview of, 243–244
 paying lip service, 251–252
 process improvement and business results, 250–251
Adoption of the PMI Guide to PMBOK, 277
Agile Development Movement, 50–53
Analysis-paralysis, 264
Analysts, 287–310
 business operations and, 289–292
 fine-tuning and, 304–308
 mission of, 287–289
 requirement testing, 309
 requirement updating/refinement, 308
 resources for, 310
 role of, 309
 stakeholder needs and, 292–293
 starting point for, 289
 use-case model/glossary development, 296–302
 use-case specification example, 302–303
 Vision development, 293–296
“Application proxy” code, 122
Architect, 311–332
 activities of, 323–328
 architecture and, 314–319
 developer working closely with, 334, 337
 function of, 320–322
 mission of, 311–314
 resources for, 329–331
 roles of, 319–320, 328
Architectural baseline
 defined, 383
 developing early on in project, 5, 38–40
 by end of Elaboration, 266–269
 overview of, 122
Architectural coverage, 128–129
Architectural integrity
 architect’s role in maintaining, 327–328
 ensuring in Construction, 140
 team communications and, 314
Architectural mechanisms (patterns)
 defined, 38
 enforcing in Construction, 149
 identifying in Elaboration, 130–131
 overview of, 318
 role of developer, 337, 355–356
Architecture, 314–319
 adopting RUP, 247–249, 252
 component-based vs. functional decomposition, 40–41
 costs of changes to, 37
 defining, 38, 315
 enforcing in Construction, 148–149
 identifying key system functionality, 103, 105–106
 iterative approach and, 8
 layered, 121–122
 models/views and, 315–317
 Project Deimos and, 74
 prototypes, 318
 reusing, 266
 reviewing, 327–328
 risk and, 30
Software Architecture Document and, 317–318
 teams organized around, 44–45
 test automation, 373
 testing and, 46–47
Architecture, in Elaboration phase, 120–134
 architectural coverage, 128–129
 architectural mechanisms, 130–131
 baselining, 266–269
 consolidating and packaging classes, 127–128
 critical use cases and, 123–127
 database design, 129–130
 describing run-time architecture, 130
 implementation, 131
 integration, 131–132
 iterations in, 116–118
 overview of, 120–122
 subsystems/key components and, 122–123
 testing, 132–133
 user interactions in, 133–134
Artifacts
 adopting RUP and, 244–249
 defined, 13, 383
 Development cases specifying, 184–186
 key test, 371–373
 overview of, 15
 producing executable software and, 34
 product acceptance testing and, 174–175
 RUP lifecycle phases and, 90–91
 SEI CMM framework and, 55
Assessment
 adopting RUP and, 198–200, 207, 214
 focus of tester in, 359
 focus on inspections vs., 269–270
 high ceremony approaches to, 54–57
 iterative approach and, 9
Automation, testing
 focus of, 269–270
 role of developer, 348
 RUP philosophy, 368
Automation, tool
 addressing core problems, 208–209
 high ceremony approach and, 60–61

B
Bach, James, 361
Base. See RUP base
Baselining. See Architectural baseline
Beck, Kent, 341, 355, 358
Best practices. See also Guidelines
 concept of, 52
 defined, 19
 developer, 354–357
Beta release
 preparing for deployment, 142, 157
 Project Deimos, 81
 testing, 162, 167–169, 174
Bids, project, 255–256
Bill of Materials (BOM), 172
Boehm, Barry, 60, 240, 322
Booch, Grady, 258, 279, 326, 358, xxxv
Boundary classes, 340
Brainstorming sessions, 98–100
Brooks, Frederick, 314
Builder. See RUP Builder
Builds
adopting RUP and, 246–247, 249
derived, 225, 383
integration planning of, 352–353
iterative development and, 350
releases vs., 351
role of developer, 353
role of tester, 376–377

Business Case
altering, 91
costs, schedule and risks in, 107–108
focus of, 250–251
motivating RUP, 199–200
multiple iterations and, 95
Project Deimos, 70, 73–74, 76–77
role of project manager in, 281
validating, 206
Business modeling, 288, 289–292
Buy-in
adopting RUP and, 250–251
business results and, 250
detailing requirements, 265

