When faced with what they
believe is a problem, most
engineers rush into offering
solutions.

—ALAN M. Davis

The Trouble with
Requirements

1.1 First and Least of All . . .

Technical people often pay much more attention to an entity relationship
diagram or class diagram than to a requirements list.

2 THE TROUBLE WITH REQUIREMENTS

Each time a team of systems people sets out to provide a computer system for a group of
business people, they proceed through a set of activities that is fairly consistent:

+ Requirements gathering
+ Analysis

+ Design

+ Construction

* Testing

+ Deployment

+ Maintenance

The emphasis that the team gives each phase determines the direction and quality of
the resulting computer system. If one activity is not given its due, there will be predictable
problems with the project and the end product. In reality, however, certain activities usu-
ally receive more attention than do other activities. It is not easy to explain why this occurs,
but it does. The activities that are usually ignored or paid lip service are

+ Requirements gathering
+ Testing

+ Deployment

+ Maintenance

Traditionally, fewer vendors brandish flashy tools to accomplish these activities, and
maybe that’s why they are less interesting and less appealing to practitioners. Certainly, a
great deal of creativity and a wide range of skills are required by each activity, but the per-
ception has been that anything other than the big three—analysis, design, and construc-
tion—does not require much attention or imagination.

This perception is slowly changing, in no small part because vendors are building tools
to manage requirements (Rational RequisitePro, Borland Caliber RM, Telelogic DOORS),
automate testing (Segue SilkTest/SilkPerformer, Mercury Interactive WinRunner/LoadRunner,
Rational Robot/TeamTest/TestManager), and to facilitate rollout (Borland Deployment
Server/Java, Marimba Desktop/Mobile, BEA WebLogic). Maintenance has also received a
small boost with the need for Y2K remediation in recent years. We have opinions on ways
to improve the visibility, appeal, and effectiveness of these other underappreciated activi-
ties, but we’ll spare you those points until our next book.

We wrote this book because we care about requirements. In the first place, effective
requirements are pivotal to producing a system that meets the needs of the users. It’s no
exaggeration to say that the requirements themselves are the needs of the users.

Moreover, we have grown to care about requirements because we have seen more
projects stumble or fail as a result of poor requirements than for any other reason. Because
requirements are meant to drive the rest of systems development, any small misstep is
amplified into a major flaw by the time deployment is in progress. Correcting those flaws
becomes extremely time-consuming (read: expensive!) because so much work has been put
into heading in the wrong direction. Unfortunately, requirements do not translate neatly

1.1 FIRST AND LEAST OF ALL . .. 3

into one discrete module in a coded computer system. Sometimes, they are embodied in
principles that cut across many code libraries and components. Because requirements are
so abstract and so different from computer programs, it is difficult for people whose skills
lie in the concrete aspects of computer programming to get them right.

Traditionally, requirements gathering

+ Takes too long

+ Documents the wrong thing

+ Makes assumptions about activities that haven’t happened yet

+ Is often completed just in time to do it over again, thanks to swift and dramatic
changes in the business

A short time ago, we came across a requirements definition document that contained
more than 160 pages of “requirements.” The sheer volume of this requirements list was
enough to cause us to be filled with panic (or at least dread) at the thought of reading it and
attempting to put the pieces together. Table 1.1 contains a sample of the requirements list
(which is not very different from many other lists we’ve seen).

Table 1.1 Example of a Requirements List
Requirement Definition

6.7.1.4.2 The system must provide the capability to capture all of the cus-
tomer transactions for the fiscal year.

6.7.14.3 The system will provide restricted remote inquiry access (via dial-
in) to view images and data separately or simultaneously.

6.7.1.44 The system will barcode documents automatically prior to distri-
bution. At a minimum, the codes will be used to identify to which
work queue the documents should be routed within the organiza-
tion when they are returned.

6.7.1.4.5 When a workflow is initiated, the system must be able to prefetch
the documents that are in electronic image format by document
type or grouping of documents by process.

6.7.1.4.6 The system must create an entry in the journal file whenever a letter
is created.
6.7.1.4.7 The system must maintain a list of current, open work processes

and identify the work process to be executed and the workflow
queue for the process. When particular documents are scanned, the
system will determine whether there is a process open for that Social
Security Number (SSN). If there is an open process, the system will
route the document to the appropriate workflow queue, display the
work process script, and highlight the current work process.

