
Chapter 3

An Asynchronous Interface

We now specify an interface for transmitting data between asynchronous devices.
A sender and a receiver are connected as shown here.

Sender Receiver

val

rdy

-
-

ack¾

Data is sent on val , and the rdy and ack lines are used for synchronization. The
sender must wait for an acknowledgment (an Ack) for one data item before it can
send the next. The interface uses the standard two-phase handshake protocol,
described by the following sample behavior:



val = 26
rdy = 0
ack = 0


 Send 37−→



val = 37
rdy = 1
ack = 0


 Ack

−→


val = 37
rdy = 1
ack = 1


 Send 4−→



val = 4
rdy = 0
ack = 1


 Ack−→



val = 4
rdy = 0
ack = 0


 Send 19−→



val = 19
rdy = 1
ack = 0


 Ack−→ · · ·

(It doesn’t matter what value val has in the initial state.)
It’s easy to see from this sample behavior what the set of all possible behav-

iors should be—once we decide what the data values are that can be sent. But,
before writing the TLA+ specification that describes these behaviors, let’s look
at what I’ve just done.

In writing this behavior, I made the decision that val and rdy should change
in a single step. The values of the variables val and rdy represent voltages

23



24 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

on some set of wires in the physical device. Voltages on different wires don’t
change at precisely the same instant. I decided to ignore this aspect of the
physical system and pretend that the values of val and rdy represented by those
voltages change instantaneously. This simplifies the specification, but at the
price of ignoring what may be an important detail of the system. In an actual
implementation of the protocol, the voltage on the rdy line shouldn’t change
until the voltages on the val lines have stabilized; but you won’t learn that from
my specification. Had I wanted the specification to convey this requirement, I
would have written a behavior in which the value of val and the value of rdy
change in separate steps.

A specification is an abstraction. It describes some aspects of the system and
ignores others. We want the specification to be as simple as possible, so we want
to ignore as many details as we can. But, whenever we omit some aspect of the
system from the specification, we admit a potential source of error. With my
specification, we can verify the correctness of a system that uses this interface,
and the system could still fail because the implementer didn’t know that the val
line should stabilize before the rdy line is changed.

The hardest part of writing a specification is choosing the proper abstraction.
I can teach you about TLA+, so expressing an abstract view of a system as a
TLA+ specification becomes a straightforward task. But I don’t know how to
teach you about abstraction. A good engineer knows how to abstract the essence
of a system and suppress the unimportant details when specifying and designing
it. The art of abstraction is learned only through experience.

When writing a specification, you must first choose the abstraction. In a
TLA+specification, this means choosing the variables that represent the system’s
state and the granularity of the steps that change those variables’ values. Should
the rdy and ack lines be represented as separate variables or as a single variable?
Should val and rdy change in one step, two steps, or an arbitrary number of
steps? To help make these choices, I recommend that you start by writing the
first few steps of one or two sample behaviors, just as I did at the beginning of
this section. Chapter 7 has more to say about these choices.

3.1 The First Specification

Let’s specify the asynchronous interface with a module AsynchInterface. The
specification uses subtraction of natural numbers, so our module extends the
Naturals module to incorporate the definition of the subtraction operator “−”.
We next decide what the possible values of val should be—that is, what data
values may be sent. We could write a specification that places no restriction
on the data values. The specification could allow the sender first to send 37,
then to send

√−15, and then to send Nat (the entire set of natural numbers).
However, any real device can send only a restricted set of values. We could pick



3.1. THE FIRST SPECIFICATION 25

some specific set—for example, 32-bit numbers. However, the protocol is the
same regardless of whether it’s used to send 32-bit numbers or 128-bit numbers.
So, we compromise between the two extremes of allowing anything to be sent
and allowing only 32-bit numbers to be sent by assuming only that there is some
set Data of data values that may be sent. The constant Data is a parameter of
the specification. It’s declared by the statement

constant Data

Our three variables are declared by

variables val , rdy , ack

The keywords variable and variables are synonymous, as are constant and
constants.