C
Capability Maturity Model (SEI CMM), 54–56
CCBs (Change Control Boards)
managing costs, 37
role of tester and, 379
supporting project manager, 276
CCM (Configuration and Change Management)
adopting RUP incrementally, 247
high ceremony and, 61
managing costs, 37
Ceremony, defined, 50
Change Control Boards. See CCBs (Change Control Boards)
Change requests
for defects and beta tests, 167
focusing on change management, 247
Project Deimos, 82
Changes
accommodating early in project, 5
adopting RUP and, 197
agile development view of, 51
avoiding many late, 260–261
benefits of iterative development, 8
beta testing and, 167–168
guidelines for, 35–38
implementing major, 217–221
implementing moderate, 215–217
indicating completion of Elaboration, 268–269
Structural Plug-Ins creating, 194–195
Classes. See also Design, use cases/components
architectural analysis, 324
consolidating, packaging identified, 127–128
implementing critical scenarios, 131
Client/server architecture, 105–107
CMM (Capability Maturity Model), 54–56
CMMI, 55–56
CMP (Core Message Platform), 173
CMS (Configuration Management System)
overview of, 147–148
Transition beta testing using, 167–168
workspaces, 352
Coarse-grained project plans, 226–228
Code
continuous testing of, 150
implementing/unit-testing, 153–154
principles of approach to, 5
reviews, 347–348
Collaboration diagram, 343
Commercial Off-the-Shelf (COTS) components, 265
Commitments, defined, 224
Communication
organized around architecture, 145–147
role of architect, 312–314
role of project manager, 275
Community/marketplace, 20
Components. See also Design, use cases/components; Process Components
costs of changes to, 37
defined, 383
defining in Elaboration, 122–123
emulating with test stubs, 348
evolution of, 154
guidelines, 40–43
incrementally improving, 249
integrating in Elaboration, 131–132
principles of approach to, 5
reusing third-party, 266
role of developer, 347
Components, Construction
- completing design, 152–153
- integrating in, 154–155
- iterations in, 143–144
- testing in, 153–154

Concepts
- Agile Development Movement, 52
- defined, 16
- key, 224–226

Conceptual prototype, 305

Concurrency
- defined, 373
- outlining in Elaboration, 130

Configuration and change management. See CCM (Configuration and Change Management)

Configuration and change management system (CMS), 147–148, 167–168

Configuration manager, 333

Configuration (RUP Process Configuration)
- adopting RUP, 198, 204, 207, 247
- customizing templates, 184
- defined, 385
- deployment, 215

Development case and, 185–186
- linking from project Web site to, 188
- process map and, 58, 61
- producing, 180–182
- producing Process Views, 182–183
- tools, 20–22, 80

Constraints
- adding to Vision statement, 79–80
- stakeholder expectations and, 255

Construction phase, 139–160
- architectural enforcement, 148–150
- artifacts, 90–91
- beta deployment preparations, 157
- Configuration Management System, 147–148
- costs of changes at, 36
- defined, 12–13, 384
- deployments, 155–156, 157–159
- designing database, 153
- filling in design, 152–153
- implementing/unit-testing all code, 153–154
- Initial Operational Capability Milestone, 159
- integration/system testing, 154–155
- misconceptions about, 87–88
- multiple bids and, 255–256
- objectives/milestones, 11, 141–142
- organizing around architecture, 145–147
- outline of, 206
- overview of, 139–141
- process and tool enhancement projects at, 211–212
- Project Deimos, 72
- redesigning database in, 350
- risk mitigation in, 88–89
- role of architect, 320
- role of developer, 338
- role of tester, 375
- stabilizing architecture before, 266–269
- use cases/requirements and, 151–152
- workflows in, 89–90

Contractual issues, 277

Control class, 340

Core Message Platform (CMP), 173

Cost
- estimating in Elaboration, 134–135
- of introducing changes, 36–38
- objectives of Construction, 142, 145
- quality and, 362–363
- regression tests minimizing, 155
- RUP not dealing with issues of, 277
- software testing and, 366
- understanding in Inception, 107–108

COTS (Commercial Off-the-Shelf) components, 265

Crystal, 51–52

Cunningham, Ward, 341

Customizing, 189–196. See also RUP product
- adopting RUP, 198, 203–204, 207
- deployments, 215
- iterative approach to, 251
- overview of, 189–190
- Process Engineering Toolkit and, 190–191
- Rational Process Workbench and, 190–191
- RUP templates, 184
- structural RUP plug-ins, 192–196
- thin RUP plug-ins, 191–192

Cycle
- defined, 384
- overview of, 224
Database Administrator (DBA), 333

Databases
 deploying/converting in Transition, 172
 deploying in Construction, 157–158
 designing in Construction, 153
 designing in Elaboration, 129–130
 implementing/testing by developer, 349–350

DBA (Database Administrator), 333

Defects
 defined, 373
 iterative approach to, 8
 metrics for analyzing Transition, 169–170

Delivery tools. See Process delivery tools

Department of Defense (DOD), 56

Deployment
 Construction, 155–159
 defined, 384
 Transition, 172
 views, 317

Design
 adopting RUP incrementally, 247
 avoid stating in requirements, 265
 classes, 131
 costs of changes to, 37
 coupling testing with, 47
 of database in Construction, 153
 of database in Elaboration, 129–130
 emphasized in Construction, 141, 152–153
 executable architecture, 120–121
 implementing/testing database, 349–350
 mission of analyst, 288
 role of architect, 325, 327
 role of developer, 336–337, 356

Design model, 345–347

Design, use cases/components, 338–346
 analysis classes/analysis model, 343–344
 design classes/design model, 345–347
 distributing behavior to analysis classes, 341–343
 first-draft outline, 339–341
 overview of, 338–339
 use-case design, 344–345

Developers, 333–358
 architect communications with, 314
 best practices, 354–357
 designing, implementing, testing databases, 349–350

 frequent integration and, 350–353
 limiting at project start, 255–258
 mission of, 333–335
 requirements/design constraints, 336–337
 resources for, 358
 task overview, 335–336
 testing, 347–349
 use case/component design, 338–346
 use case/component implementation, 347

