
Chapter 3 introduced Dreamweaver and many of its editing tools. It also showed you

how to create a site. In this chapter we’ll dive into ASP.NET Web Forms and the con-

trols used in them. We’ll start out by discussing what Web Forms are and how con-

trols can turn them into dynamic pages. Then we’ll create a Web Form and then add

controls to see how they perform. Later in the chapter, we’ll get into more advanced

stuff, so that by the end of the chapter we’ll be writing code to programmatically alter

the contents of our Web Form.

67

Introduction
to ASP.NET
Web Form Controls

4
Intro

du
ctio

n to
 A

SP.N
ET

W
eb Fo

rm
 Co

ntro
ls

Preparing Our Web Site
A Web Form is a potentially dynamic Web

page. It doesn’t have to contain dynamically

created content, but it usually does. One use

of a dynamic Web Form is a Web page that

displays up-to-date items from a sales cata-

log. Web Forms are similar to HTML pages

in that they contain HTML code and

JavaScript. However, instead of ending with

the .html extension, they end in the .aspx

extension. More important, they serve as

containers for most other parts of ASP.NET,

such as controls. Controls are the building

blocks of dynamic content, and that’s what

we’ll be adding to the Web Form we create in

this chapter. To process the logic that drives

the dynamic content, we’ll include blocks of

code, another differentiating factor from

plain HTML Web pages, which don’t contain

these code blocks.

Let’s start fresh by creating a new site in

Dreamweaver to feature our Web Forms.

Since we learned in detail how to create a

new site in Chapter 3, we’ll use the Site

Definition wizard to speed the process here.

To create a site:

1. From the Site drop-down menu at the

top of the Dreamweaver interface, choose

New Site (Figure 4.1).

This opens the Site Definition wizard.

Make sure it’s in Basic mode (Figure 4.2).

68

Chapter 4
Pr

ep
ar

in
g

 O
u

r
W

eb
 S

it
e

Figure 4.1 Site drop-down menu.

Figure 4.2 In Step 1 of the Site Definition wizard, you
name your site.

2. Name the site “Chpt4_WebForms” and

click Next.

The wizard will present some new ques-

tions about your server technology pref-

erence (Figure 4.3).

3. Click the second radio button to indicate

that you want to use a server technology.

For this book, we’ll use ASP.NET C#, so

pick that as your server technology. Click

Next to proceed to the next questions.

4. Accept the default answers for the rest of

the screens the wizard presents.

At the conclusion, the wizard will show

a summary of the settings you’ve chosen

(Figure 4.4).

5. Confirm your entries, then click Done.

This will create the site according to the

settings you’ve specified.

69

Introduction to ASP.NET Web Form Controls
Preparin

g
 O

u
r W

eb S
ite

Figure 4.3 In Step 2 of the Site Definition wizard, you
pick ASP.NET C# as your server technology.

Figure 4.4 A summary of the settings you chose in the Site Definition wizard.

Building a Web Form
To start working with a Web Form and the

controls it contains, we’ll need to create

one first.

To create a new Web Form:

1. Choose New from the File drop-down

menu at the top of Dreamweaver.

The New Document dialog box opens

(Figure 4.5).

2. In the left pane of the dialog box’s

General tab, click Dynamic Page.

3. In the right pane, click ASP.NET C#.

4. Click the Create button to make the new

.aspx file.

For simplicity, we’re not checking the

box to make the new document XHTML

compliant.

5. Save the file with its default name.

Now that we have a Web Form, let’s start

working with it. Switch your view to show

Code and Design views simultaneously by

clicking the Show Code and Design Views

icon on the Document tool bar (Figure 4.6).

This will help you see what’s unique about a

Web Form and its controls (Figure 4.7).

The only real difference we see between this

page and an HTML page so far is in the code

of the page. At the top is a command, com-

monly referred to as a Page Directive, that

tells the Web server that the page is a C#

Web Form:

<%@ Page Language=”C#” ContentType=

”text/html” ResponseEncoding=

”iso-8859-1” %>

70

Chapter 4
B

u
il

di
n

g
 a

 W
eb

 F
o

rm

Figure 4.5 Create a new ASP.NET C# Web Form with
the New Document dialog box.