The variable rdy can assume any value—for example, −1/2. That is, there
exist states that assign the value −1/2 to rdy . When discussing the specification,
we usually say that rdy can assume only the values 0 and 1. What we really mean
is that the value of rdy equals 0 or 1 in every state of any behavior satisfying the
specification. But a reader of the specification shouldn’t have to understand the
complete specification to figure this out. We can make the specification easier
to understand by telling the reader what values the variables can assume in a
behavior that satisfies the specification. We could do this with comments, but I
prefer to use a definition like this one:

TypeInvariant ∆= (val ∈ Data) ∧ (rdy ∈ {0, 1}) ∧ (ack ∈ {0, 1})
I call the set {0, 1} the type of rdy , and I call TypeInvariant a type invariant.
Let’s define type and some other terms more precisely.

• A state function is an ordinary expression (one with no prime or 2) that
can contain variables and constants.

• A state predicate is a Boolean-valued state function.

• An invariant Inv of a specification Spec is a state predicate such that
Spec ⇒ 2Inv is a theorem.

• A variable v has type T in a specification Spec iff v ∈ T is an invariant of
Spec.

We can make the definition of TypeInvariant easier to read by writing it as
follows.

TypeInvariant ∆= ∧ val ∈ Data
∧ rdy ∈ {0, 1}
∧ ack ∈ {0, 1}



26 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

Each conjunct begins with a ∧ and must lie completely to the right of that
∧. (The conjunct may occupy multiple lines). We use a similar notation for
disjunctions. When using this bulleted-list notation, the ∧’s or ∨’s must line up
precisely (even in the ascii input). Because the indentation is significant, we can
eliminate parentheses, making this notation especially useful when conjunctions
and disjunctions are nested.

The formula TypeInvariant will not appear as part of the specification. We
do not assume that TypeInvariant is an invariant; the specification should imply
that it is. In fact, its invariance will be asserted as a theorem.

The initial predicate is straightforward. Initially, val can equal any element
of Data. We can start with rdy and ack either both 0 or both 1.

Init ∆= ∧ val ∈ Data
∧ rdy ∈ {0, 1}
∧ ack = rdy

Now for the next-state action Next . A step of the protocol either sends a value
or receives a value. We define separately the two actions Send and Rcv that
describe the sending and receiving of a value. A Next step (one satisfying action
Next) is either a Send step or a Rcv step, so it is a Send ∨Rcv step. Therefore,
Next is defined to equal Send ∨ Rcv . Let’s now define Send and Rcv .

We say that action Send is enabled in a state from which it is possible to
take a Send step. From the sample behavior above, we see that Send is enabled
iff rdy equals ack . Usually, the first question we ask about an action is, when
is it enabled? So, the definition of an action usually begins with its enabling
condition. The first conjunct in the definition of Send is therefore rdy = ack .
The next conjuncts tell us what the new values of the variables val , rdy , and
ack are. The new value val ′ of val can be any element of Data—that is, any
value satisfying val ′ ∈ Data. The value of rdy changes from 0 to 1 or from 1 to
0, so rdy ′ equals 1− rdy (because 1 = 1− 0 and 0 = 1− 1). The value of ack is
left unchanged.

TLA+ defines unchanged v to mean that the expression v has the same
value in the old and new states. More precisely, unchanged v equals v ′ = v ,
where v ′ is the expression obtained from v by priming all its variables. So, we
define Send by

Send ∆= ∧ rdy = ack
∧ val ′ ∈ Data
∧ rdy ′ = 1− rdy
∧ unchanged ack

(I could have written ack ′ = ack instead of unchanged ack , but I prefer to use
the unchanged construct in specifications.)

