
559

C H A P T E R 1 2

The .NET Compact
Framework

The human subconscious is a fascinating place—malleable,
permeable, fallible.

—Harvey, Farscape

The introduction of the .NET Framework made the last year or so an
extremely exciting time for software developers. Not only does .NET
provide an entirely new platform for creating software, it also introduces
an extremely rich (and quite large) set of class libraries for building man-
aged applications, as well as a new type-safe object-oriented program-
ming language known as C#.

The .NET Compact Framework is a version of .NET specifically
designed for small form factor devices, such as Pocket PC. The class
library provided with the Compact Framework is extremely similar to its
desktop counterpart, except that certain functionality has been “slimmed
down” (or entirely eliminated) to better support the limited memory,
storage space, and performance of a mobile device.

Because covering the entire Compact Framework would be a book in
itself, this chapter provides you with information about using some of the
.NET classes that are of particular interest to Pocket PC application
developers. We first take a look at performing Winsock communications
(see Chapter 1) between devices using the Sockets class library that is
provided by the Compact Framework. This is followed by an explanation
of how to write applications that request data using standard Internet
protocols, such as HTTP (see Chapter 2).

This chapter also describes how you can consume Web Services,
probably one of the most intriguing concepts for a mobile developer. A
Web Service is a standardized way to access distributed program logic by
using “off-the-shelf” Internet protocols. For example, suppose you had

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 559

an application running on a Pocket PC device that kept an itinerary of
your travel plans. You could use one Web Service to get information
about flight delays, another to get the weather report at your destination,
and another to pull gate information, tying all of the information together
within your application. What makes Web Services unique is that any
communications with the server hosting the Web Service are done
through a standardized XML format. By using Web Services, you can
easily create robust mobile applications that pull data from a variety of
sources on the Internet.

Finally, we’ll take a look at using some of the APIs that are native to
the Pocket PC, such as the Connection Manager (see Chapter 7) and
SMS Messaging (see Chapter 8), from applications written in C#.

Unlike writing standard C++ applications for a Pocket PC device
using Embedded Visual C++ 3.0, you use Visual Studio 2003.NET for
developing C# and VB.NET applications. At this time, you cannot use
C++ to develop .NET applications for the Compact Framework.

Networking with the Compact Framework

When developing applications that communicate over a network using
.NET, most of the classes that you will need to familiarize yourself with
are part of the System.Net namespace. It contains classes for handling
Internet communications with objects that support proxy servers, IP
addresses, DNS name resolution, network data streams, and specific
classes for handling pluggable protocols such as the Hypertext Transfer
Protocol (HTTP).

Table 12.1 describes the objects contained in the System.Net
namespace.

560 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 560

Networking with the Compact Framework 561

Name Object Type Description

AuthenticationManager Class Manages authentication
models

Authorization Class Handles authorization
messages to a sever

Dns Class Handles domain name
resolution

EndPoint Class Abstract class for
identifying a network
address

GlobalProxySelection Class Handles the default proxy
for HTTP requests

HttpContinueDelegate Delegate Callback used for HTTP
requests

HttpStatusCode Enumeration Status codes used for
HTTP requests

HttpVersion Class Handles version numbers
supported by HTTP
requests

HttpWebRequest Class Handles an HTTP request
HttpWebResponse Class Handles the response of

an HTTP request
IAuthenticationModule Interface Interface used for Web

authentication
ICertificatePolicy Interface Interface that validates a

server’s certificate
ICredentials Interface Interface for handling

Web client authentication
IPAddress Class Handles IP addressing
IPEndPoint Class Handles an IP address and

port number
IPHostEntry Class Handles Internet host

address information
IrDAEndPoint Class Handles an infrared

connection to another
device

IWebProxy Interface Interface to handle a proxy
request

IWebRequestCreate Interface Interface to handle new
WebRequest instances

Table 12.1 The System.Net Namespace

(continued)

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 561

TCP/IP Addresses

In Chapter 1, you learned about the Internet Protocol version 4 (or IPv4)
address scheme on Pocket PC. You may remember that an IPv4 address is
used by a device to specify its unique host and subnet address, which it uses
to communicate over a TCP/IP network. All of the methods and properties
that are needed to manage an Internet address within the Compact
Framework are handled by the System.Net.IPAddress class.