4 THE TROUBLE WITH REQUIREMENTS

Don’t forget this list continues for another 159 pages!

We dissect these and other requirements statements later, but you can imagine how
difficult it would be to read large volumes of information at this level, much less to separate
the true requirements from trivialities. If you are reading this book, you have probably
lived this problem.

One reason that requirements documents are often so bad is that requirements gather-
ing frequently follows an unproductive route. For example, it may be ignored; in that case,
the development team jumps to a solution, resulting in a design based on unwritten and
not agreed-upon assumptions about how the system should work. Or requirements gather-
ing becomes an end in itself, and pages of “requirements” are gathered, documented, cross-
referenced, and distributed, resulting in analysis paralysis and cancellation of the project
before the rest of the lifecycle can even be started. Or the requirements may be dictated by
a single user, system owner, or high-ranking manager, resulting in a system that works only
for that person, to the dissatisfaction of everyone else. None of these methods produces sat-
isfactory input to the analysis activity.

Hundreds of application lifecycle activities definitions, taken from various methodol-
ogies and processes, litter our bookshelves and the Internet. In Table 1.2 we provide our
definitions of these terms because we build on these definitions to explain how to best
approach requirements gathering.

Table 1.2 Activity Definitions

Activity Name Description

Requirements Gather and document the functions that the application should

gathering® perform for the users in the users’ language and from the users’
perspective.

Analysis Begin with the requirements and build a logical solution that

satisfies the requirements but does not necessarily take the phys-
ical constraints into account.

Design Begin with the logical solution and change it to work effectively
with the physical constraints (network latency, database perfor-
mance, user interface, caching, availability, and so forth) and
produce specifications that can direct the construction effort.

Construction Use the physical solution to produce working code, which
involves making the lowest-level design decisions, writing code,
compiling, debugging, and testing by increment.

Testing Use the constructed application to produce a complete working
system by system testing, detecting, and recording issues, fixing
problems, and getting user acceptance of the result.

1.2 WHAT IS A REQUIREMENT? 5

Activity Name Description

Deployment Fit the tested application into the production environment by
deploying the code libraries to the destined machines, training
the users, and fine-tuning the business procedures surrounding
the new system.

Maintenance Administer and make changes to the working system in the pro-
duction environment to adapt to ongoing business changes
(legislative, competitive), technology changes (hardware, soft-
ware, and communications), physical changes (location, config-
uration), personnel (information technology [IT], user), system
issues (code bugs, design problems) and even office politics.

a. We consider requirements gathering a separate activity from analysis. This is perhaps contrary to other
prominent industry luminaries, who lump them together. Neither way is ultimately correct or incorrect; we
have simply chosen to separate these activities to emphasize their importance.

Our definitions of lifecycle activities are not taken from any specific methodology.
Instead, we've attempted to choose the most commonly used names and definitions for
each term. Notice we’ve chosen the word activity instead of the word phase. We do this
deliberately. In waterfall lifecycles, activities (or workflows), and phases are synonymous.
However, activity relates to something that a person or group does. Phase implies specific
start and stop times, dependencies, and a sequence. With iterative/incremental lifecycles,
on the other hand, phases and activities are quite different. (We explain our approach to
iterative/incremental lifecycles in Chapter 7.) Activities are done iteratively and incremen-
tally, but phases are simply project management milestones that indicate a number of
increments or a natural break in the lifecycle. For example, the Rational Unified Process
(RUP) has the following workflows (activities): business modeling, requirements, analysis
and design, implementation, test, deployment, configuration/change management, project
management, and environment. It also has the following phases: inception, elaboration,
construction, transition, and evolution. We see most methodologies moving in the same
direction as the RUP to accommodate developers’ as well as project managers’ viewpoints.

1.2 What Is a Requirement?

Requirements are the effects that the computer is to exert in the problem
domain, by virtue of the computer’s programming.