A Rcv step is enabled iff rdy is different from ack ; it complements the value
of ack and leaves val and rdy unchanged. Both val and rdy are left unchanged iff



3.1. THE FIRST SPECIFICATION 27

module AsynchInterface

extends Naturals
constant Data
variables val , rdy , ack
TypeInvariant ∆= ∧ val ∈ Data

∧ rdy ∈ {0, 1}
∧ ack ∈ {0, 1}

Init ∆= ∧ val ∈ Data
∧ rdy ∈ {0, 1}
∧ ack = rdy

Send ∆= ∧ rdy = ack
∧ val ′ ∈ Data
∧ rdy ′ = 1− rdy
∧ unchanged ack

Rcv ∆= ∧ rdy 6= ack
∧ ack ′ = 1− ack
∧ unchanged 〈val , rdy 〉

Next ∆= Send ∨ Rcv
Spec ∆= Init ∧ 2[Next ]〈val,rdy,ack 〉

theorem Spec ⇒ 2TypeInvariant

Figure 3.1: Our first specification of an asynchronous interface.

the pair of values val , rdy is left unchanged. TLA+uses angle brackets 〈 and 〉 to
enclose ordered tuples, so Rcv asserts that 〈val , rdy 〉 is left unchanged. (Angle
brackets are typed in ascii as << and >>.) The definition of Rcv is therefore

Rcv ∆= ∧ rdy 6= ack
∧ ack ′ = 1− ack
∧ unchanged 〈val , rdy 〉

As in our clock example, the complete specification Spec should allow stuttering
steps—in this case, ones that leave all three variables unchanged. So, Spec allows
steps that leave 〈val , rdy , ack 〉 unchanged. Its definition is

Spec ∆= Init ∧ 2[Next ]〈val,rdy,ack 〉

Module AsynchInterface also asserts the invariance of TypeInvariant . It appears
in full in Figure 3.1 on this page.



28 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

3.2 Another Specification

Module AsynchInterface is a fine description of the interface and its handshake
protocol. However, it’s not well suited for helping to specify systems that use
the interface. Let’s rewrite the interface specification in a form that makes it
more convenient to use as part of a larger specification.

The first problem with the original specification is that it uses three variables
to describe a single interface. A system might use several different instances of
the interface. To avoid a proliferation of variables, we replace the three variables
val , rdy , ack with a single variable chan (short for channel). A mathematician
would do this by letting the value of chan be an ordered triple—for example, a
state [chan = 〈−1/2, 0, 1〉] might replace the state with val = −1/2, rdy = 0,
and ack = 1. But programmers have learned that using tuples like this leads to
mistakes; it’s easy to forget if the ack line is represented by the second or third
component. TLA+ therefore provides records in addition to more conventional
mathematical notation.

Let’s represent the state of the channel as a record with val , rdy , and ack
fields. If r is such a record, then r .val is its val field. The type invariant asserts
that the value of chan is an element of the set of all such records r in which
r .val is an element of the set Data and r .rdy and r .ack are elements of the set
{0, 1}. This set of records is written

[val : Data, rdy : {0, 1}, ack : {0, 1}]
The fields of a record are not ordered, so it doesn’t matter in what order we
write them. This same set of records can also be written as

[ack : {0, 1}, val : Data, rdy : {0, 1}]
Initially, chan can equal any element of this set whose ack and rdy fields are
equal, so the initial predicate is the conjunction of the type invariant and the
condition chan.ack = chan.rdy .