The IPAddress constructor is defined as follows:

public IPAddress(long newAddress);

The only parameter needed is the 32-bit value of the IP address. The
class also contains the methods and properties described in Table 12.2.

562 Chapter 12 The .NET Compact Framework

Name Object Type Description

NetworkCredential Class Handles network
usernames and passwords

ProtocolViolationException Class Exception used when a
network protocol error
occurs

ServicePoint Class Handles connection
management for HTTP

ServicePointManager Class Handles a collection of
ServicePoint classes

SocketAddress Class Stores information from
EndPoint classes

WebException Class Exception used when an
error occurs accessing the
network

WebExceptionStatus Enumeration Status codes used with the
WebException class

WebHeaderCollection Class Handles protocol headers
for a network request or
response

WebProxy Class Handles HTTP proxy
settings

WebRequest Class Handles a request to a URI
WebResponse Class Handles a response to a

URI

Table 12.1 The System.Net Namespace (continued)

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 562

One of the most useful methods in the IPAddress class is the
Parse() method. You can use this to easily construct a new IP
Address object using the standard dotted-notation Internet address, as
shown in the following example:

System.Net.IPAddress localIPAddress =

System.Net.IPAddress.Parse("127.0.0.1");

Although the IPAddress class by itself is useful for managing an
Internet address, most of the networking functions in the Compact
Framework use the System.Net.IPEndPoint class to specify another
machine on the network. An IPEndPoint not only specifies the IP
address of the remote connection, but also contains information about
the port that will be used to connect with the service running on the
remote device (for more information about Internet ports, see Chap-
ter 1).

There are two ways to construct a new IPEndPoint class. The first
method takes the 32-bit value of the IP address and a port:

public IPEndPoint(long address, int port);

Networking with the Compact Framework 563

Method Description

HostToNetworkOrder() Converts from host byte order to network byte order
IsLoopback() Returns TRUE if the network address is the loopback

adapter
NetworkToHostOrder() Converts from network byte order to host byte order
Parse() Converts a string to an IPAddress class

Property Get/Set/Read-Only Description

Address Get/set Value of the IP address
Any Read-only field Indicates that the IP address is used for all

network adapters
Broadcast Read-only field Returns the IP broadcast address
Loopback Read-only field Returns the IP loopback address
None Read-only field Indicates that the IP address is not used

for any network adapter

Table 12.2 IPAddress Class Methods and Properties

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 563

You can also create a new IPEndPoint by passing in a previously
created IPAddress object:

public IPEndPoint(IPAddress address, int port);

The following code shows how you can create an IPEndPoint that
represents a connection to the local machine on port 80:

System.Net.IPAddress localIPAddress =

System.Net.IPAddress.Parse("127.0.0.1");

System.Net.IPEndPoint localIPEndpoint = new

System.Net.IPEndPoint(localIPAddress, 80);

The IPEndPoint class consists of the methods and properties
described in Table 12.3.

564 Chapter 12 The .NET Compact Framework

Method Description

Create() Creates an IPEndPoint based on an IP address and port
Serialize() Serializes IPEndPoint information into a SocketAddress

instance

Property Get/Set/Read-Only Description

Address Get/set Value of the IP address
AddressFamily Get Gets the address family for the IP

address
Port Get/set Value of the port
MaxPort Read-only field Specifies the maximum value for

the port
MinPort Read-only field Specifies the minimum value for

the port

Table 12.3 IPEndPoint Class Methods and Properties

Name Resolution

The resolution of a domain name (such as www.furrygoat.com) or IP
address is handled by the System.Net.Dns class. It contains the meth-
ods described in Table 12.4.