Development case
 accessing on project Web site, 187–189
 alternatives to, 189
 deciding on process, 109
 defined, 384
 producing, 184–187
 project manager’s approach to, 279
 refining in Elaboration phase, 115, 136–138

Development cycle
 overview of, 165–167, 224
 possible degrees of iteration, 233
 Transition and, 165–167

Dikel, David, 320–322

Disciplines
 defined, 384
 as high-level workflow, 16
 list of, 17–18

Distribution
 defined, 373
 physical, 130

Documentation
 evaluating RUP project, 207
 functionally oriented teams and, 253–254
 RUP test philosophy and, 368
 stakeholder requests, 293–296
 writing Vision, 294

Documentation, Transition phase
 improving, 168
 packaged product, 172–173
 product acceptance testing and, 174–175
 training users, 171

DOD (Department of Defense), 56
 DOD-STD, 56–57

Domain models
 defined, 296
 understanding key information through, 299
 updating towards end of Inception, 304
Dynamic Process Structure
defined, 9–10
overview of, 10–13

E
Elaboration phase, 113–138. See also Architecture, in Elaboration phase
artifacts in, 90–91
breaking project into multiple bids, 255–256
costs of changes at, 36
defined, 12, 384
detailing actors/use cases in, 300–302
detailing requirements, 118–120
guidelines for testing, 46
iterations in, 116–118, 232–234, 237
misconceptions about, 87–88
objectives/milestones, 11, 114–115
overview of, 205–206
Project Deimos, 71–72
refining Development case, 136–138
risk in, 30, 88–89, 134–135
role of architect, 319–320
role of developer, 334, 338
role of tester, 375
verifying nonfunctional requirements in, 307–308
workflows, 89–90
Encapsulation, 42
Entity classes, 340
Errors. See Mistakes
Estimations, project planning
overview of, 239–240
role of project manager, 280
Wideband Modified Delphi and, 240–241
Evaluation
adapting RUP and, 199, 207
deploying RUP and, 215
iteration planning and, 236
mission, 369
role of tester in, 377
test evaluation summary, 371
Evolution cycles
defined, 166, 224
iteration planning in, 237
staffing profiles in, 235–236
Evolutionary prototypes, 120–121
Executable architecture
incrementally improving, 249
overview of, 120–121
Executable software
incrementally improving, 249
paying lip service to RUP and, 252
staying focused on, 33–35, 269–270
Execution
adapting RUP and, 198–199, 207
deploying RUP, 215
Experience, architectural, 312
Extended Help
defined, 384
overview of, 24
Extreme Programming (XP)
as agile process, 51–52
RUP architecture compared with, 268
F
Feature list, 294
Feedback
continuous process improvement and, 221
early deployment in Construction and, 155–156
Transition beta testing and, 167–168
Fine-grained project plans, 226–228
Flaws. See Defects
Flow of events, structuring, 301–302
Functional decomposition architecture, 40–41
Functional organizational structure, 43
Functional requirements, 32–33, 336
Functionality, key system, 102–104
G
Generalizations, defined, 263
Generations, software, 165
GEQ (Good Enough Quality) concept
conforming to standards and, 364–365
cost and, 363
overview of, 361
paradigms of, 361–362
quantification and, 363–364
Gilb, Tom, 28, 285
Glossary
analyst developing, 296
creating in Inception, 100, 304
for this book, 383–387
INDEX

updating in Elaboration, 119
Goals
adopting RUP incrementally, 246–249
architect, 312
ensuring progress in Construction, 150–151
time-boxing, 225–226
Gold plating, 261

Good Enough Quality. See GEQ (Good Enough Quality) concept

Green-field development
defined, 224
iteration planning and, 237
staffing profiles in, 235–236
Guidelines, 27–48
accommodating change, 35–38
adding, 18
addressing risks, 28–31
architect developing, 318–319, 327
components, 40–43
defined, 16
delivering value, 31–33
executable architecture, 38–40
executable software, 33–35
overview of, 27–28
programming language, 347
quality, 46–47
team work, 43–45

H
High Ceremony approach
factors driving towards, 60–61
RUP using, 58–59
Waterfall/Iterative compared to, 50–51