—BEeNjAMIN L. KoviTz

A requirement is something that a computer application must do for its users. It is a specific
function, feature, quality, or principle that the system must provide in order for it to merit

6 THE TROUBLE WITH REQUIREMENTS

its existence. Requirements constitute part of the scope of a software development project.
Add a few requirements, and the scope increases; take some away, and the scope decreases.
The requirements also dictate how the system should respond to user interaction. It should
do specific things when poked or prodded by the user in a certain way.

Requirements often seem abstract and intangible, especially to software developers.
Requirements and design tend to blur together in a software person’s brain until they
become indistinguishable. However, it is crucial to keep requirements and design separate.
Following are some of the ways IT people typically get off track with requirements:

+ Design considerations—Anything that relates to how the system should operate,
rather than what it needs to accomplish, is design. Design should not be part of
requirements.

+ Vagueness—If a requirement does not contribute positively to shaping the applica-
tion design, it is too vague to be useful.

* The use of computer industry language—Requirements must always be phrased in the
users’ language. Jargon is OK as long as it’s the users’ jargon!

* Relating to the business goals—Every requirement must clearly relate to the goals of
the businesspeople.

For clarification of this thorny issue, let’s look again at the unfortunate requirements
shown earlier in Table 1.1. This time let’s look at them in detail and try to identify those
things that do not constitute high-quality requirements.

The system must provide the capability to capture all of the customer transactions for
the fiscal year.

This requirement is too vague. How could it translate into a valuable constraint on the
design of an application? It implies that the fiscal year has some impact on how customer
transactions are organized, but we are not sure what impact. In fact, what is a “customer
transaction”? We understand that this system has some type of data entry, but that must be
stated more specifically. Maybe this is a suggestion about volume, meaning that old trans-
actions can’t be archived until they are a year old, but that interpretation is a stretch from
looking at this requirement.

The system will provide restricted remote inquiry access (via dial-in) to view images
and data separately or simultaneously.

Saying “restricted” access is OK, but details about the restriction (who can, who can’t)
must be stated clearly in this context. Also vague is the reference to remote inquiry. How
remote? Saying “remote access” when referring to mobile employees working in the field
but still within a couple of miles of the office is one thing—but talking about worldwide
access is yet another. Implications on the system design and architecture could be huge.

1.2 WHAT IS A REQUIREMENT? 7

The system will barcode documents automatically prior to distribution. At a mini-
mum, the codes will be used to identify to which work queue the documents should be
routed within the organization when they are returned.

This requirement makes several technical assumptions concerning the design. Barcod-
ing is a solution to a problem, not a requirement. This system probably needs a way to
identify each document uniquely, but it doesn’t have to be barcodes. If all the existing sys-
tems use document barcoding (not the case with this system), it would make sense to write
a nonfunctional requirement that states, “Unique identification of all documents will be
done through barcoding.” What’s the difference? By embedding the barcoding assumption
in various functional requirements, you make it difficult for someone to change the identi-
fication method from barcoding to glyphs, optical character recognition (OCR), or some
other technology, thereby reducing your ability to respond to user needs discovered later in
the process.

Another sticky point in this requirement is the reference to work queues. This seems to
make an assumption about a workflow-oriented system. Workflow tools are solutions, not
requirements. A better way to put it might have been, “At a minimum, the unique identifi-
cation will ensure routing to a specific worker in the organization when the documents are
returned.”

When a workflow is initiated, the system must be able to prefetch the documents that
are in electronic image format by document type or grouping of documents by process.

Look at the reference to a workflow. Our suspicions were right! The requirements doc-
ument has already specified a workflow solution in its requirements. Actually, this whole
entry is suspicious. It seems to be saying that we must cache documents by two different
criteria: by type or by process. The criteria are good requirements, but the caching (or
prefetching) is really a solution to address performance problems and probably is not a
requirement in itself.

The system must create an entry in the journal file whenever a letter is created.

This requirement assumes the presence of a journal file, which has entries put into it
when a letter is created. This requirement seems focused on the front end (“do this”)
instead of the back end (“in order to get this”). Why put entries into a journal file? You
might do that so that you could create a list of all the letters that were created, when, and by
whom. You really want the ability to audit letters written. Looking at it from the back end
actually makes for a better, clearer requirement. You could create a journal file, but don’t
think about that until design!