Figure 4.6 The Show Code and Design Views icon is
located on the Common tab of the Insert bar.

Figure 4.7 A newly created Web Form in split view,
with Code view on the top and Design view on the
bottom.

The Page Directive also specifies that the

resulting content should be HTML. Then

it states that the resulting page should be

encoded using iso-8859-1, which in English is

Western (Latin 1). This coding is the default;

the only time you might need to change it is if

you’re writing pages for other languages.

To embed controls in the Web Form, we’ll

need to first define the form layout. Doing so

involves inserting form tags, and then adding

form elements, which is very similar to how

you define the form layout for an HTML doc-

ument—with one exception, as you’ll see in

Step 4 in the following instructions.

To add a form element:

1. Start by making sure the Insert bar is open.

You can verify this by looking at the

Window drop-down menu found at the

top of Dreamweaver. There should be a

check mark next to the word Insert

(Figure 4.8).

The Insert bar’s default location is across

the top of Dreamweaver, just below the

menu bar where you found the Window

drop-down menu.

2. Click on the Web Form in Design view,

and then from the Insert bar, select the

Forms tab and click on the Form icon

(Figure 4.9).

This automatically inserts a form ele-

ment onto your page (Figure 4.10).

You’ll see the new HTML code for the

form element in the Code view of the

Web Form. Below that, in Design view,

you’ll see a red dotted line representing

the boundaries of the form.

Note: The Tag Editor starts if your cursor

is in Code view when you click the Form

icon to add a form to your Web page.

3. In the code of the Web Form, click just in

front of the form element’s name attribute.

continues on next page

71

Introduction to ASP.NET Web Form Controls
B

u
ildin

g
 a W

eb Fo
rm

Figure 4.8 You know the
Insert bar is open in
Dreamweaver when you
see a check next to its
listing in the Window
drop-down menu.

Figure 4.9 You click the Form icon on the Insert bar’s
Forms tab to insert a form element.

Figure 4.10 A Web Form with a form element in split
Code/Design view.

4. Now go to the Insert bar and click on the

ASP.NET tab (Figure 4.11). Then click

the Runat Server icon .

This inserts the command that tells the

Web server that the form element should

be available for server-side processing. It

looks like this:

<form runat="server" name=”form1”

method=”post” action=””>

This last step in the creation of a form ele-

ment for an ASP.NET Web Form is critical.

Controls need the runat=”server” attribute

setting to inform the Web server to process

them as ASP.NET controls. We’ll see exactly

what that means in a moment. But for now,

know that the most common error you’ll

likely make when building Web Forms is for-

getting to add the runat=”server” attribute

setting to a control.

At long last we’ll add a control to our Web

Form. In the next exercise, we’ll add an

asp:label control that’s handy for displaying

text. It won’t do anything dynamic right now,

but it will make clear what distinguishes a

control from a normal HTML tag.

To add a Label control:

1. Using the same Web Form we’ve been

working with so far, click inside the red

dotted area found in the Design view of

the Web Form.

2. Click the asp:label icon found in the

ASP.NET tab of the Insert bar.

This will start the Tag Editor for a label

control (Figure 4.12).

3. In the Tag Editor, set the label’s ID to

“lblMessage” and its Text to “Hello from

ASP.NET.” Click OK.

The Tag Editor closes and writes the code

for you (Figure 4.13).

72

Chapter 4
B

u
il

di
n

g
 a

 W
eb

 F
o

rm

Figure 4.11 The ASP.NET tab of the Insert bar displays
the Runat Server icon.

Figure 4.12 The Tag Editor for the lblMessage control.

Figure 4.13 The result of adding the lblMessage
control with the Tag Editor.

4. Preview the Web Form in your default

browser by saving the document and

pressing the F12 key.

Your browser should open and display

the text “Hello from ASP.NET.”

Let’s review what we just completed. After

adding an asp:label control to the Web Form,

we just previewed the text “Hello from

ASP.NET” in Design view. That makes per-

fect sense, since this control is called a Label.