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 564

After the DNS resolution process has completed, information about
the domain is stored in a new instance of the System.Net.IPHost
Entry class. The class has the properties described in Table 12.5.

Networking with the Compact Framework 565

Method Description

BeginGetHostByName() Starts an asynchronous GetHostByName() request
BeginResolve() Starts an asynchronous Resolve() request
EndGetHostByName() Ends an asynchronous GetHostByName() request
EndResolve() Ends an asynchronous Resolve() request
GetHostByAddress() Gets host information based on the IP address
GetHostByName() Gets host information based on the name
Resolve() Resolves a host name or IP address to an

IPHostEntry() class

Table 12.4 Dns Class Methods

Property Get/Set/Read-Only Description

AddressList Get/set Gets or sets a list of IPAddress objects
associated with the host

Aliases Get/set Gets or sets a list of aliases associated
with the host

HostName Get/set Gets or sets the DNS host name

Table 12.5 IPHostEntry Class Properties

The following code shows how you can create an IPEndPoint that
is associated with the Microsoft Web Server by using the System.
Net.Dns class to first resolve the IP address:

// Resolve the MS Web Server IP address

System.Net.IPHostEntry microsoftHost =

System.Net.Dns.GetHostByName("www.microsoft.com");

// Copy the resolved IP address to a string

String msIP = microsoftHost.AddressList[0].ToString();

// Create the endpoint

System.Net.IPEndPoint microsoftEndPoint = new

System.Net.IPEndPoint(microsoftHost.AddressList[0], 80);

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 565

Winsock and .NET

The System.Net.Sockets namespace provides all of the classes that
are needed to communicate over the Winsock interface (see Chapter 1
for more information about general Winsock programming) when using
the Compact Framework. The namespace provides the classes and enu-
merations described in Table 12.6.

566 Chapter 12 The .NET Compact Framework

Name Object Type Description

AddressFamily Enumeration Address scheme for a Socket class
IrDACharacterSet Enumeration Character sets supported for infrared

transfers
IrDAClient Class Handles the client in an infrared

transfer
IrDADeviceInfo Class Provides information about infrared

connections and servers
IrDAHints Enumeration Infrared device types
IrDAListener Class Handles the server in an infrared

transfer
LingerOption Class Handles the socket linger options
MulticastOption Class Handles multicast address groups
NetworkStream Class Handles a stream over a network

connection
ProtocolFamily Enumeration Socket protocol types that are available
ProtocolType Enumeration Socket protocols
SelectMode Enumeration Socket polling modes
Socket Class Class to handle socket communications
SocketException Class Exception that is used when an error

occurs in a Socket class
SocketFlags Enumeration Socket constants
SocketOptionLevel Enumeration Socket level option constant values
SocketOptionName Enumeration Socket names option constant values
SocketShutdown Enumeration Socket shutdown constants
SocketType Enumeration Type of socket
TcpClient Class Class to handle TCP socket connections

to a server
TcpListener Class Class to handle TCP socket connections

as a server
UdpClient Class Class to handle UDP socket connections

for both client and server

Table 12.6 The System.Net.Sockets Namespace

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 566

The namespace provides four classes that you will use primarily when
working with Winsock connections:

1. The System.Net.Sockets.Socket class is essentially a full
wrapper around a traditional SOCKET handle. It provides all of
the functionality for both connectionless and connection-based
TCP and UDP communications.

2. The System.Net.Sockets.TcpClient class provides all of
the methods and properties for the client side of a TCP connec-
tion to a server.

3. The System.Net.Sockets.TcpListener class provides all
of the methods and properties for the server side of a TCP connec-
tion that will listen for incoming connections on a specific port.

4. The System.Net.Sockets.UdpClient class provides all of
the methods and properties for sending and receiving connec-
tionless datagrams.