3 THE TROUBLE WITH REQUIREMENTS

The system must maintain a list of current, open work processes and identify the work
process to be executed and the workflow queue for the process. When particular doc-
uments are scanned, the system will determine whether there is a process open for that
SSN. If there is an open process, the system will route the document to the appropriate
workflow queue, display the work process script, and highlight the current work process.

Again, this requirement seems more focused on the how than the what. Rather than
look at the different steps a system must go through, it should clearly document the end in
mind. Here is our rewrite for this requirement: “When a new document image is brought
into the system, it should be routed to the worker who has the account open for the same
SSN as the new document and should be made obvious to that worker. If no worker has an
open account, the document should be made available to any worker.”

You will also see that none of the requirements in our list are linked to a business per-
son. It would be very difficult to pinpoint “who cares” about each of these requirements.
Who are the computer users who will gain value from these requirements? The answers to
these questions are not clear from these requirement statements.

But why not include design in requirements? Why do we keep harping on keeping
design out of requirements?

There are several reasons. First, skill sets for a development project are matched to the
activity performed. Therefore, the people who are gathering requirements probably have
skills that are not suited to design or development. Furthermore, the designers/developers
may not have the skills to conduct good quality user interviews and requirements planning
sessions. It is also important to keep these activities separate because the design ultimately
must be based on the requirements of the business.

Documenting requirements is an effort in understanding the problem at hand.
Designing is the activity of solving the problem. The solution for the problem must come
after the problem has been identified, documented, understood, and agreed on.

This can be tricky, especially in an iterative/incremental lifecycle. Perhaps a more accu-
rate way to state our rule is that no system, subsystem, or increment should proceed into
design until the requirements for that system, subsystem, or increment have been identified,
documented, and understood. (Clumsy sentence structure, but good advice.) When design
precedes requirements, or supplants them, the system takes on requirements of its own—
requirements that are neither documented nor representative of the users’ needs. The end
result can be a wasted design effort, an unusable system, missed milestones, and unhappy
users. Not knowing the problem that your design is solving is dangerous business. It is
always advisable (if difficult) to define the problem completely before designing.

Another reason to keep design out of requirements gathering is related to the team
environment. If a group is designing a system with no documented requirements, it is likely
that group members will be working with different goals in mind. Because they do not have

1.2 WHAT IS A REQUIREMENT? 9

a common document from which to begin, they form the requirements picture in their
own minds and use that to formulate their designs. These designs almost certainly will be
incompatible and overlapping, causing integration problems, skipped requirements, scope
creep, schedule issues, and unhappy users.

1.2.1 Functional Requirements

Without requirements, there is no way to validate a program design—
that is, no way to logically connect the program to the
customer’s desires.

—BENjAMIN L. KoviTz

Functional requirements are what the users need for the system to work. Functional
requirements are functions and features. These are the requirements we typically think of
when we describe systems.

Here are some sample functional requirements for an order entry system:

+ The system shall accept orders for products and provide notification to the entry
clerk as to whether there is sufficient inventory to fulfill the order.

+ The system shall use reorder points set by the inventory clerk to order new parts
automatically.

+ The system shall substitute comparable parts for parts that are out of stock as speci-
fied by the inventory manager.

+ The system shall produce a nightly report of the orders for the previous day.

Use cases, the subject of this book, are one way to document functional requirements.
We'll examine alternatives to use cases later in this chapter.

1.2.2 Nonfunctional Requirements

Nonfunctional requirements address the hidden areas of the system that are important to
the users even though they may not realize it. As you can probably judge by the name, these
requirements do not deal with the functionality of a system. Nonfunctional requirements
are the global, fuzzy factors or principles that relate to the system’s overall success. Many of
them end in -ility, so we sometimes call the collection of them the -ilities. An example of an
-ility is scalability: the ability of the system to handle an increased workload without signif-
icantly increasing the transaction processing time. (See Section 4.2.10 for details.)

10 THE TROUBLE WITH REQUIREMENTS

1.3 Requirements Gathering, Definition,
and Specification

Homeowner: “Hey, I wanted that foundation laid over there!”

Requirements gathering is the activity of bringing requirements together. Requirements def-
inition is the activity of documenting these requirements and organizing them into some-
thing understandable and meaningful. A requirements specification is the document that
results from the requirements activities.