In the code, however, you’ll notice a new tag

that doesn’t look quite like HTML but is very

close in syntax.

ASP.NET controls are defined using XML

(eXtensible Markup Language) coding stan-

dards, as is XHTML (or eXtensible HTML).

We chose earlier not to force the document to

be XHTML compliant, but that doesn’t mean

it can’t contain XML. To understand what

XML is, all you have to know is that it is text

that must follow a strict format for describing

information. Here, ASP.NET controls describe

the programmable objects the Web server

should create when processing the page.

Now, to see the new tag the asp:label control

created, go back to the browser you pre-

viewed your page with in Step 4 and view the

page’s source code. You don’t see the asp:label

control anywhere, do you? In its place you’ll

find the following code:

Hello from

ASP.NET

ASP.NET converted the asp:label control into

the appropriate HTML—in this case the

 tags—so that it could be rendered by

a browser.

It’s time to start looking into just what

makes up a control. We’ll also discuss why

we’d want to use one instead of simply writ-

ing the resulting HTML in the first place.

73

Introduction to ASP.NET Web Form Controls
B

u
ildin

g
 a W

eb Fo
rm

Building Dynamic Pages
Using Controls
There are lots of common uses for dynamic

pages. One might be to have an online cata-

log for your products that dynamically

checks the current price and quantity in your

warehouse every time one of your customers

visits the page. This is just one example; the

list of possibilities is endless. You probably

already have an idea of what you want to

achieve since you’re reading this book.

You may remember from Chapter 1 that his-

torically, dynamic pages mixed the program-

ming code with the HTML markup code,

which has a number of disadvantages (see “A

New Paradigm” in Chapter 1 for more informa-

tion). ASP.NET uses controls like the asp:label

control we presented earlier to allow program-

mable elements to be intermixed with the

HTML markup code without mixing actual

programming code with the HTML. Tools like

Dreamweaver MX then simply have to be con-

figured to know which HTML element each of

these controls represents in order to present

them graphically in Design view.

The runat=”server” attribute setting in our

controls tells the Web server that the control

is a candidate for the programming code to

manipulate. Then, once the Web server is done

running all the programming code, it sends to

the browser the HTML markup that the con-

trols represent. Since the program might have

manipulated the controls, the HTML sent to

the browser could have different values than

the controls had prior to execution.

To see this in action, let’s take the Web Form

we were just working on and make a dynamic

page. The element that makes the page

dynamic will involve the entry of a message

into a textbox that will display in the label

control when the user clicks on a button.

74

Chapter 4
B

u
il

di
n

g
 D

yn
am

ic
 P

ag
es

 U
si

n
g

 C
o

n
tr

o
ls

To create a dynamic page:

1. In the Web Form, click beside the text

“Hello from ASP.NET” in Design view.

2. From the Insert bar, click on the

ASP.NET tab, and then click the

asp:textbox icon .

The Tag Editor for the asp:textbox

control opens (Figure 4.14).

3. In the Tag Editor, set the ID to

“txtNewMessage” and the Text to

“New Message,” and click OK.

The Tag Editor closes and writes the

code for you.

4. Click beside the new text box in Design

view.

5. Then from the ASP.NET tab of the Insert

bar, click the asp:button icon .

The Tag Editor for the asp:button control

opens (Figure 4.15).

6. This time in the Tag Editor, set the ID

to “btnChangeMessage” and the Text to

“Change the Message,” and click OK.

The resulting page will have three com-

monly used controls. The code for them

will be in the Web Form’s Code view, and

the visual representation of them will be

in Design view (Figure 4.16).

7. We still have some additional code to

write in order to change the lblMessage

control’s text to what we enter into the

txtNewMessage control. In Code view,

click just before the </head> tag.

continues on next page

75

Introduction to ASP.NET Web Form Controls
B

u
ildin

g
 D

yn
am

ic Pag
es U

sin
g

 Co
n

tro
ls

Figure 4.14 The Tag Editor for the txtNewMessage
control.

Figure 4.15 The Tag Editor for the btnChangeMessage
control.

Figure 4.16 The code that results from adding three
common controls: asp:label, asp:textbox, and
asp:button.