The Generic Socket Class

The System.Net.Sockets.Socket class is used to perform basic
Winsock functionality in a manner similar to using a standard SOCKET
handle. To create a new Socket object, you use the following constructor:

public Socket(AddressFamily addressFamily, SocketType

socketType, ProtocolType protocolType);

All of the parameters that you use are standard enumerations that are
part of the System.Net.Sockets namespace. The first parameter,
addressFamily, should specify the addressing scheme for the socket,
such as AddressFamily.InterNetwork for an IPv4 socket. This is
followed by the type of socket you are creating, which is followed by the
protocol that the socket should use.

The following example creates a standard IPv4 socket for communi-
cating over a TCP connection using the IP protocol:

using System;

using System.Data;

using System.Net.Sockets;

namespace PocketPCNetworkProgramming {

class SocketTestClass {

Winsock and .NET 567

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 567

static void Main(string[] args) {

// Create a new socket

System.Net.Sockets.Socket newSocket = new Socket(

AddressFamily.InterNetwork,

SocketType.Stream,

ProtocolType.IP);

// Do something with the new socket

}

}

}

The System.Net.Sockets.Socket class supports the methods
and properties described in Table 12.7.

568 Chapter 12 The .NET Compact Framework

Method Description

Accept() Creates a new System.Net.Sockets.Socket for the
incoming connection

BeginAccept() Begins asynchronous Accept() operation
BeginConnect() Begins asynchronous Connect() operation
BeginReceive() Begins asynchronous Receive() operation
BeginReceiveFrom() Begins asynchronous Receive() operation from a

specific remote EndPoint
BeginSend() Begins asynchronous Send() operation
BeginSendTo() Begins asynchronous Send() operation to a specific

remote EndPoint
Bind() Associates the socket with a local EndPoint
Close() Closes the socket
Connect() Establishes a connection with another host
EndAccept() Asynchronously accepts an incoming connection
EndConnect() Ends asynchronous Connect() operation
EndReceive() Ends asynchronous Receive() operation
EndReceiveFrom() Ends asynchronous Receive() operation from a

specific remote EndPoint
EndSend() Ends asynchronous Send() operation
EndSendTo() Ends asynchronous Send() operation to a specific

remote EndPoint
GetSocketOption() Returns the value of the socket options
IOControl() Sets low-level socket options
Listen() Listens for an incoming socket connection

Table 12.7 Socket Class Methods and Properties

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 568

Once you have created your Socket class, communicating over the
Internet is relatively straightforward. The class supports methods such as
Send() and Receive(), which are almost identical to the standard
Winsock functions:

// Create a new socket

System.Net.Sockets.Socket webSocket = new

Socket(AddressFamily.InterNetwork, SocketType.Stream,

ProtocolType.IP);

// Make a request from a Web server

// Resolve the IP address for the server, and get the

// IPEndPoint for it on port 80

Winsock and .NET 569

Method Description

Poll() Returns the status of the socket
Receive() Receives data over a socket
ReceiveFrom() Receives data over a socket from a specific remote

EndPoint
Select() Returns the status of one or more sockets
Send() Sends data over a socket
SendTo() Sends data over a socket to a specific remote EndPoint
SetSocketOption() Sets the value of the socket options
Shutdown() Stops communications over a socket

Property Get/Set Description

AddressFamily Get Gets the addressing scheme used for the socket
Available Get Gets the amount of data on the socket that is ready

to be read
Blocking Get/set Gets or sets whether the socket is in blocking mode
Connected Get Returns TRUE if the socket is connected
Handle Get Gets the socket handle
LocalEndPoint Get Gets the local EndPoint for the socket
ProtocolType Get Gets the protocol type for the socket
RemoteEndPoint Get Gets the remote EndPoint for the socket
SocketType Get Gets the type of socket

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 569

System.Net.IPHostEntry webServerHost =

System.Net.Dns.GetHostByName("www.furrygoat.com");