As the first activity in the lifecycle of application development,' requirements gather-
ing sets the stage for the rest of the work. A shoddy or incomplete requirements specifica-
tion causes the analysis, design, and construction to be based on a shaky foundation—or
worse, based on a foundation built in the wrong place entirely. An appropriate and com-
plete requirements specification does nothing to ensure a successful implementation; how-
ever, it makes it possible.

1. Depending on the context, the first activity of application development might be business modeling.
The introduction of a new computer application often requires changes to the manual business processes
and the way the business is organized. If this is the case, business modeling is a required activity before re-
quirements gathering.

1.3 REQUIREMENTS GATHERING, DEFINITION, AND SPECIFICATION 11

Table 1.3 Probability of Project Failure

Function Points Probability of Termination Prior to Completion
100 6%
1,000 17%
10,000 45%
100,000 80%

Reprinted with permission. Source: Jones, C., Applied Software Measurement: Assuring Productivity
and Quality, Second ed. McGraw Hill, 1996.

Software development efforts fail much more often than they should. They fail in very
high percentages. The bigger they are, the more often they seem to fall.

Capers Jones, founder of Software Productivity Research and metrics guru of the soft-
ware industry, has done much interesting work on projects that fail. Table 1.3 shows that
large projects fail in large numbers and small systems fail in small numbers.

The more complex the system, the larger the effort; the larger the effort, the more
likely it is to fail. The major difference between developing systems 20 years ago and doing
it today is that change is much more pervasive now. Changes to business processes and
rules, user personnel, and technology make application development seem like trying to
land a Frisbee on top of the head of a wild dog. The moving targets of requirements, tools,
staff, and skills can make life difficult under the bright spotlight of an ongoing software
project. The frequency of change means that systems must be built differently than they
were before. They must be flexible enough so that changes can be made on-the-fly to
requirements, design, code, testing, staff, and processes. The iterative/incremental lifecycle
can address these issues because it accepts that each activity must be repeated multiple
times to accommodate change even after the subsequent activities have started.

Software systems are more complex than most other engineering projects human
beings undertake, but does that mean we’re destined to produce overdue, poor-quality sys-
tems that don’t last? We believe there are steps the industry can take to reverse this trend. If
we focus on the root problems in software development and address them with high-quality
processes and tools, we can make a real difference in producing more successful, on-time
software that is resilient to change throughout its lifetime. For example, object orientation,
when applied correctly, can address many of the issues of flexibility and extensibility in
design and code for computer systems. It can also lessen the problems where maintenance
of changes in one area cripples another area. Automated test tools can help address the
massive test effort associated with iterative/incremental development. But how do we
address requirements?

12 THE TROUBLE WITH REQUIREMENTS

1.4 The Challenges of Requirements Gathering

If requirements gathering were easy, we wouldn’t need to write a book about it. Following
are the main challenges that we’ve observed in the process.

1.4.1 Finding Out What the Users Need

Everyone knows how to do this: “If you want to know what they want, just go ask them.”
When referring to users of a computer system, though, this advice is not very sound. Users
do not know what they want, because the question—what will you want in your new com-
puter system?—is so complex that users can’t be expected to answer it. There are too many
variables.

Once you are using new business procedures

and

your job has changed

and

the business your company is in changes

and

you are learning a brand-new computer application

how would you like it to work?

Users have much more on their minds than your computer application, including
their own day-to-day responsibilities. The struggle between users’ current responsibilities
and their involvement in shaping a new system is legendary. Steve McConnell, in his book
Rapid Development (McConnell 1996), gives us a number of ways that users can inhibit the
process of requirements gathering:

+ Users don’t understand what they want.

+ Users won’t commiit to a set of written requirements.

+ Users insist on new requirements after the cost and schedule have been fixed.
+ Communication with users is slow.

Users often do not participate in reviews or are incapable of doing so.

Users are technically unsophisticated.

+ Users don’t understand the software development process.

+ And the list continues.

This list makes users sound like some kind of beasts that rise from the muck to inter-
fere with our quest to develop applications. Of course, they’re not. There is simply a tug-of-
war between what the users need to concentrate on currently and how you need them to
participate in helping you develop the application.