Human resources, 277

I
IBM, 122
IDEs (Integrated Development Environments), 265
Implementation. See also adoption
avoiding pitfalls of, 249–250
costs of changes to, 37
objectives of Construction, 141
role of architect, 326
role of developer, 335, 347
unit-testing in Construction, 153–154
views, 316
Inception phase
artifacts in, 90–91
avoid over-detailing requirements at, 264
breaking project into multiple bids, 255–256
costs of changes at, 36
costs, schedule, risks, 88–89, 107–108
decisions on process, tools, 108–110
decisions on what to build, 96–102
defined, 12, 384
determining architecture, 105–107
developing project rhythm, 258–259
identifying system functionality, 102–104
iteration planning, 95–96, 232–233, 237
Lifecycle Objective Milestone and, 110–111
misconceptions about, 87–88
objectives/milestones, 11, 94–95, 110–111
overview of, 205
workflows in, 89–90
“Includes”, defined, 263
Industry sectors, 24–25
Initial development cycles
iteration planning, 237
overview of, 224–225
staffing profiles in, 235–236
Initial Operational Capability (IOC) Milestone, 11
overview of, 159
project plan including, 227
Inspections, 269–270
Instantiation, 184–189
alternatives to Development cases, 189
Development cases and, 184–187
project Web sites and, 187–189
Integration
in Elaboration, 131–132
iterative approach to, 7
planning in Construction, 148–149
progressing in Construction, 150
Integration (continued)
role of developer in planning, 350–353
testing in Construction, 154–155
workspaces, 352
Integration Build Plan, 352–353
Integration workspaces, 247, 352
Interface, component
defined, 42
defining in Elaboration, 122–123
sketching/completing Project Deimos, 77–78
IOC (Initial Operational Capability) Milestone, 11, 159, 227
ISO/IEC 15504, 55
Iteration plans. See Iterative development, mistakes; Project plans
Iterations
addressing top risks, 28–31
avoiding overlapped, 259–260
Construction and, 142–145
defined, 225, 384
Elaboration and, 116–118
improving process/tools throughout, 205–206
improving test assets after, 378–379
Inception and, 95–96
length, 234–235, 258–259
number of, 232–234
role of project manager, 279, 281–283
RUP lifecycle phases and, 11–12
team spirit and, 6
test philosophy of, 368
Transition and, 163–165
Iterative development
focusing on, 246–247
misconceptions about, 87–88
RUP and, 6–9
Iterative development, mistakes, 253–261
extending initial iterations, 258–259
late changes, 260–261
misleading stakeholders, 254–255
number of starting developers, 255–258
overlapping iterations, 259–260
overview of, 253
solving easy tasks first, 257–258
using functional, specialized organizations, 253–254

J
J2EE platform, 42, 62
Jacobson, Ivar, 310, 330

K
Key abstractions, 324

L
Launch-packaging, 172–173
Layered architecture, 121–122
LCA (Lifecycle Architecture) Milestone, 11
overview of, 137
project plan including, 227
role of architect in, 319–320
LCO (Lifecycle Objective) Milestone, 11
overview of, 110–111
project plan including, 227
Leadership, architects and, 312
Legal issues, 277
Libraries
RUP Library, 182
RUP Process Library, 191
Lifecycle Architecture (LCA) Milestone, 11
Lifecycle Architecture Milestone. See LCA (Lifecycle Architecture) Milestone
Lifecycle Objective (LOC) Milestone, 11
Lifecycle Objective Milestone. See LCO (Lifecycle Objective) Milestone
Lifecycle phases, 11–13
Load testing, 132
Logical views, 316
Low Ceremony approach
Agile Development Movement and, 50–53
factors driving towards, 60–61
RUP using, 58–59
Waterfall/Iterative compared to, 50–51