System.Net.IPEndPoint webServerEndPt = new

System.Net.IPEndPoint(webServerHost.AddressList[0], 80);

// Set up the HTTP request string to get the main index page

byte[] httpRequestBytes =

System.Text.Encoding.ASCII.GetBytes("GET /

HTTP/1.0\r\n\r\n");

// Connect the socket to the server

webSocket.Connect(webServerEndPt);

// Send the request synchronously

int bytesSent = webSocket.Send(httpRequestBytes,

httpRequestBytes.Length, SocketFlags.None);

// Get the response from the request. We will continue to request

// 4096 bytes from the response stream and concat the string into

// the strReponse variable

byte[] httpResponseBytes = new byte[4096];

int bytesRecv = webSocket.Receive(httpResponseBytes,

httpResponseBytes.Length, SocketFlags.None);

strResponse = System.Text.Encoding.ASCII.GetString

(httpResponseBytes, 0, bytesRecv);

while(bytesRecv > 0) {

bytesRecv = webSocket.Receive(httpResponseBytes,

httpResponseBytes.Length, SocketFlags.None);

strResponse = strResponse +

System.Text.Encoding.ASCII.GetString(

httpResponseBytes, 0, bytesRecv);

}

// At this point, the strResponse string has the Web page.

// Do something with it

// ...

570 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 570

// Clean up the socket

webSocket.Shutdown(SocketShutdown.Both);

webSocket.Close();

Although using the Socket class provides you with a robust set
of methods to handle almost any type of connection, you are more likely
to use one of the more specific connection classes, such as TcpClient
or TcpListener, to handle your protocol-specific network commu-
nications.

TCP Connections

As described in Chapter 1, a TCP (or streaming) socket provides you
with an error-free data pipe (between a client and server) that is used to
send and receive data over a communications session. The format of
the data sent over the connection is typically up to you, but several
well-known Internet protocols, such as HTTP and FTP, use this type of
connection.

The .NET Compact Framework provides you with two separate
classes that can be used to handle TCP communications. The System.
Net.Sockets.TcpListener class is used to create a socket that
can accept an incoming connection request. This is also known as a
server.

To create a TCP client, you use the System.Net.Sockets.
TcpClient class. The methods provide functionality to connect to a
server that is listening on a specific port.

TCP Servers

To create a new TcpListener object, you can use one of the following
constructors:

public TcpListener(int port);

public TcpListener(IPAddress localaddr, int port);

public TcpListener(IPEndPoint localEP);

All three constructors basically do the same thing. The first one
needs only the port number on which you want the object to listen. The
second requires an IPAddress class that represents the local IP address
of the device, and is followed by the port. The final constructor takes an
IPEndPoint class, which should represent the local IP address and port
on which to listen.

Winsock and .NET 571

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 571

The following example shows how you can use each one of the con-
structors to initialize a new TcpListener class:

// Method 1 - Listen on the local IP address, port 80.

System.Net.Sockets.TcpListener tcpServerSocket = new

TcpListener(80);

// Method 2 - Listen on the local IP address, port 80.

System.Net.IPAddress localIPAddr =

System.Net.IPAddress.Parse("127.0.0.1");

System.Net.Sockets.TcpListener tcpServerSocket2 = new

TcpListener(localIPAddr, 80);

// Method 3 - Listen on the local IP address by creating an

// endpoint

System.Net.IPEndPoint localIpEndPoint = new

System.Net.IPEndPoint(localIPAddr, 80);

System.Net.Sockets.TcpListener tcpServerSocket3 = new

TcpListener(localIpEndPoint);

The TcpListener object provides the methods and property
described in Table 12.8.