1.4 THE CHALLENGES OF REQUIREMENTS GATHERING 13

One defense against the struggle for users’ time and attention during requirements
gathering is simply to concentrate on establishing relationships with your users. The stronger
the personal relationships between the analysts and the users, the more likely it is that the
users will make the time for questions, meetings, and debates.

Another defense is to work on the visibility of the project. If senior executives in the
users’ organizations are aware of the system implementation and are touting its impor-
tance, it is more likely that the profile of the application among your users will be high
enough to encourage them to attend requirements sessions and interviews, and to partici-
pate. They need to know that this effort is not just going to be another flash in the pan.
Finally, it’s important to be respectful of their time. To create the fewest disturbances possi-
ble, batch your questions and interviews together.

1.4.2 Documenting Users’ Needs

As we said earlier, documenting users’ needs is called requirements definition. Creating this
documentation and then confirming it with them is a difficult process. This book is largely
dedicated to making this process easier and clearer for all parties.

The challenge of documenting requirements with traditional techniques is that there
are often no real checks and balances. It is hard to tell whether a requirement has already
been documented, perhaps in a different way or with a conflicting result. It is also hard to
see what’s missing.

1.4.3 Avoiding Premature Design Assumptions

Premature design assumptions tend to creep into every requirements specification, espe-
cially if they’re prepared by designers-at-heart. This also tends to happen if the people gath-
ering the requirements don’t trust the designers and want to tell them how the system
should be designed so that the designers won’t mess it up. This tends to happen, in our
experience, when the developers are off-site and removed from the requirements gatherers
and users. It also happens when the requirements analysts do not trust the designers and
developers to make the right decisions later.

1.4..4 Resolving Conflicting Requirements

If requirements, big and small, are listed one after another in a list, as we showed in Section
1.1, there can be requirements in different places of the list that say opposite things. To
combat this problem, you need a built-in mechanism to prevent these conflicts. You can
use something with more structure than a list, and you can incorporate reviews when con-
flicts are identified.

14 THE TROUBLE WITH REQUIREMENTS

1.4.5 Eliminating Redundant Requirements

Redundant requirements are not as bad as conflicts, but they can be confusing if they say
almost the same thing, but not quite. They also add to the volume of the requirements,
which can be its own problem.

1.4.6 Reducing Overwhelming Volume

The greater the volume of the requirements specification, the less likely it is that the devel-
opment effort can succeed. The volume must be reduced in one or all of the following ways:

+ Remove conflicts.

+ Remove redundancy.

+ Remove design assumptions.

+ Find commonality among requirements and abstract them to the level that makes
the most sense for the users.

+ Separate functional from nonfunctional requirements.

1.4.7 Ensuring Requirements Traceability

When you're gathering requirements, the main thought that should be going through your
mind is, Am I documenting things that will be understandable to the users and useful to
the designers? Requirements must be traceable throughout the lifecycle of development.
You should be able to ask any person in any role the questions in Table 1.4.

Table 1.4 Traceability Defined by Role

Role Traceability

Analyst/designer What requirements does this class on this class diagram
relate to?

Developer What requirements does the class you’re programming
relate to?

Tester Exactly which requirements are you testing for when

you execute this test case?

Maintenance programmer What requirements have changed that require you to
change the code that way?

Technical writer What requirements relate to this section of the user
manual?
Architect What requirements define what this architectural

component needs to do?

1.5 ISSUES WITH THE STANDARD APPROACHES 15

Role Traceability

Data modeler What requirements drove the design of this entity or
database table/index?

Project manager What requirements will be automated in working code
in this iteration?

Unfortunately, these requirements traceability questions can rarely be answered in
today’s projects. But if they were, they would provide a solid audit trail for every activity in
development and maintenance, and they would describe why the activities are being done.
It would help prevent developer goldplating: the addition of system functionality that is not
required by the users and therefore does not tie in with any documented requirements.

Automated tools are beginning to address the requirements traceability problem, but
they’re only part of the picture. We still need a little old-fashioned people management to
maintain a requirements audit trail, which runs end-to-end throughout the lifetime of an
application.

1.5 Issues with the Standard Approaches

Not only are there issues with the documentation typically produced during requirements
gathering (the requirements list), but also there are often issues in the way the documenta-
tion is produced. This section looks at several common methods that can be used to bring
together requirements for an application.