M
Maintainability, defined, 373
Maintenance cycles
defined, 224
staffing profiles in, 235–236
Management. See also Project management
failing to set expectations for, 254–256
getting buy-in from, 249
Managing iterative development, 8
Marketing rollout, 173
Marketplace/community, 20
Matrix organizational structure, 43
Milestones
 costs of changes at, 36
 defined, 384
 project plan including, 227, 230–231
 role of project manager in assessing, 282
 RUP lifecycle phases and, 11–13, 88–89
Military standards of software development, 57
Mission
 of analysts, 287–289
 of architects, 311–314
 of developers, 333–335
 of project managers, 273–276
 statements, 369
 of testers, 359–365, 375–376, 378
Mistakes
 adopting RUP. See Adopting RUP, mistakes
 analysis-paralysis, 264
 ending Elaboration without stable architecture, 267–269
 including design with requirements, 264–265
 iterative development. See Iterative development, mistakes
 not assessing executable software, 269–270
 not reusing solutions/components, 265–267
 stakeholder buy-ins, 265
 too many use cases, 262–263
Modeler. See RUP Modeler
Monitoring, 282
Motivation, 223–224
MyRUP
 defined, 384
 overview of, 22–23
 Process Views in, 182–183
N
 .NET platform, 30, 42
 Non-functional requirements, 307–308
 “Not invented here” mentality developer best practices, 355–356
 overview of, 265–267
O
 Objectives
 Construction, 141–142
 Elaboration, 114–115
 Inception, 94–95
 iteration, 235
 motivating RUP implementation, 197, 199
 RUP lifecycle phases, 90
 RUP lifecycle phases and, 11–13
 Transition, 162–163
 Optimizations, 241–242
 Organizations
 adopting RUP in large, 208–215, 276
 avoiding functionally oriented teams, 253–254
 getting buy-in from management, 249
 Organizer. See RUP Organizer
P
 Packaging, 172–173
 Pair programming, 52, 356–357
 Parallel development, 140
 Partnering, 322
 Patch releases, 169
 Performance
 evaluating, 199
 improving future, 175
 runtime analysis and, 348–349
 RUP process and, 206–207
 testing in Elaboration, 132
 Persistency, 350
 Personnel. See Team
 Phases
 defining, 224–225, 385
 overview of, 87–92
 role of analyst in, 289
 role of project manager in, 281–282
 Physical distribution, 130
 Pilot projects
 adopting RUP in, 249
 defined, 210
 implementing major change, 218–220
 implementing moderate change, 217
 setting up, 213–214
Pipeline organization, 8
Pirsig, Robert, 363–364
Planning. See also Project plans
adopting RUP, 198, 207
deploying RUP, 214
risk and, 134–135
role of developer, 352–353
role of project manager, 283
Plug-Ins
adopting RUP using, 204
building RUP Process Configuration with, 180–181
collection/process authoring tools and, 21–22
creating, 190–191
defined, 385
downloading, 182
Structural, 190, 192–196
Thin, 189, 191–192
PMBOK (Guide to the Project Management Body of Knowledge), 277
PMI (Project Management Institute), 277
PR (Product Release Milestone), 11
overview of, 175–176
project plan including, 227
PRA (Project Review Authority), 276
Pressman, Roger, 273
Prioritization, 295–296
Private workspaces, 352
Problem statement, Vision Document, 294
Process and tool enhancement projects. See PTEPs
(process and tool enhancement projects)
Process authoring tools
defined, 20
overview of, 22
Process Components
defined, 385
overview of, 180
RUP Modeler and RUP Organizer, 190–191
Process Configuration. See Configuration (RUP Process Configuration)
Process configuration tools, 20–22, 80
Process delivery tools
defined, 20
overview of, 22–24
Process Engineer, 328
Process Engineering Toolkit, 191
Process framework, 19–21
Process improvement
continuous, 221
coupling with business results, 250–251
Process Library, 191
Process map
agile processes, 52–53
CMM/CMMI, 55–56
military standards of software development, 57
placement on, 62–63, 65
process comparison with, 51
RUP framework and configurations, 58, 61
understanding process improvements with, 50
Process maturity, assessment framework, 54–55
Process views
defined, 316, 385
MyRUP product providing, 22–23
overview of, 22
producing, 182–183
Processes
breakdowns in, 223–224
circuit of, 52
developing content of, 195–196
implementing in Inception, 108–110
outlining in Elaboration, 130
refining in Elaboration, 115, 136–138
role of project manager, 274–275
Processes, comparing, 49–66
determining RUP configuration, 61–63
High Ceremony approach, 53–57
iterative needs and, 59–60
level of ceremony and, 58–61
Low Ceremony approach, 50–53
overview of, 49–50
Product
breakdowns, 223
circuit of, 360–361
defining RUP, 3–4
objectives of project manager, 274
Product acceptance tests
defined, 168
overview of, 173–175
role of analyst in, 309
Product Release Milestone. See PR (Product Release Milestone)
Product Release Milestone (PR), 11
Product releases. See also Beta release
comparing builds with, 351
defined, 385
Project Deimos, 80–81
Programming
guidelines for implementing, 347
pair, 356–357
role of architect in, 327
Project Deimos, 67–84
comparing project types, 63
describing, 61
getting commitment to, 75–77
making changes, 78–80
overview of, 67–68
proposal for, 69–74
seminal idea for, 68–69
shipping beta version, 81
sketching/completing product interface, 77–78
testing, 80–81
Project Ganymede
comparing project types, 63
Construction deployment, 158
Construction progress, 150–151
describing, 61–62
Project Ganymede, Elaboration
detailing requirements, 119
iterations and, 116
mitigating essential risks, 135
refining Development case, 136
testing executable architecture, 133
Project Ganymede, Inception
costs, schedule and risks in, 108
critical use cases in, 104
determining architecture, 107
implementing process/tools, 110
iterations pattern in, 96
key actors/use cases, 102
Project management, 276–280
iterative development, 279
overview of, 276–277
risks, 279–280
scope of, 277
Software Development Plan, 278–279
Project Management Institute (PMI), 277
Project manager, 273–286
activities of, 280–282
architect working with, 313, 323–324
avoiding too many late changes, 261
estimation techniques, 239–241
finding way as, 282–283
iteration plans and, 228
mission as, 273–276
project management and, 276–280
resources for, 285–286
summary, 283–284
Project Mars
comparing project types, 63
deploying in Construction, 158
describing, 62
progress of in Construction, 151
Project Mars, Elaboration
detailing requirements, 119
iterations and, 116
mitigating essential risks, 135
refining Development case, 136
testing executable architecture, 133–134
Project Mars, Inception
costs, schedule and risks in, 108
critical use cases in, 104
determining architecture, 107
Project Mars, Inception (continued)
implementing process and tools, 110
iterations pattern in, 96
key actors/use cases, 102
Project Mercury
motivating RUP implementation in, 199–200
planning for RUP, 201
Project plans, 223–242. See also Planning
coarse-grain/fine-grain, 226–229
developing iterations, 236–239
estimation, 239–241
iteration length and, 234–235, 259–260
key concepts, 224–226
motivation, 223–224
number of iterations and, 232–234
optimizing, 241–242
overview of, 226–232
paying lip service to RUP and, 252
role of project manager, 278–279
staffing profile, 235–236
Wideband Modified Delphi and, 240–241
Project Review Authority (PRA), 276
Project reviews, 276
Initial Operational Capability (IOC) Milestone, 159
Lifecycle Objective Milestone, 110
PRA (Project Review Authority), 276
Product Release Milestone, 175
Project Mars, 108, 135
Project Web site, 187–189
Proof-of-concept prototype, 324–325
Prototypes
architectural, 318
constructing architectural proof-of-concept, 324–325
defined, 385
use-case, 305–307
PTEPs (process and tool enhancement projects)
continuous improvement of, 221
defined, 210
implementing major change, 217–221
implementing moderate change, 216–217
phases of, 210–212
pilot projects and, 213–214
Q
Quality
concept of, 360–361
conforming to standards, 364–365
cost of, 362–363
guidelines for, 46–47
incrementally improving, 249, 367
integration/system testing increasing, 155
paradigms of, 361–362
principles of approach to, 6
quantification vs., 363–364
Transition phase focus, 168
“Quality by Design”, 47
Quantification, quality vs., 363–364
R
RAS (Reuse Asset Specification), 221, 356
Rational ClearCase, 148
Rational ClearQuest, 209
Rational Developer Network (RDN), 20, 182
Rational Process Workbench (RPW), 21, 190–191, 385
Rational RequisitePro, 209
Rational Rose, 30
Rational Suite TestStudio, 209
Rational Unified Process. See RUP (Rational Unified Process)
Rational XDE
RUP Modeler as add-in to, 190
Structural RUP Plug-Ins and, 194
as tool mentor, 18
unpackaging RAS assets, 356
RDN (Rational Developer Network), 20
Reading, resources
analysts, 310
architects, 329–331
developers, 357
project managers, 285
testers, 380
Refactoring, 355
Regression testing
focus of Transition, 168
minimizing costs through, 155
overview of, 47
Releases. See Product releases
Requirements
- adopting RUP and, 246–247, 249
- common mistakes, 252, 264–265
- detailing in Elaboration, 115, 118–120
- principles of approach to, 4, 7
- progress in Construction, 143–144, 151–152
- role of analyst, 288, 297–299, 307–308
- role of architect, 323–324
- role of developer, 336–337

