
1

PART I
Namespace Overviews

StdLibRefPrintVol1.book Page 1 Wednesday, February 4, 2004 11:03 AM

StdLibRefPrintVol1.book Page 2 Wednesday, February 4, 2004 11:03 AM

System

3

System

The System namespace is the root of all namespaces in the .NET Framework, containing
all other namespaces as subordinates. It also contains the types that we felt to be the most
fundamental and frequently used.

Basic Variable Types
The class Object is the root of the inheritance hierarchy in the .NET Framework. Every class
in the .NET Framework ultimately derives from this class. If you define a class without spec-
ifying any other inheritance, Object is the implied base class. It provides the most basic
methods and properties that all objects need to support, such as returning an identifying
string, returning a Type object (think of it as a class descriptor) to use for runtime discovery
of the object’s contents, and providing a location for a garbage collection finalizer.

The .NET Framework provides two kinds of types, value types and reference types.
Instances of value types are allocated on the stack or inline inside an object, which incurs a
lower overhead than using the managed heap. Value types are most often used for small,
lightweight variables accessed primarily for a single data value, while still allowing them
to be treated as objects in the inheritance hierarchy (for example, having methods). All
value types must derive from the abstract base class ValueType. Table 1 lists the value
types in the System namespace.

TABLE 1

Name Represents

Boolean Boolean value (true or false).

Byte 8-bit unsigned integer.

Char UTF-16 code point.

DateTime An instant in time, typically expressed as a date and time of day.

Decimal Decimal number.

Double Double-precision floating-point number.

Enum Base class for enumerations.

Int16 16-bit signed integer.

Int32 32-bit signed integer.

StdLibRefPrintVol1.book Page 3 Wednesday, February 4, 2004 11:03 AM

System

4

Sy
st

em

All objects that are not value types are by definition reference types. Creating an
instance of a reference type allocates the new object from the managed heap and returns a
reference to it, hence the name. Most objects are reference types. The class String is a ref-
erence type that represents an immutable series of characters. The class CharEnumerator
supports iterating over a String and reading its individual characters.

The System namespace also contains the abstract base class Array, which represents
a fixed-size, ordered series of objects accessed by index. It contains methods for creating,
manipulating, and searching for elements within the array. Programmers will generally
not use this class directly. Instead, their programming language will provide an abstraction
of it.

Attributes
The .NET Framework makes extensive use of attributes, descriptive pieces of read-only
information that a programmer can place in an object’s metadata. Attributes can be read by
any interested piece of code that has the required level of permission. Many attributes are
provided and used by the system. Others are defined by programmers and used for their
own purposes. All attributes derive from the abstract base class System.Attribute. The
attributes in Table 2 were felt to be common enough to occupy the System namespace.
Many other subordinate namespaces also define more specialized attributes.

TABLE 1 (continued)

Name Represents

Int64 64-bit signed integer.

SByte 8-bit signed integer.

Single Single-precision floating-point number.

TimeSpan Time interval.

UInt16 16-bit unsigned integer.

UInt32 32-bit unsigned integer.

UInt64 64-bit unsigned integer.

StdLibRefPrintVol1.book Page 4 Wednesday, February 4, 2004 11:03 AM

System

5

System

Utility Objects
The class Console provides functions for performing input and output to a console win-
dow. It’s useful for debugging and development, and any functionality for which a full
Windows interface is overkill.

The class Convert provides static methods for converting a variable of one base type
into another base type, such as Int32 to Double.

The class GC provides a connection to the garbage collector in the automatic memory
management system. It contains methods such as Collect, which forces an immediate
garbage collection.

The utility class Environment provides access to environment variables, and other
environment properties such as machine name.

The class MarshalByRefObject is the abstract base class for objects that communi-
cate across application domain boundaries by exchanging messages using a proxy. Classes
must inherit from MarshalByRefObject when the type is used across application
domain boundaries, and the state of the object must not be copied because the members of
the object are not usable outside the application domain where they were created.

The class Math provides access to mathematical operations such as trigonometric and
logarithmic functions.

The class Random provides methods that generate a sequence of random numbers,
starting from a specified seed. You should use specialized cryptographic functionality (in
the System.Security.Cryptography namespace) for random number generation for
cryptographic purposes.