572 Chapter 12 The .NET Compact Framework

Method Description

AcceptSocket() Accepts an incoming TCP connection request
and returns a Socket class

AcceptTcpClient() Accepts an incoming TCP connection request
and returns a TcpClient class

Pending() Determines whether any incoming connection
requests are waiting

Start() Starts listening for incoming requests
Stop() Stops listening for incoming requests

Property Get/Set Description

LocalEndpoint Get Gets the local EndPoint to which the
TcpListener is bound

Table 12.8 TCPListener Class Methods and Properties

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 572

Once you have constructed a TcpListener object, you can have it
start listening on the port that you passed in by calling the Start()
method. Now that you have a TcpListener socket that is awaiting a
connection, let’s take a brief look at network streams.

Using Network Streams

The System.Net.Sockets.NetworkStream class is used for both
sending and receiving data over a TCP socket. To create a Network
Stream object, use one of the following constructors:

public NetworkStream(Socket socket);

public NetworkStream(Socket socket, bool ownsSocket);

public NetworkStream(Socket socket, FileAccess access);

public NetworkStream(Socket socket, FileAccess access, bool

ownsSocket);

Each constructor specifies a Socket class with which the new
stream object should be associated. The ownsSocket parameter should
be set to TRUE if you want the Stream object to assume ownership of the
socket. The access parameter can be used to specify any FileAccess
values for determining access to the stream (such as Read, Write, or
ReadWrite).

In addition, you can use the TcpClient.GetStream() method
(as you will see in the next section) to get the NetworkStream for the
active connection.

The NetworkStream class supports the methods and properties
described in Table 12.9.

The following example shows how you can use the NetworkStream
class to send data to a client that is connected to a TcpListener object:

// Create a socket that is listening for incoming connections on

// port 8080

string hostName = System.Net.Dns.GetHostName();

System.Net.IPAddress localIPAddress =

System.Net.Dns.Resolve(hostName).AddressList[0];

System.Net.Sockets.TcpListener tcpServer = new

TcpListener(localIPAddress, 8080);

// Start listening synchronously

tcpServer.Start();

Winsock and .NET 573

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 573

// Get the client socket when a request comes in

Socket tcpClient = tcpServer.AcceptSocket();

// Make sure the client is connected

if(tcpClient.Connected == false)

return;

// Create a network stream to send data to the client

NetworkStream clientStream = new NetworkStream(tcpClient);

// Write some data to the stream

byte[] serverBytes = System.Text.Encoding.ASCII.GetBytes(

"Howdy. You've connected!\r\n");

clientStream.Write(serverBytes, 0, serverBytes.Length);

574 Chapter 12 The .NET Compact Framework

Method Description

BeginRead() Begins an asynchronous Read() operation
BeginWrite() Begins an asynchronous Write() operation
Close() Closes the NetworkStream
CreateWaitHandle() Creates a WaitHandle object for handling

asynchronous operation blocking events
Dispose() Releases resources used by the NetworkStream object
EndRead() Ends asynchronous Read() operation
EndWrite() Ends asynchronous Write() operation
Read() Reads from the NetworkStream
ReadByte() Reads a byte from the NetworkStream
Write() Writes to the NetworkStream
WriteByte() Writes a byte to the NetworkStream

Property Get/Set Description

CanRead Get Returns TRUE if the NetworkStream supports
reading

CanWrite Get Returns TRUE if the NetworkStream supports
write operations

DataAvailable Get Returns TRUE if the NetworkStream has data to
be read

Length Get Returns the amount of data waiting to be read on
the stream

Table 12.9 NetworkStream Class Methods and Properties

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 574

// Immediately disconnect the client

tcpClient.Shutdown(SocketShutdown.Both);

tcpClient.Close();

TCP Clients

To establish a connection with a TCP server listening on a specific port,
you use the System.Net.Sockets.TcpClient class. Its constructor
is defined as follows:

public TcpClient();

public TcpClient(IPEndPoint localEP);

public TcpClient(string hostname, int port);

The TcpClient class has the methods and properties described in
Table 12.10.