Resources
- analysts, 310
- architects, 329–331
- developers, 358
- project managers, 285–286
- testers, 380–381

Return on investment (ROI)
- producing artifacts and, 34
- tool automation and, 208

Reuse
- developer maximizing, 355–356
- iterative approach to, 8

Reuse Asset Specification (RAS), 221, 356

Reviews
- architectural, 327–328
- code, 347–348
- PRA (Project Review Authority), 276

Rhythm, 321

Risk
- defined, 386
- design completion in Construction and, 153
- development phases and, 88–89
- executable software and, 33
- guidelines, 28–31
- incremental improvements and, 249
- iteration length and, 231
- iterative approach to, 8
- multiple iterations and, 95
- pilot projects and, 213
- principles of approach to, 4
- project manager and, 279–280
- understanding in Inception, 107–108

Risk List
- failing to handle difficulties on, 257–258
- paying lip service to RUP, 252
- Project Deimos, 72, 76, 78–79

Risk mitigation
- addressing, 115
- adopting RUP and, 246–247, 249
- critical use cases and, 125
- iterations and, 116–118
- objectives, 114–115
- planning project and estimating costs, 134–135

Roadmaps, 16

ROI (return on investment)
- producing artifacts and, 34
- tool automation and, 208

Roles
- analyst, 309–310
- architect, 319–320, 328
- defined, 13, 386
- developer, 357

Development case specifying, 186
- major milestones and, 89
- overview of, 13–14
- project manager, 274–275
- testing, 370–371

Rollout
- planning, 200–203
- preparing for market, 173

Royce, Walker, 242

RPW (Rational Process Workbench), 20, 190–191, 385

Runtime analysis
- architect describing, 326–327
- describing in Elaboration, 130
- testing by developer, 348–349

Runtime processes, 326–327

RUP approach
- iterative development and, 6–9
- underlying principles of, 4–6

RUP Base
- defined, 386
- RUP Process Configurations and, 180

RUP Builder
- adopting RUP in project, 204
- defined, 386
- importing plug-ins into, 195–196
- overview of, 180–182

RUP Exchange
- defined, 386
- downloading RUP Plug-Ins, 182
INDEX

RUP Glossary, 283
RUP Library
 defined, 386
 RUP Process Configurations and, 180, 182
RUP Modeler
 as add-in to Rational XDE, 190
 creating Structural Plug-Ins with, 192–196
defined, 386
overview of, 190
RUP Organizer
 creating Structural Plug-Ins with, 192–196
 creating Thin Plug-Ins with, 191–192
defined, 386
overview of, 191
RUP Process Configuration. See Configuration (RUP Process Configuration)
RUP Process Library, 191
RUP product, 19–25
 adding extensions to, 19
 companies using, 24–25
configuration and process authoring tools, 20–22
overview of, 19–20
process delivery tools, 22–24
RUP (Rational Unified Process)
 adopting. See Adoption approach, 4–9
 configuration. See Configuration (RUP Process Configuration)
as customizable process product. See RUP product
defining, 3–4
iterative development approach, 6–9
plug-ins. See Plug-Ins
process framework, 19–21
resources. See Resources
software process. See Software engineering process