The class Type is the basis for all reflection operations. Think of it as a class descriptor.
The class Version represents a dotted quad version number (major, minor, build,

revision). It is used in the utility functions that specify versioning behavior of assemblies.

TABLE 2

Attributes Meaning

AttributeUsageAttribute

Used in the definition of other attribute classes, specifying
the target types to which the other attribute class can be
applied (assembly, class, method, some combination, etc.).
Uses AttributeTargets enumeration.

CLSCompliantAttribute
Indicates whether a program element is compliant with the
Common Language Specification (CLS).

FlagsAttribute
Indicates that an enumeration can be treated as a bit field;
that is, a set of flags.

ObsoleteAttribute Marks the program elements that are no longer in use.

StdLibRefPrintVol1.book Page 5 Wednesday, February 4, 2004 11:03 AM

System

6

Sy
st

em

Interfaces
The System namespace defines a number of interfaces. An interface is a set of pure virtual
function definitions, which a class can choose to implement. You define an interface to
enforce a common design pattern among classes that are not hierarchically related. For
example, the IDisposable interface contains the method Dispose, used for deterministic
finalization. This provides a way to force an object to perform its cleanup code immediately
instead of when the garbage collector feels like getting around to it. Any class anywhere in
any inheritance hierarchy might reasonably need this behavior. However, most classes won’t
need this behavior, so it wouldn’t make sense to put it in the System.Object base class and
force all objects to implement it whether they needed it or not. Instead, a class that needs this
behavior implements the interface, ensuring that it follows the same syntactic rules as all
other objects that do so, without disturbing its inheritance relationships with its base classes.
The interfaces in Table 3 were felt to be common enough to occupy the System namespace.
Many other subordinate namespaces also define more specialized interfaces.

Delegates
The .NET Framework supports callbacks from one object to another by means of the class
Delegate. A Delegate represents a pointer to an individual object method or to a static
class method. You generally will not use the Delegate class directly, but instead will use
the wrapper provided by your programming language. The .NET Framework event sys-
tem uses delegates. The object wanting to receive the event provides the sender with a del-
egate, and the sender calls the function on the delegate to signal the event.

The .NET Framework supports asynchronous method invocation for any method on
any object. The caller can either poll for completion, or pass a delegate of the AsyncCall-
back class to be notified of completion by an asynchronous callback.

TABLE 3

Interface Meaning

IAsyncResult Represents the status of an asynchronous operation.

ICloneable
Supports cloning, which creates a new instance of a class with the
same value as an existing instance.

IComparable
Defines a generalized comparison method that a value type or class
implements to create a type-specific comparison method.

IDisposable Defines a method to release allocated unmanaged resources.

IFormatProvider Provides a mechanism for retrieving an object to control formatting.

IFormattable
Provides functionality to format the value of an object into a string
representation.

StdLibRefPrintVol1.book Page 6 Wednesday, February 4, 2004 11:03 AM

System

7

System

Exceptions
In order to provide a common, rich, easily programmed and difficult to ignore way of
signaling and handling errors, the .NET Framework supports structured exception han-
dling. A caller places an exception handler on the stack at the point at which he wants to
catch the error, using the try–catch syntax of his programming language. A called func-
tion wanting to signal an error creates an object of class System.Exception (or one
derived from it) containing information about the error and throws it. The CLR searches
up the call stack until it finds a handler for the type of exception that was thrown, at
which time the stack is unwound and control transferred to the catch block, which con-
tains the error-handling code.

The class System.Exception is the base class from which all exception objects derive.
It contains such basic information as a message provided by the thrower and the stack trace
at which the exception took place. The class System.SystemException derives from it,
and all system-provided exceptions derive from that. This allows a programmer to differen-
tiate between system-provided and programmer-built exceptions. The system-provided
exceptions in Table 4 were felt to be common enough to occupy the base System namespace.
Many more specialized exception classes live in subordinate namespaces.

TABLE 4

Exception Meaning

ApplicationException A non-fatal application error occurred.

ArgumentException One of the arguments provided to a method is not valid.

ArgumentNullException
A null reference is passed to a member that does not
accept it as a valid argument.

ArgumentOutOfRange-
Exception

The value of an argument is outside the allowable range
of values as defined by the invoked member.