A system that uses the interface may perform an operation that sends some
data value d and performs some other changes that depend on the value d .
We’d like to represent such an operation as an action that is the conjunction
of two separate actions: one that describes the sending of d and the other that
describes the other changes. Thus, instead of defining an action Send that sends
some unspecified data value, we define the action Send(d) that sends data value
d . The next-state action is satisfied by a Send(d) step, for some d in Data, or
a Rcv step. (The value received by a Rcv step equals chan.val .) Saying that
a step is a Send(d) step for some d in Data means that there exists a d in
Data such that the step satisfies Send(d)—in other words, that the step is an
∃ d ∈ Data : Send(d) step. So we define

Next ∆= (∃ d ∈ Data : Send(d)) ∨ Rcv



3.2. ANOTHER SPECIFICATION 29

The Send(d) action asserts that chan ′ equals the record r such that

r .val = d r .rdy = 1− chan.rdy r .ack = chan.ack

This record is written in TLA+ as

[val 7→ d , rdy 7→ 1− chan.rdy , ack 7→ chan.ack ]

(The symbol 7→ is typed in ascii as |-> .) Since the fields of records are not
ordered, this record can just as well be written

[ack 7→ chan.ack , val 7→ d , rdy 7→ 1− chan.rdy ]

The enabling condition of Send(d) is that the rdy and ack lines are equal, so we
can define

Send(d) ∆=
∧ chan.rdy = chan.ack
∧ chan ′ = [val 7→ d , rdy 7→ 1− chan.rdy , ack 7→ chan.ack ]

This is a perfectly good definition of Send(d). However, I prefer a slightly
different one. We can describe the value of chan ′ by saying that it is the same
as the value of chan except that its val field equals d and its rdy field equals
1− chan.rdy . In TLA+, we can write this value as

[chan except ! .val = d , ! .rdy = 1− chan.rdy ]

Think of the ! as standing for the new record that the except expression forms
by modifying chan. So, the expression can be read as the record ! that is
the same as chan except ! .val equals d and ! .rdy equals 1 − chan.rdy . In the
expression that !.rdy equals, the symbol @ stands for chan.rdy , so we can write
this except expression as

[chan except ! .val = d , ! .rdy = 1−@]

In general, for any record r , the expression

[r except !.c1 = e1, . . . , !.cn = en ]

is the record obtained from r by replacing r .ci with ei , for each i in 1 . . n. An
@ in the expression ei stands for r .ci . Using this notation, we define

Send(d) ∆= ∧ chan.rdy = chan.ack
∧ chan ′ = [chan except ! .val = d , !.rdy = 1−@]

The definition of Rcv is straightforward. A value can be received when chan.rdy
does not equal chan.ack , and receiving the value complements chan.ack :

Rcv ∆= ∧ chan.rdy 6= chan.ack
∧ chan ′ = [chan except !.ack = 1−@]

The complete specification appears in Figure 3.2 on the next page.



30 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

module Channel

extends Naturals
constant Data
variable chan
TypeInvariant ∆= chan ∈ [val : Data, rdy : {0, 1}, ack : {0, 1}]

Init ∆= ∧ TypeInvariant
∧ chan.ack = chan.rdy

Send(d) ∆= ∧ chan.rdy = chan.ack
∧ chan ′ = [chan except ! .val = d , !.rdy = 1−@]

Rcv ∆= ∧ chan.rdy 6= chan.ack
∧ chan ′ = [chan except ! .ack = 1−@]

Next ∆= (∃ d ∈ Data : Send(d)) ∨ Rcv

Spec ∆= Init ∧ 2[Next ]chan

theorem Spec ⇒ 2TypeInvariant

Figure 3.2: Our second specification of an asynchronous interface.

3.3 Types: A Reminder

As defined in Section 3.1, a variable v has type T in specification Spec iff v ∈ T
is an invariant of Spec. Thus, hr has type 1 . . 12 in the specification HC of
the hour clock. This assertion does not mean that the variable hr can assume
only values in the set 1 . . 12. A state is an arbitrary assignment of values to
variables, so there exist states in which the value of hr is

√−2. The assertion
does mean that, in every behavior satisfying formula HC , the value of hr is an
element of 1 . . 12.