8. From the Insert bar’s ASP.NET tab, click

the Page_Load icon to automatically

add the Page_Load function to the page.

It’ll look like this:

<script runat=”server”>

protected void Page_Load(Object Src,

EventArgs E)

{

if (!IsPostBack) DataBind();

}

</script>

You don’t have to understand this right

now—we’re about to change it.

9. Change the contents of the Page_Load

function to the following:

if(IsPostBack)lblMessage.Text =

txtNewMessage.Text;

You can view the results in Code view

(Figure 4.17).

10. Finally, save the document and press F12

to view your page in your default browser.

11. Try clicking the “Change the Message”

button. You’ll see the text displayed by

the asp:label control change to read

“New Message.” To change the text

again, you can change the value of the

asp:textbox control and click the button.

Now, admittedly, this Web Form doesn’t do

a great deal, but this shows how easy it is to

make a page dynamic.

76

Chapter 4
B

u
il

di
n

g
 D

yn
am

ic
 P

ag
es

 U
si

n
g

 C
o

n
tr

o
ls

Figure 4.17 The result of changing the Page_Load
function.

Now, let’s dive into the guts of the Web Form

to learn what’s really going on. As mentioned

earlier, the Web server looks at the page to

see if there are any elements on which it

needs to run code. It also runs any code con-

tained in the page. In our Web Form, for

instance, we used a built-in function called

Page_Load. Notice that this function resides

in a script block that also contains the

runat=”server” attribute. This attribute tells

the Web server to process the function

before sending the page to the client. Script

blocks without this attribute are assumed to

be executed on the client and are ignored by

the server.

The Page_Load function is automatically

called by the Web server when the page

is loaded for processing. The first line,

if(IsPostBack), checks if the page is in

post-back mode. A Web Form is considered

to be in post-back mode when it has already

been sent to the client’s computer and the

client has then done something to cause the

form to post back to the server. Therefore,

the first time the visitor opens the Web

Form, it’s not a post back. The next section,

“Handling Post Back,” discusses this in

more detail.

So the Page_Load function does nothing the

first time the page is visited; then when the

visitor clicks the button labeled Change the

Message, the form is submitted back to the

server. This time the Web server runs the

same Page_Load function, but it’s in post-

back mode. Therefore, the Text property of

the asp:label control is set to the value of the

asp:textbox’s Text property. Notice that now

we called Text a property, not an attribute.

The reason we call Text a property in the

function and an attribute in the markup is

that in the function we’re dealing with a pro-

grammable object and in the markup we’re

dealing with the XML markup describing

that object.

Handling Post Back
One of the biggest differences between ASP

and ASP.NET is that in ASP.NET, a Web

Form must post back to itself rather than

post to a different page.

Historically, developers posted to a different

page by setting the form’s action attribute.

Posting to a separate page used to be a

good idea because it made for a cleaner sepa-

ration of code from HTML. Now, because

ASP.NET handles events in the same Web

Form in which they’re raised, the form must

post back to the same page. Even if you set

the action attribute of the form to a

different page, the Web server finds the

runat=”server” attribute setting and over-

rides your action value.

The changes required to handle post back in

the same Web Form instead of a different

page are minimal. One of the nice things

about posting to the same page is that it

takes less code to process the data elements

such as the Querystring or form fields. (See

the sidebar “Form vs. Querystring Fields.”)

You saw that demonstrated in the previous

exercise, “To create a dynamic page.” There

was no need to look in the Request.Form

collection, as ASP developers would have

had to do to access the form data being

passed from the form. However, if you’re

stuck on using the Request.Form collection,

you can still use it.

77

Introduction to ASP.NET Web Form Controls
H

an
dlin

g
 P

o
st B

ack

78

Chapter 4
H

an
dl

in
g

 P
o

st
 B

ac
k

Form vs. Querystring Fields

Passing data back to the server is commonly done in one of two ways: via form field or

Querystring.