ArithmeticException Error in an arithmetic, casting, or conversion operation.

ArrayTypeMismatch-
Exception

An attempt is made to store an element of the wrong type
within an array.

DivideByZeroException
An attempt was made to divide an integral or decimal
value by zero.

DuplicateWaitObject-
Exception

An object appears more than once in an array of synchro-
nization objects.

ExecutionEngineException
An internal error occurred in the execution engine of the
common language runtime.

StdLibRefPrintVol1.book Page 7 Wednesday, February 4, 2004 11:03 AM

System

8

Sy
st

em

TABLE 4 (continued)

Exception Meaning

FormatException
The format of an argument does not meet the parameter
specifications of the invoked method.

IndexOutOfRangeException
An attempt is made to access an element of an array with
an index that is outside the bounds of the array.

InvalidCastException Invalid casting or explicit conversion.

InvalidOperationException A method call is invalid for the object’s current state.

InvalidProgramException
A program contains invalid Microsoft intermediate lan-
guage (MSIL) or metadata. Generally this indicates a bug
in a compiler.

NotFiniteNumberException
A floating-point value is positive infinity, negative infinity,
or Not-a-Number (NaN).

NotSupportedException
An invoked method is not supported or not supported in
the current mode of operation.

NullReferenceException An attempt to dereference a null object reference.

ObjectDisposedException An operation is performed on a disposed object.

OutOfMemoryException
There is not enough memory to continue the execution of
a program.

OverflowException
An arithmetic, casting, or conversion operation in a
checked context results in an overflow.

RankException
An array with the wrong number of dimensions is passed
to a method.

StackOverflowException
The execution stack overflows by having too many pend-
ing method calls.

TypeInitialization-
Exception

A wrapper around the exception thrown by the type
initializer.

UnauthorizedAccess-
Exception

The operating system denies access because of an I/O
error or a specific type of security error.

StdLibRefPrintVol1.book Page 8 Wednesday, February 4, 2004 11:03 AM

System

9

System

Diagram
Object

Exception

ApplicationException

SystemException

ArgumentException

ArgumentNullException

ArgumentOutOfRangeException

DuplicateWaitObjectException

ArithmeticException

DivideByZeroException

OverflowException

NotFiniteNumberException

ArrayTypeMismatchException

ExecutionEngineException

FormatException

IndexOutOfRangeException

InvalidCastException

InvalidOperationException

ObjectDisposedException

InvalidProgramException

NotSupportedException

NotImplementedException

NullReferenceException

OutOfMemoryException

RankException

StackOverflowException

TypeInitializationException

UnauthorizedAccessException

Array

ExtendedNumerics

Delegate

MulticastDelegate

AsyncCallback

EventHandler

Attribute

AttributeUsageAttribute

ICloneable

System.Collections.IList

System.Collections.ICollection

System.Collections.IEnumerable

System.Runtime.Serialization.ISerializable NotStandardized

ICloneable

System.Runtime.Serialization.ISerializable NotStandardizedNotStandardized

StdLibRefPrintVol1.book Page 9 Wednesday, February 4, 2004 11:03 AM

System

10

Sy
st

em

CLSCompliantAttribute

FlagsAttribute

ObsoleteAttribute

ValueType

Enum

AttributeTargets

Boolean

Byte

Char

DateTime

Int16

Int32

Int64

SByte

TimeSpan

UInt16

UInt32

UInt64

Decimal

Double

Single

CharEnumerator

Console

Convert

Environment

EventArgs

GC

MarshalByRefObject

Random

String

System.Reflection.MemberInfo

ICloneable

IComparable

System.Collections.IEnumerator

ICloneable

ExtendedNumerics

ExtendedNumerics

ExtendedNumerics

Type

Version

Math ExtendedNumerics

Reflection

IComparable

IFormattable

IConvertible NotStandardized

IConvertible NotStandardized

IComparable

IConvertible NotStandardized

IComparable

IComparable

IComparable

ICloneable

System.Collections.IEnumerable

IConvertible NotStandardized

System.Refection.ICustomAttributeProvider NotStandardized

System.Refection.IReflect NotStandardized

IComparable

IFormattable

IConvertible NotStandardized

IAsyncResult

ICloneable

IComparable

IDisposable

IFormatProvider

IFormattable

StdLibRefPrintVol1.book Page 10 Wednesday, February 4, 2004 11:03 AM

31

PART II
Class Libraries

StdLibRefPrintVol1.book Page 31 Wednesday, February 4, 2004 11:03 AM

StdLibRefPrintVol1.book Page 32 Wednesday, February 4, 2004 11:03 AM

33

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

BCL System
ApplicationException

Summary
System.ApplicationException is the base class for all exceptions defined by applications.