If you are used to types in programming languages, it may seem strange that
TLA+ allows a variable to assume any value. Why not restrict our states to
ones in which variables have the values of the right type? In other words, why
not add a formal type system to TLA+? A complete answer would take us too
far afield. The question is addressed further in Section 6.2. For now, remember
that TLA+ is an untyped language. Type correctness is just a name for a certain
invariance property. Assigning the name TypeInvariant to a formula gives it no
special status.



3.4. DEFINITIONS 31

3.4 Definitions

Let’s examine what a definition means. If Id is a simple identifier like Init
or Spec, then the definition Id ∆= exp defines Id to be synonymous with the
expression exp. Replacing Id by exp, or vice-versa, in any expression does not
change the meaning of that expression. This replacement must be done after
the expression is parsed, not in the “raw input”. For example, the definition
x ∆= a + b makes x ∗c equal to (a+b)∗c, not to a+b ∗c, which equals a+(b ∗c).

The definition of Send has the form Id(p) ∆= exp, where Id and p are identi-
fiers. For any expression e, this defines Id(e) to be the expression obtained by
substituting e for p in exp. For example, the definition of Send in the Channel
module defines Send(−5) to equal

∧ chan.rdy = chan.ack
∧ chan ′ = [chan except ! .val = −5, ! .rdy = 1−@]

Send(e) is an expression, for any expression e. Thus, we can write the formula
Send(−5) ∧ (chan.ack = 1). The identifier Send by itself is not an expression,
and Send ∧ (chan.ack = 1) is not a grammatically well-formed string. It’s non-
syntactic nonsense, like a + ∗ b + .

We say that Send is an operator that takes a single argument. We define
operators that take more than one argument in the obvious way, the general
form being

Id(p1, . . . , pn) ∆= exp(3.1)

where the pi are distinct identifiers and exp is an expression. We can consider
defined identifiers like Init and Spec to be operators that take no argument, but
we generally use operator to mean an operator that takes one or more arguments.

I will use the term symbol to mean an identifier like Send or an operator
symbol like +. Every symbol that is used in a specification must either be a built-
in operator of TLA+ (like ∈) or it must be declared or defined. Every symbol
declaration or definition has a scope within which the symbol may be used. The
scope of a variable or constant declaration, and of a definition, is the part of
the module that follows it. Thus, we can use Init in any expression that follows
its definition in module Channel . The statement extends Naturals extends the
scope of symbols like + defined in the Naturals module to the Channel module.

The operator definition (3.1) implicitly includes a declaration of the identi-
fiers p1, . . . , pn whose scope is the expression exp. An expression of the form

∃ v ∈ S : exp

has a declaration of v whose scope is the expression exp. Thus the identifier v
has a meaning within the expression exp (but not within the expression S ).



32 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

A symbol cannot be declared or defined if it already has a meaning. The
expression

(∃ v ∈ S : exp1) ∧ (∃ v ∈ T : exp2)

is all right, because neither declaration of v lies within the scope of the other.
Similarly, the two declarations of the symbol d in the Channel module (in the
definition of Send and in the expression ∃ d in the definition of Next) have
disjoint scopes. However, the expression

(∃ v ∈ S : (exp1 ∧ ∃ v ∈ T : exp2))

is illegal because the declaration of v in the second ∃ v lies inside the scope of its
declaration in the first ∃ v . Although conventional mathematics and program-
ming languages allow such redeclarations, TLA+ forbids them because they can
lead to confusion and errors.

3.5 Comments

Even simple specifications like the ones in modules AsynchInterface and Channel
can be hard to understand from the mathematics alone. That’s why I began with
an intuitive explanation of the interface. That explanation made it easier for
you to understand formula Spec in the module, which is the actual specification.
Every specification should be accompanied by an informal prose explanation.
The explanation may be in an accompanying document, or it may be included
as comments in the specification.