S
SAD (Software Architecture Document)
critical use cases listed in, 104
Elaboration using, 319
overview of, 317–318
role of developer, 337, 356
Scenarios
defined, 387
 implementing/testing critical, 131–133
Scheduling, 107–108
Scope
costs of changes to, 37
generating in Inception, 98
iteration length and, 231
iteration planning and, 236
multiple iterations and, 95
project management and, 277
Scrum, 51–52
SDP (Software Development Plan)
 overview of, 278–279
project manager developing, 281, 283
SEEA (Software Engineering Environment Authority), 276
SEI CMM (Capability Maturity Model), 54–56
SEI CMMI, 55–56
SEPA (Software Engineering Process Authority), 276
Sequence diagram, 345
Simplification, architectural, 322
Smoke tests, 376–377
Software Architecture Document. See SAD (Software Architecture Document)
Software development approach
defining RUP, 3
development cycles, 165–167
guidelines for, 33–35
iterative development and, 6–9
underlying principles of, 4–6
Software Development Plan. See SDP (Software Development Plan)
Software development projects
deploying RUP in, 214–215
implementing major change, 219, 221
implementing moderate change, 217
Software Engineering Environment Authority (SEEA), 276
Software engineering process. See also Static Process Structure
 Dynamic Process Structure, 10–13
 executable software and, 33–35
 purpose of, 67
INDEX

RUP, 3
use cases and, 32–33
Software Engineering Process Authority (SEPA), 276
Software Process Engineering Metamodel (SPEM), 9
SOW (Statement of Work), 97
Specifications. See Standards
SPEM (Software Process Engineering Metamodel), 9
“Spirit of RUP.” See also Guidelines
incremental improvements and, 249
overview of, 5
paying lip service to, 251–253
role of analyst in keeping, 301–302
Staffing. See also Teams
building project plan and, 228–231
planning for, 235–236
possible degrees of iteration, 233
project plan including, 227
Stakeholders
agreeing on what to build, 96–102
business focus of, 250–251
defined, 292
detailing requirements and, 265
documenting requests from, 292–293
failure to set right expectations for, 254–256
multiple iterations and, 95
partnering and, 322
role of architect, 314
Standards
conforming to, 364–365
high-ceremony software and, 56–57
Statement of Work (SOW), 97
Static Process Structure, 13–18. See also Software engineering process
activities, 14–15
additional process elements, 16
artifacts, 15
defined, 10
disciplines, 17–18
overview of, 13
roles, 13–14
workflows, 16
Steps
in activities, 15
defined, 387
Stereotypes, 340
Structural RUP Plug-Ins
adopting RUP in project, 204
creating, 192–196
defined, 190
Stubs
component emulation with, 348
developing, 353
Subsystems
completing design, 152–153
consolidating, packaging identified classes, 127
defining, 122–123
ensuring architectural coverage, 128–129
Supplementary Specification, 337
Synchronization, 132
System, identifying key functionality, 102–104
System testing, 154–155
T
Targets, 224
Teams
avoiding functionally oriented, 253–254
guidelines for, 43–45
high-ceremony projects and, 54
incrementally adopting, 249
iterative approach and, 8–9, 59
multiple iterations and, 95
organizing around architecture, 145–147
pilot projects and, 213–214
principles of approach and, 6
progress and, 150
role of project manager, 274–276
software architect, 313
waterfall development process and, 6
Templates
adding, 18
customizing RUP, 184
defined, 16
Process Engineering Toolkit, 191
Terminology
creating glossary for project, 100
glossary for book, 383–387
Test approach, 376
Test assets, 378–379
Test automation architecture, 373
Test cases, 82, 372
Test cycles
 defined, 378–379
 overview of, 369
 role of tester, 377
Test evaluation summary, 371
Test-first design, 52, 355
Test-idea list
 overview of, 371–372
 RUP test philosophy and, 368
Test interface specification, 373
Test plans, 371
Test scripts, 372
Test stubs. See Stubs
Test suite, 372
Testability, 373
Testers, 359–381
 activities of, 373–379
 defining testing, 365–367
 key test artifacts, 371–373
 mission of, 359–365
 resources for, 380–381
 RUP testing philosophy, 367–370
 various roles of, 370–371
Testing
 adopting RUP and, 247, 252
 assessment and, 269–270
 beta, 162, 167–169, 174
 critical scenarios, 131–133
 defining, 365–367
 guidelines for, 46–47
 necessity of, 59
 performance and, 122
 Project Deimos, 80–81
 role of developer, 347–349, 354–355
 use cases in Elaboration, 118–119
Testing, in Construction
 emphasis, 141
 ensuring progress through, 150
 implementations, 153–154
 iterations, 143–144
 system, 154–155
Testing, in Transition
 metrics for, 170–171
 overview of, 168
 product acceptance and, 173–175
 role of analyst, 309
Thin RUP Plug-Ins
 adopting RUP using, 204
 creating, 191–192
 defined, 189
Threads, 130
Time-boxing
 activities on use cases, 101
 Inception phase objectives and, 98, 101
 overview of, 225–226
Tool automation
 achieving ROI through, 198, 208–209
 efficiency of development and, 60–61
 identifying tested code through, 348
 implementing in Inception, 109–110
 iterative approach and, 59
 testing critical scenarios, 132–133
 testing making insufficient use of, 366–367
Tool mentors
 adding to process, 18
 defined, 16, 387
 overview of, 23–24
 planning process and tool environment, 202–203
Tools. See also PTEPs (process and tool enhancement projects)
 configuration and process authoring, 20–22
 customizing environment for, 204
 evaluating effectiveness of, 206–207
 implementing in Inception, 109–110
 planning for, 200–203
 process delivery, 20, 22–24
 testing making insufficient use of, 366–367
Training
 adopting RUP and, 200–203
 customization and, 204
 final deployment and, 157
 iterative approach and, 8–9
 outlining RUP project and, 205–206
 users/maintainers, 171
Training resources
 analysts, 310
 developers, 357
 testers, 381
Transition phase, 161–176
 artifacts and, 90–91
 beta testing in, 167–168, 169
INDEX