Type Summary
 public class ApplicationException : Exception

 {

 // Constructors

 public ApplicationException ();

 public ApplicationException (string message);

 public ApplicationException (string message,

 Exception innerException);

 MS CF protected ApplicationException (SerializationInfo info,

 StreamingContext context);

 }

Description
This class represents application-defined errors detected during the execution of an appli-
cation. It is provided as means to differentiate between exceptions defined by applications
versus exceptions defined by the system. [Note: For more information on exceptions
defined by the system, see System.SystemException.]

[Note: System.ApplicationException does not provide information as to the
cause of the exception. In most scenarios, instances of this class should not be thrown. In

KC Designing exception hierarchies is tricky. Well-designed exception hierarchies
are wide, not very deep, and contain only those exceptions for which there is a pro-
grammating scenario for catching. We added ApplicationException thinking it
would add value by grouping exceptions declared outside of the .NET Framework,
but there is no scenario for catching ApplicationException and it only adds
unnecessary depth to the hierarchy.

JR You should not define new exception classes derived from Application-
Exception; use Exception instead. In addition, you should not write code that
catches ApplicationException.

Object

Exception

ApplicationException

ISerializable NotStandardized

StdLibRefPrintVol1.book Page 33 Wednesday, February 4, 2004 11:03 AM

ApplicationException System

ApplicationException Class

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

34

cases where this class is instantiated, a human-readable message describing the error
should be passed to the constructor.]

Example
The following example demonstrates catching an exception type that derives from
ApplicationException. There is, however, no valid scenerio for catching an Appli-
cationException type.

using System;

using System.Reflection;

namespace Samples

{

 public class ApplicationExceptionSample

 {

 public static void Main()

 {

 try

 {

 Type t = typeof(string);

 MethodInfo m = t.GetMethod("EndsWith");

 string s = "Hello world!";

 object[] arguments = {"world!", "!"};

 Console.WriteLine(m.Invoke(s, arguments));

 }

 catch(ApplicationException e)

 {

 Console.WriteLine("Exception: {0}", e);

 }

 }

 }

}

The output is

Exception: System.Reflection.TargetParameterCountException: Parameter count mismatch.

 at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj, BindingFlags

invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean

isBinderDefault, Assembly caller, Boolean verifyAccess)

 at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj, BindingFlags

invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean

verifyAccess)

 at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags

invokeAttr, Binder binder, Object[] parameters, CultureInfo culture)

 at System.Reflection.MethodBase.Invoke(Object obj, Object[] parameters)

 at Samples.ApplicationExceptionSample.Main() in C:\Books\BCL\Samples\System\

ApplicationException\ApplicationException.cs:line 16

StdLibRefPrintVol1.book Page 34 Wednesday, February 4, 2004 11:03 AM

35

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

BCL System
ArgumentException

Summary
Represents the error that occurs when an argument passed to a method is invalid.

Type Summary
 public class ArgumentException : SystemException,

 ISerializable

 {

 // Constructors

 public ArgumentException ();

 public ArgumentException (string message);

 public ArgumentException (string message,

 string paramName);

 CF public ArgumentException (string message,

 string paramName,

 Exception innerException);

 public ArgumentException (string message,

 Exception innerException);

 MS CF protected ArgumentException (SerializationInfo info,

 StreamingContext context);

 // Properties

 MS CF public override string Message { get; }

 CF public virtual string ParamName { get; }

 // Methods

 MS CF public override void GetObjectData (SerializationInfo info,

 StreamingContext context);

 }

Description
System.ArgumentException is thrown when a method is invoked and at least one of
the passed arguments does not meet the method’s parameter specification.