We’re all familiar with forms, because we’ve all had to enter information like our name into

text boxes when purchasing something online. Those text boxes are placed in between open-

ing and closing <form> tags in HTML, which makes them form fields. If you want to pass the

data about these text boxes back to the server, you’d need to make sure you set the form’s

method attribute to its default value of post. Using method=”post” means the form field values

will be retrieved from the Response.Form collection.

The technique of posting fields in a Response.Form collection is sometimes called the “put”

method. For example, say there was a text box named txtFirstName inside of a form, with the

form’s method attribute set to post. Then in the code of the page to which the form posted,

the value entered into the txtFirstName text box would be available by referencing the

Response.Form[“txtFirstName”] field.

On the other hand, we could have set the form’s method attribute to get. This attribute will

still pass the data about the text boxes back to the server; however, in the code of the page to

which the form posted, the value entered into the txtFirstName field will be available by refer-

encing the Response.Querystring collection, rather than the Response.Form collection. It

would look something like this: Response.Querystring[“txtFirstName”].

Posting fields in the Response.Querystring collection is usually referred to as the “get” method.

The main difference between the two posting methods is that form fields can’t be seen in a

URL, while Querystring fields can. Most of the time you’ll want to “put” fields, because then

the field values won’t be seen in the URL.This might be important, for example, if you need to

pass sensitive information, such as social security numbers.

However, if you want to make a hyperlink pass information on to the page it links to without

using a form at all, the “get” method of sending data to a page would be the perfect choice. For

example, you might want to list summary information about products and provide links to a

detail page for users to obtain more information about each product. Once a link is clicked,

the detail page is passed data that indicates which product was selected via the Querystring.

You won’t need <form> tags around your data when passing it in this way.

The URL would look something like this:

http://localhost/detail.aspx?ProductID=002411027

In the above example, we have a Web Form called detail.aspx and the Querystring field,

ProductID, is set to a value of 002411027.

The code for the URL can just be a normal hyperlink, followed by a question mark (‘?’) and

then the field name set to equal a value, just as we showed in the previous example:

 002411027

5. Now add the following line of code to the

Page_Load function, just above the code

you entered in the last list, “To create a

dynamic page.”

lblOldWay.Text = Request.Form

[“txtNewMessage”];

if (IsPostBack)lblMessage.Text =

txtNewMessage.Text;

Note that the label has a visible place-

holder in Design view (Figure 4.19).

6. Save the document and press the F12 key

to view your changes.

The lblOldWay element isn’t shown,

because it has no default value; but when

you click the button, it changes to the

text box’s value, too.

✔ Tip

� If a Request.Form variable doesn’t exist, it

will be null, rather than an empty string,

as it is the case in ASP.

If you looked at the source code of the page

generated by the Web server while you

were moving through the steps, you might

have noticed a hidden form field called

__VIEWSTATE. Don’t bother to look for it

now if you didn’t see it before. It’s really

just a bunch of encoded stuff only the server

understands. But what it’s doing is keeping

track of all your form field values so that

they maintain state between post backs to

the server. To remind you of what maintain-

ing state means, remember that each time

you visit a Web page, the server has no good

idea who you are or what you were doing

last. This statelessness is intrinsic to the Web

and something programmers have always

had to write code to get around. ASP.NET’s

__VIEWSTATE variable makes your life easier

by not requiring you to write program code

to maintain state anymore. It does it for you.

79

Introduction to ASP.NET Web Form Controls
H

an
dlin

g
 P

o
st B

ack

Figure 4.18 The Tag Editor for the lblOldWay control.

Figure 4.19 The result of adding the lblOldWay control
and setting its Text to the Request.Form collection’s
txtNewMessage field.

To use the Request.Form collection:

1. Once again, open up the same Web Form

you’ve been working with.

2. Click beside the button in the Design

view of the Web Form to set your inser-

tion point.

3. On the ASP.NET tab, click the asp:label

icon .

This opens its Tag Editor (Figure 4.18).

4. In the Tag Editor, set the ID to “lblOldWay”

but leave the Text field blank. Click OK to

close the Tag Editor and create the control.

Moving Between Pages
So how do you help your visitors navigate

to other pages on your site if you’re always

posting back to the same Web Form? The

answer is the Response.Redirect command.