1.5.1 User Interviews

Obviously, conducting user interviews is necessary when you're building a requirements
specification. A user interview normally focuses on users talking about how they do their
job now, how they expect it will change after the system goes into production, and the typ-
ical problems they encounter with the current process. The requirements analyst is usually
writing madly, trying to keep up with the users’ remarks and trying to think of the next
question to ask.

Often, when one interview with one user is complete and the next user is being inter-
viewed, requirements analysts notice that the two people have conflicting views on the
same process or business rule. Then, when people at various levels of management are
interviewed, the playing field becomes even more interesting. Conflicting views become a
multidimensional puzzle, with pieces that change their shape as the game proceeds. The
question might arise in the analyst’s mind, How can this company (or department) stay in
business and continue to be profitable if no one can agree on how things are run? The
answer is that the level of detail required to build a computer application is greater than the

16 THE TROUBLE WITH REQUIREMENTS

level of detail needed to run a business successfully. It is the only possible answer, given our
experience with numerous user departments that ran perfectly well even though every
employee gives different answers to the same questions.

1.5.2 Joint Requirements Planning Sessions

Joint requirements planning (JRP) sessions are similar to conducting all the user interviews
at the same time in the same room. All the people who will influence the direction of the
application are brought to one place and give their input into what the system will do. A
facilitator leads the group to make sure things don’t get out of hand, and a scribe makes
sure everything gets documented, usually using a projector and diagramming software.

A JRP is similar in structure to a joint application design (JAD) session except that the
focus is different. JAD sessions are focused on how the system will work, whereas JRP ses-
sions are focused only on what the system will do. But the processes are similar.

The people involved in JRP sessions are key representatives from a variety of interested
groups, or stakeholders: users, user management, operations, executives, regulatory agen-
cies (IRS, SEC, and so on), maintenance programming, and so forth. During the JRP ses-
sion, high-level topics, such as critical success factors and strategic opportunities, are the
first agenda items. Then the application’s functional and nonfunctional requirements are
identified, documented, and prioritized in the presence of everyone.

&

JUmT Req.mram .;-rTE P|annmq EN'H-I-I:'

The JRP session provides an opportunity to get input from
a number of stakeholders at the same time.

1.5 ISSUES WITH THE STANDARD APPROACHES 17

JRP sessions are valuable and can be significant timesavers for the requirements team.
As hard as it is to get all the interested parties into one room (preferably off-site), it can be
even harder to schedule time with each individual, given other distractions, interruptions,
and priorities.

Our main issue with JRP is the document produced. In most cases, the document is a
contract-style list of requirements—and you know how we feel about requirements lists.

An all-encompassing resource for successful JRPs is Ellen Gottesdiener’s book Require-
ments by Collaboration: Workshops for Defining Needs (Addison-Wesley, 2002).

1.5.3 Contract-Style Requirements Lists

The requirements list has its problems. In most other areas of the software development
lifecycle, we have evolved the documentation into effective diagrams along with text that is
elegantly structured and useful. Requirements have lagged behind this trend. The require-
ments list must be replaced by something with more structure and more relevance to users
and designers alike. We suggest that use cases, use case diagrams, and business rules replace
the traditional requirements list.

Table 1.5 shows another example of a requirements list that needs to be improved. We
have a few comments beside each requirement, but please feel free to add your own insights.

Table 1.5 More Requirements

Requirement Comment
The system will support client inquiries from four access Four access points are
points: in person, paper-based mail, voice communica- how; we should focus
tion, and electronic communication (Internet, dial-up, instead on who needs
and LAN/WAN). access from where.
The telephone system must be able to support an 800 An 800 number? Can’t
number system. use 888 or 877¢ Again,
what’s missing is who
needs what kind of

access from where.

The telephone system must be able to handle 97,000 calls Valuable statistics; this
per year and must allow for a growth rate of 15 percent one is actually pretty
annually. Of these calls it is estimated that 19 percent will good.

be responded to in an automated manner and 81 percent

will be routed to call center staff for response. Fifty per-

cent of the calls can be processed without reference to the

electronic copy of the paper file, and approximately 50

percent will require access to the system files.

continues

18

Table 1.5 continued

Requirement

For the calls that require access to system information,
response times for the electronic files must be less than
20 seconds for the first image located on the optical disk,
less than 3 seconds for electronic images on a server, and
less than 1 second for data files.