construction and, 237–238
converting operational databases, 172
costs of changes during, 36
defined, 13, 387
deployment site preparation, 172
development cycle, 165–167
future product improvement and, 175
iterations and, 163–165, 232–234
launch-packaging preparations, 172–173
market rollout preparations, 173
metrics for, 169–171
misconceptions about, 87–88
multiple bids, 255–256
objectives/milestones of, 11, 162–163
overview of, 161–162
patch/beta releases, 169
process and tool enhancement projects at, 212
product acceptance testing, 173–175
Product Release Milestone of, 175–176
Project Deimos and, 72
risk mitigation in, 88–89
role of analyst in, 309
role of architect in, 320
role of tester in, 375
testing in, 168, 375
training users, 171
workflows, 89–90

U

UI (User-interface) prototypes
complementing use-case descriptions with, 301
developer reviewing, 336
developing, 304–307
risk reduction using, 30
UML models, 307
Unit testing, 153–154
Use case driven development, 31–32
Use case models
example specification, 302–303
fine-tuning, 304
guidelines for detailing, 300–302
role of analyst in developing, 296, 298–299
Use-case prototypes, 305–307
Use-case realizations. See also Design, use cases/components
adopting RUP incrementally, 247
overview of, 125–127

Use case views, 317
Use cases. See also Design, use cases/components
activities in Construction, 151–152
brainstorming sessions identifying, 100
common mistakes, 252
creating too many, 262–263
defined, 98, 387
detailing, 101–102, 118–119, 299–302
development choices, 91
developer implementing, 347
developing use-case model, 296–299
driving architecture with, 123–129
generating project scope, 98
identifying key system functionality, 102–104
iteration planning driven by, 142–144
prioritizing, 324
requirements of, 264, 336–337
Use patterns, 355–356
The User-Experience Modeling Plug-In for the RUP, 307
User-interface prototypes. See UI (User-interface) prototypes

Users
avoiding many late changes for, 261
beta deployment and, 157
delivering value to, 31–33
early deployments/feedback loops and, 156
generating project scope, 98
preparing for unexpected interactions of, 133–134
training for self-reliability, 171
Transition beta testing and, 167–168
Transition focus on, 162
Transition iterations and, 165

V

Value
guidelines for, 31–33
incrementally improving, 249
principles of, 4
View of Participating classes (VOPC), creating, 340–341

Views
Process Views, 22
types of architectural, 316–317
Vision
adopting RUP and, 247
Vision (continued)
agreeing on high-level, 96–97
altering, 91
architectural, 320–321, 324
defined, 387
developing, 293–296
producing document, 97
Project Deimos, 69–71, 75, 79–80
role of project manager, 281
Vitruvius, 311–312
VOPC (View of Participating classes), creating, 340–341
VRAPS model, 320–322

W
Waterfall development
CMM encouraging, 55
defining, 6
failure to adopt RUP and, 252
focus on inspections in, 269–270
iterative approach vs., 6–9, 59–60, 87–88
Low Ceremony/High Ceremony approach vs., 50–51
risk reduction profile for, 29
testing approach of, 367–368
Transition vs., 162
wrong expectations leading to, 255
Web resources
architects, 331
project managers, 285–286
Web services, 42
Web site, project, 187–189
Wideband Modified Delphi, 240–241
Workflow
defined, 13, 387
not fixing, 89–90
overview of, 16
Workflow Details, 16
Workload model, 373
Workshops, 98–99
Workspaces
configuration management, 352
pair programming and, 356–357

X
XP (Extreme Programming)
as agile process, 51–52
comparing RUP architecture with, 268