First, handle the post back in your Web

Form. Then give the Response.Redirect com-

mand the URL of the next page you want the

visitor to go to, like this:

Response.Redirect(“NextPage.aspx”);

To increase performance there’s a second,

optional parameter you can add to the com-

mand. It determines whether the server

should halt processing the current page and

transfer immediately or whether it should

finish the page first. The Boolean value of

true halts processing and transfers immedi-

ately. That would look like this:

Response.Redirect(“NextPage.aspx”, true);

Transferring to a new page is when we really

have to start worrying about maintaining

state. The reason is that we won’t have that

handy __VIEWSTATE hidden form element

doing the work for us. It’s not available when

transferring between pages using the

Response.Redirect command.

In the past, when programmers posted to a

different page, hidden form fields were often

used to keep track of things such as the cur-

rent visitor’s ID number. Other options for

maintaining state are common as well. For

example, it’s still possible to post a form that

lacks the runat=”server” attribute to your

next page and gather those form values in

the same way we described in the previous

list, “To use the Request.Form collection.”

However, a better way to maintain state in

ASP.NET is to use session variables.

80

Chapter 4
M

o
vi

n
g

 B
et

w
ee

n
 P

ag
es

Session variables are a great way to store

data that only concerns an individual user

for the duration of time the user is interact-

ing with the Web site. Session variables are

commonly used in E-commerce sites for the

“shopping cart” feature, which stores items

the visitor wants to buy. Don’t let what you

may have heard in the past about session

variables put you off of ASP.NET’s version;

they’re flexible and they let you easily over-

come or minimize most of the problems

associated with session variables, such as

accessibility and performance. We’ll start

by using them in a simple way.

In the next list, we’ll illustrate how to create

and reference a session variable. Two Web

Forms will be created: the first we’ll use to

create a session variable to store a text value

and the second we’ll use to retrieve and dis-

play the session variable’s contents.

To use a session variable:

1. Create a Web Form as outlined earlier in

this chapter in “To create a new Web

Form,” and name it “SetSession.aspx.”

Make sure the page shows both Code

and Design views by clicking the Show

Code and Design Views icon .

2. Add a form element to it. Make sure to

set the runat=”server” attribute as we

did in “To add a form element.”

3. Now click inside the form’s red dotted

line to set your insertion point.

4. On the ASP.NET tab, click the asp:button

icon .

Its Tag Editor opens (Figure 4.20).

5. In the Tag Editor, set the ID to

“btnSetSessionVariable” and Text to

“Set Session Variable.”

6. In the page’s code, add the Page_Load

function by clicking the Page_Load icon

like we did in “To create a dynamic

page.” This time, replace the Page_Load

function’s contents with code to set a

session variable called “SampleVariable”

to the value “Session Variable Sample,” as

follows:

protected void Page_Load(Object Src,

EventArgs E)

{

Session[“SampleVariable”] =

“Session Variable Sample”;

}

7. On the line that follows the code we just

added, add the command to redirect to

a page called ReadSession.aspx (Figure

4.21).

Response.Redirect(“ReadSession.aspx”);

8. Now create the Web Form you’ll be redi-

recting to. Do it the same way you did in

Step 1, but name it “ReadSession.aspx.”

9. In the ReadSession Web Form you just

created, add an asp:label, setting its ID

to “lblSessionValue” (Figure 4.22). This

time a form element is not necessary.

10. Add the Page_Load function with code

that sets lblSessionValue’s Text property

to the session variable.

protected void Page_Load(Object Src,

EventArgs E)

{

lblSessionValue.Text =

Session[“SampleVariable”].ToString();

}

continues on next page

81

Introduction to ASP.NET Web Form Controls
M

o
vin

g
 B

etw
een

 Pag
es

Figure 4.20 The Tag Editor for the btnSetSessionVariable
control.

Figure 4.21 The code setting the SampleVariable
session variable and redirecting to the ReadSession
Web Form.

Figure 4.22 The Tag Editor for the lblSessionValue
control.