Object

Exception

SystemException

ArgumentException

ArgumentNullException

ArgumentOutOfRangeException

DuplicateWaitObjectException

ISerializable NotStandardized

StdLibRefPrintVol1.book Page 35 Wednesday, February 4, 2004 11:03 AM

ArgumentException System

ArgumentException Class

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

36

[Note: The Base Class Library includes three derived types: When appropriate, use
these types instead of System.ArgumentException.]

Example
using System;

namespace Samples

{

 public class ArgumentExceptionSample

 {

 public static void Main()

 {

 try

 {

 string s = "one";

 s.CompareTo(1);

 }

 catch(ArgumentException e)

 {

 Console.WriteLine("Exception: {0}", e);

 }

 }

 }

}

The output is

Exception: System.ArgumentException: Object must be of type String.

 at System.String.CompareTo(Object value)

 at Samples.ArgumentExceptionSample.Main() in C:\Books\BCL\Samples\System\

ArgumentException\ArgumentException.cs:line 12

StdLibRefPrintVol1.book Page 36 Wednesday, February 4, 2004 11:03 AM

37

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

BCL System
ArgumentNullException

Summary
Represents the error that occurs when an argument passed to a method is invalid because
it is null.

Type Summary
 public class ArgumentNullException : ArgumentException

 {

 // Constructors

 public ArgumentNullException ();

 public ArgumentNullException (string paramName);

 public ArgumentNullException (string paramName,

 string message);

 MS CF protected ArgumentNullException (SerializationInfo info,

 StreamingContext context);

 }

BA This class goes down in the API design hall of shame. ArgumentNullExcep-
tion does not follow the exception constructor pattern given in the Design Guide-
lines Specification, which says the constructor overloads should include at least:

public XxxException ();

public XxxException (string message);

public XxxException (string message, Exception inner);

The rationale for violating this guideline was that the parameter name would be much
more commonly specified than the message text. However, because nearly every

continued

Object

Exception

SystemException

ArgumentException

ArgumentNullException

ISerializable NotStandardized

StdLibRefPrintVol1.book Page 37 Wednesday, February 4, 2004 11:03 AM

ArgumentNullException System

ArgumentNullException Class

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

38

Description
[Note: System.ArgumentNullException is thrown when a method is invoked and at
least one of the passed arguments is null and should never be null. System.Argument-
NullException behaves identically to System.ArgumentException. It is provided so
that application code can differentiate between exceptions caused by null arguments and
exceptions caused by non-null arguments. For errors caused by non-null arguments, see
System.ArgumentOutOfRangeException.]

other exception in the system does follow the pattern, the usual result is that the force
of habit wins out. Developers commonly make this mistake:

throw new ArgumentNullException (“must pass an employee name”);

Rather than:

throw new ArgumentNullException (“Name”, “must pass an employee name”);

This mistake means that we end up with an error message such as this one:

Unhandled Exception: System.ArgumentNullException: Value cannot be null.

Parameter name: “must pass employee name”

Lesson learned: Just follow the pattern.

JR In addition to Brad’s comments, a properly designed exception class should
also allow for serializability. Specifically, this means that the class should have the
System.SerializableAttribute applied to it and the class should implement
the ISerializable interface with its GetObjectData method and special constructor.
These two methods should serialize/deserialize any fields in the class and be sure to
call the base class methods so that any fields in the base class are also serialized/
deserialized. If the exception class is sealed, the constructor can be marked private;
otherwise, mark the constructor as protected. Since GetObjectData is an interface
method, mark it as public.

StdLibRefPrintVol1.book Page 38 Wednesday, February 4, 2004 11:03 AM

System ArgumentNullException

ArgumentNullException Class

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

39

Example
using System;

namespace Samples

{

 class ArgumentNullExceptionSample

 {

 public static void Main()

 {

 String[] strings = null;

 String separator = " ";

 try

 {

 String s = String.Join(separator, strings);

 }

 catch(ArgumentNullException e)

 {

 Console.WriteLine("Exception: {0}", e);

 }

 }

 }

}

The output is

Exception: System.ArgumentNullException: Value cannot be null.

Parameter name: value

 at System.String.Join(String separator, String[] value)

 at Samples.ArgumentNullExceptionSample.Main() in C:\Books\BCL\Samples\System\

ArgumentNullException\ArgumentNullException.cs:line 13

StdLibRefPrintVol1.book Page 39 Wednesday, February 4, 2004 11:03 AM