The telephone system must be able to support voice rec-
ognition of menu selections, touch-tone menu selec-
tions, and default to a human operator. The telephone
menu will sequence caller choices in order of most fre-
quently requested information to the least requested.

The telephone system must be able to provide a voice
response menu going from a general menu to a second-
ary menu.

The system must allow for the caller to provide address
information through a digital recording and to indicate
whether it is permanent.

The system must allow for the caller to provide address
information through voice recognition and to indicate
whether it is permanent.

The telephone system must be able to store and maintain
processor IDs and personal identification numbers to
identify callers and to route calls properly to the appro-
priate internal response telephone.

The telephone system must be able to inform callers of
the anticipated wait time based on the number of calls,
average duration of calls, and number of calls ahead of
them.

THE TROUBLE WITH REQUIREMENTS

Comment

Starts out nicely until we
mention “optical disk,”
which is a design
assumption. The
response times would be
good nonfunctional
requirements if they
weren’t about a design
assumption.

Pretty good one. Can
you find anything
wrong?

This seems to be trying
to provide a dumb
designer with some
pretty obvious advice.

“Through a digital
recording”? Who says?
This is a design
assumption.

Sound familiar? (It’s
redundant.)

Simplify it: “The system
must be able to identify
callers and route calls to
the appropriate internal
response telephone.”

Great!

1.5 ISSUES WITH THE STANDARD APPROACHES 19

Requirement Comment

The journal will contain entries for key events that have This is a design for the
occurred within the administration of an individual’s journal. Why have it?
account. The system will capture date, processor ID, and What is its purpose?

key event description. The system will store pointers to
images that are associated with a journal entry as well as
key data system screens that contain more information
regarding the entry.

If an individual double-clicks on an event in a member’s Double-click is a user
journal, the system will display the electronic informa- interface assumption.
tion and the images associated with the event.

The system will restrict options on the information bar This one has lots of user
by processor function. When an icon is clicked, the interface assumptions.
screen represented by the icon will be displayed and the

system will display appropriate participant information.

1.5.4 Prototypes

The prototype wave hit software development in the mid-1980s as fourth-generation lan-
guages became popular and usable. Prototypes are mock-ups of the screens or windows of
an application that allow users to visualize the application that isn’t yet constructed. Proto-
types help the users get an idea of what the system will look like, and the users can easily
decide which changes are necessary without waiting until after the system is built. When
this approach was introduced, the results were astounding. Improvements in communica-
tion between user groups and developers were often the result of using prototypes. Early
changes to screen designs helped set the stage for fewer changes later and reduced overall
costs dramatically.

However, there are issues with prototypes. Users with detail-oriented minds pay more
attention to the details of the screens than to the essence of what the prototype is meant to
communicate. Executives, once they see the prototype, have a hard time understanding
why it will take another year or two to build a system that looks as if it is already built. And
some designers feel compelled to use the patched-together prototype code in the real sys-
tem because they’re afraid to throw any code away.

Prototypes will always be a part of systems development. But they cannot be the one
and only requirements specification. They contain too much user interface design (which
can be distracting to users and designers), and they imply that more of the system is built
than is actually completed. They represent only the front end of the system—the presenta-
tion. The business rules are not usually represented unless the prototype is fully functional,
and this means that a lot of effort must go into the prototype. Prototypes should be used

20 THE TROUBLE WITH REQUIREMENTS

for what they are best at: user interface specification. This means that perhaps prototypes
should come along a little later than the bulk of the requirements work. Iterative/incremen-
tal lifecycles often reduce the need for prototypes, since the real application is available to
be viewed, commented on, and changed as it is developed (see Chapter 7).

1.6 Those Troublesome Requirements

The traditional tools and techniques used for gathering requirements have not served us
well. We usually get ahead of ourselves and start embedding design into our requirements
specifications. We spend either too little or too much effort. We create prototypes that are
helpful but are also distracting, and we create contract-style requirements lists that are dif-
ficult to use and don’t provide any checks or balances. There must be a better way.