These instructions present a generic sce-

nario for using a session variable. Session

variables can be used to store almost any-

thing the programmer needs. However, Web

sites usually store things like the identifier

for the logged in user, the number of the

products the user is looking for more details

about, and so on. Typically, it’s best to try to

store just a small number of temporary but

reusable things that require little memory.

This is because session variables are stored

in the server’s memory by default. You easily

can change this default, however, by specify-

ing that the server store the session variables

in a database.

Then, also by default, an in-memory cookie

on the visitor’s computer tells the server

which session variables belong to which visi-

tors. You can also change how this session

identifier is stored: Instead of the server

placing a cookie on the visitor’s computer,

you can have the server automatically tack it

onto the URL of every page the user visits

(for both hyperlinks and redirect com-

mands) using a Querystring variable.

Make sure to change the session variable

to a string using the ToString() method,

since that’s what Text properties expect

(Figure 4.23).

11. Finally, save the files and preview the

SetSession Web Form in your default

browser.

12. To test, click the button in the

SetSession Web Form.

This will cause the page to post back to

the server, set the session variable, and

redirect to the ReadSession Web Form.

You learned from “To use the

Request.Form collection” earlier in this

chapter that if the lblSessionValue con-

trol hadn’t been set in the ReadSession

page’s Page_Load function, the page

would have been blank.

82

Chapter 4
M

o
vi

n
g

 B
et

w
ee

n
 P

ag
es

Figure 4.23 The result of adding the lblSessionValue control and setting it’s Text property to the
SampleVariable Session variable.

83

Introduction to ASP.NET Web Form Controls
W

o
rkin

g
 w

ith
 Lists

Working with Lists
The last type of control we’ll work with in

this chapter is the list control. Most anyone

who’s ever filled out their address on a Web

page has likely encountered either a list of

countries or a list of state in the United

States. Because those lists are rather long,

we’ll make our own short list.

There are actually many types of lists. The

two examples above are usually shown as

drop-down lists, but we can have check box

lists, radio button lists, or just plain list

boxes. Since drop-down lists are the most

common, we’ll use that type in the following

list. We encourage you to try some of the

other types as well.

The following instructions create an

asp:dropdownlist control and add list items

to it in two different ways.

To make a drop-down list:

1. Create a new Web Form, and then add

a form element, making sure to add the

runat=”server” attribute setting.

If you need to refresh your memory, see

“To create a new Web Form” and “To add

a form element” earlier in this chapter.

2. Click inside the form element in Design

view to set your insertion point.

3. Then from the Insert bar’s ASP.NET tab,

click the asp:dropdownlist icon .

This opens the Tag Editor (Figure 4.24).

4. In the Tag Editor, set the ID to

“ddlSampleList” and click OK.

Never mind the faded check in the box

next to Auto Postback. The default is to

not post back automatically when the

user’s dropdownlist control selection

changes, which is what we want right now.

5. Between the <asp:dropdownlist> and

</asp:dropdownlist> tags, type the fol-

lowing code:

<asp:dropdownlist ID=”ddlSampleList”

runat=”server”>

<asp:listitem>

List Item 1

</asp:listitem>

</asp:dropdownlist>

6. Once again, add the Page_Load function

and change its contents to the following:

protected void Page_Load(Object Src,

EventArgs E)

{

ddlSampleList.Items.Add(

“List Item 2”);

}

7. Review your Web Form and try to guess

what the results will be (Figure 4.25).

8. Save the page and view it by pressing the

F12 key to see if your guess was correct.

84

Chapter 4
W

o
rk

in
g

 w
it

h
 L

is
ts

Figure 4.24 The Tag Editor for the ddlSampleList
control.

Figure 4.25 Adding list items to the ddlSampleList
control through two different methods: code and
markup.

You see from the resulting page that both

ways of adding items to the drop-down list

work well. Step 5 was not a dynamic approach

because you just typed the item directly

within the drop-down list. That’s actually a

good way to do it for lists that are short and

won’t change, such as a list of gender choices.

Step 6 uses a more programmatic approach

to adding a list item by working with the list

control’s Items collection. All list type con-

trols have an Items collection so they all

have the Add function. In fact they have a

slew of common functions because they all

inherit from the ListControl class (see the

“Inheritance” sidebar).