Figure 3.3 on the next page shows how the hour clock’s specification in
module HourClock might be explained by comments. In the typeset version,
comments are distinguished from the specification itself by the use of a different
font. As shown in the figure, TLA+ provides two ways of writing comments in
the ascii version. A comment may appear anywhere enclosed between (* and
*). An end-of-line comment is preceded by \*. Comments may be nested, so
you can comment out a section of a specification by enclosing it between (* and
*), even if the section contains comments.

A comment almost always appears on a line by itself or at the end of a line.
I put a comment between HCnxt and ∆= just to show that it can be done.

To save space, I will write few comments in the example specifications. But
specifications should have lots of comments. Even if there is an accompany-
ing document describing the system, comments are needed to help the reader
understand how the specification formalizes that description.

Comments can help solve a problem posed by the logical structure of a spec-
ification. A symbol has to be declared or defined before it can be used. In
module Channel , the definition of Spec has to follow the definition of Next ,
which has to follow the definitions of Send and Rcv . But it’s usually easiest to



3.5. COMMENTS 33

module HourClock
This module specifies a digital clock that displays the current hour. It ignores real
time, not specifying when the display can change.

extends Naturals
variable hr Variable hr represents the display.

HCini ∆= hr ∈ (1 . . 12) Initially, hr can have any value from 1 through 12.

HCnxt This is a weird place for a comment.
∆=

The value of hr cycles from 1 through 12.

hr ′ = if hr 6= 12 then hr + 1 else 1

HC ∆= HCini ∧ 2[HCnxt ]hr
The complete spec. It permits the clock to stop.

theorem HC ⇒ 2HCini Type-correctness of the spec.

---------------------- MODULE HourClock ----------------------
(********************************************************)
(* This module specifies a digital clock that displays *)
(* the current hour. It ignores real time, not *)
(* specifying when the display can change. *)
(********************************************************)

EXTENDS Naturals
VARIABLE hr \* Variable hr represents the display.
HCini == hr \in (1 .. 12) \* Initially, hr can have any

\* value from 1 through 12.
HCnxt (* This is a weird place for a comment. *) ==

(*************************************************)
(* The value of hr cycles from 1 through 12. *)
(*************************************************)
hr’ = IF hr # 12 THEN hr + 1 ELSE 1

HC == HCini /\ [][HCnxt]_hr
(* The complete spec. It permits the clock to stop. *)

--------------------------------------------------------------
THEOREM HC => []HCini \* Type-correctness of the spec.
==============================================================

Figure 3.3: The hour-clock specification with comments.



34 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

understand a top-down description of a system. We would probably first want
to read the declarations of Data and chan, then the definition of Spec, then
the definitions of Init and Next , and then the definitions of Send and Rcv . In
other words, we want to read the specification more or less from bottom to top.
This is easy enough to do for a module as short as Channel ; it’s inconvenient
for longer specifications. We can use comments to guide the reader through a
longer specification. For example, we could precede the definition of Send in the
Channel module with the comment

Actions Send and Rcv below are the disjuncts of the next-state action
Next .

The module structure also allows us to choose the order in which a spec-
ification is read. For example, we can rewrite the hour-clock specification by
splitting the HourClock module into three separate modules:

HCVar A module that declares the variable hr .

HCActions A module that extends modules Naturals and HCVar and de-
fines HCini and HCnxt .

HCSpec A module that extends module HCActions, defines formula
HC , and asserts the type-correctness theorem.

The extends relation implies a logical ordering of the modules: HCVar precedes
HCActions, which precedes HCSpec. But the modules don’t have to be read in
that order. The reader can be told to read HCVar first, then HCSpec, and finally
HCActions. The instance construct introduced below in Chapter 4 provides
another tool for modularizing specifications.

Splitting a tiny specification like HourClock in this way would be ludicrous.
But the proper splitting of modules can help make a large specification easier to
read. When writing a specification, you should decide in what order it should
be read. You can then design the module structure to permit reading it in that
order, when each individual module is read from beginning to end. Finally,
you should ensure that the comments within each module make sense when the
different modules are read in the appropriate order.