There is a completely different way to

dynamically add list items, however. It’s

called data binding, and it’s handy for build-

ing dynamic pages. Data binding is the

process of associating data from a database

table or an array, for example, to a control at

runtime. Data binding isn’t limited to lists—

many of the standard controls can also be

bound to data. The stepped instructions that

follow use two different syntaxes for achiev-

ing data binding; you’ll see both regularly.

You just have to know that the two styles

exist and that sometimes one will be more

useful than the other.

85

Introduction to ASP.NET Web Form Controls
W

o
rkin

g
 w

ith
 Lists

Inheritance

.NET is built using object-oriented design,

and the .NET languages are object ori-

ented (OO). OO programming is a huge

subject in itself, but one key concept in it

is called inheritance. In OO languages you

can create what is called a Class. A Class

defines an Object—specifying what data

is part of the Object, as well as what func-

tions you can run on it. ListControl is one

such Class.

Inheritance is when you create a second

Class, say a DropDownList, and then

specify in its definition that it should

inherit all the functions and properties

from another Class, such as the

ListControl. You could then customize

some of those functions to better fit your

new Class. If several Classes inherit from

the same Class, they will all inherit those

same functions.

For a deeper discussion of this subject,

refer to Chapter 11.

To bind data to a control:

1. Using the same Web Form you used

in the previous exercise, “To make a

drop-down list,” remove both the pro-

gramming code and the markup code

that added list items to ddlSampleList.

2. Click beside the ddlSampleList control in

Design view to set your insertion point.

3. Then on the ASP.NET tab, click the

asp:textbox icon .

The Tag Editor opens (Figure 4.26).

4. In the Tag Editor, set the ID to

“txtDataString” and Text to “str.”

Click OK.

5. Back in the code of the Web Form, high-

light the value of “str” assigned to

txtDataString. Don’t include its sur-

rounding quotes in the highlighting.

6. Then on the ASP.NET tab, click the Bound

Data icon . This will change the value

of the Text attribute to <%# str %>.

Note: You’ll run into situations where the

bound data syntax will need to use quo-

tation marks. Because of the outer double

quotation marks of the Text attribute,

you would need to use the single quota-

tion marks inside.

7. Now up above the Page_Load function,

create a String variable called str like the

following:

<script runat=”server”>

String str = “Sample String”;

protected void Page_Load(Object Src,

EventArgs E)

86

Chapter 4
W

o
rk

in
g

 w
it

h
 L

is
ts

Figure 4.26 The Tag Editor for the txtDataString
control.

First we set the text box’s Text attribute to

a dynamic value by using the <%# %> bound

data syntax. At first glance this may seem to

be the same as the old ASP way of inserting

dynamic data into HTML. However, the syn-

tax is where the similarity stops. The biggest

difference is that the data doesn’t get bound

until you call the BindData function. We did

so in the Page_Load function by calling the

Page object’s BindData function. We could

have called the BindData function for

ddlSampleList and txtDataString separately;

however, the call cascades down to all con-

tained objects, so calling it on the Page

object requires less code.

The second style of binding data we used

was to set the DataSource attribute of

ddlSampleList to the array of strings. This

style of code is less clear in describing

exactly what will happen, but the style better

separates the programming code from the

markup code, which can be beneficial.

We’ll thoroughly explore the subject of bind-

ing data in Chapter 8, but next we’ll take a

closer look at the programmability of Web

Forms in Chapter 5, “Effectively Using Web

Form Controls.”

87

Introduction to ASP.NET Web Form Controls
W

o
rkin

g
 w

ith
 Lists

Figure 4.27 The two techniques for binding data to
controls.

8. Inside the Page_Load function, create a

String array called dataList and set it to

be ddlSampleList’s data source. Also set

the Page object to execute the BindData

command (Figure 4.27).

protected void Page_Load(Object Src,

EventArgs E)

{

String[] dataList = new

String[2]

{“List Item 1”, “List Item

2”};

ddlSampleList.DataSource =

dataList;

Page.BindData();

}

9. Save the Web Form, and press F12 to

view it in your default browser.