Winsock and .NET 575

Method Description

Close() Closes the TcpClient socket
Connect() Connects to a remote host
GetStream() Gets the NetworkStream object to send and receive data

Property Get/Set Description

LingerState Get/set Gets or sets the socket linger time
NoDelay Get/set Set to TRUE to disable the delay on a socket

when the receive buffer is not full
ReceiveBufferSize Get/set Gets or sets the receive buffer size
SendBufferSize Get/set Gets or sets the send buffer size

Table 12.10 TcpClient Class Methods and Properties

Now that you have looked at both of the TCP client and server
classes, let’s examine how you could use the TcpListener class to write
a small (and extremely simple) Web server that runs on the Pocket PC:

using System;

using System.Data;

using System.Net.Sockets;

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 575

namespace TCPServer {

class WebServer {

static void Main(string[] args) {

// Create a socket that is listening for incoming

// connections on port 80.

string hostName = System.Net.Dns.GetHostName();

System.Net.IPAddress localIPAddress =

System.Net.Dns.Resolve(hostName).AddressList[0];

System.Net.Sockets.TcpListener tcpServer = new

TcpListener(localIPAddress, 80);

// Start listening synchronously and wait for an

// incoming socket

tcpServer.Start();

Socket tcpClient = tcpServer.AcceptSocket();

// Make sure the client is connected

if(tcpClient.Connected == false)

return;

// Create a network stream that we will use to send

// and receive data.

NetworkStream clientStream = new NetworkStream

(tcpClient);

// Get a basic request.

byte[] requestString = new byte[1024];

clientStream.Read(requestString, 0, 1024);

// Do something with the client request here.

// Typically, you'll need to parse the request, open the

// file and send the contents back. For this example,

// we'll just write out a simple HTTP response to the

// stream.

byte[] responseString =

System.Text.Encoding.ASCII.GetBytes("HTTP/1.0

200 OK\r\n\r\nTest Reponse\r\n\r\n");

clientStream.Write(responseString, 0,

responseString.Length);

576 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 576

// Disconnect the client

tcpClient.Shutdown(SocketShutdown.Both);

tcpClient.Close();

}

}

}

Let’s also take a look at the code for a small client that requests a
Web page from the server:

using System;

using System.Data;

using System.Net.Sockets;

namespace TCPWebClientTest {

class WebClientTest {

static void Main(string[] args) {

// Create a socket that will grab a Web page

System.Net.Sockets.TcpClient tcpWebClient = new

TcpClient();

// Set up the HTTP request string to get the main

// index page

byte[] httpRequestBytes = System.Text.Encoding.

ASCII. GetBytes("GET / HTTP/1.0\r\n\r\n");

// Connect the socket to the server

tcpWebClient.Connect("www.microsoft.com", 80);

// Make sure we are connected

if(tcpWebClient == null)

return;

// Create a network stream that we will use to send

// and receive data.

NetworkStream webClientStream = tcpWebClient.

GetStream();

// Send the request synchronously

webClientStream.Write(httpRequestBytes, 0,

httpRequestBytes.Length);

Winsock and .NET 577

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 577

// Get the response from the request. We will continuously

// request 4096 bytes from the response stream and concat

// the string into the strReponse variable.

string strResponse = "";

byte[] httpResponseBytes = new byte[4096];

int bytesRecv = webClientStream.Read

(httpResponseBytes, 0, httpResponseBytes.Length);

strResponse = System.Text.Encoding.ASCII.

GetString(httpResponseBytes, 0, bytesRecv);

while(bytesRecv > 0) {

bytesRecv = webClientStream.Read

(httpResponseBytes, 0, httpResponseBytes.Length);

strResponse = strResponse + System.Text.Encoding.

ASCII.GetString(httpResponseBytes, 0, bytesRecv);

}

// At this point, the strResponse string has the

// Web page. Do something with it

// Clean up the socket

tcpWebClient.Close();

}

}

}

Sending and Receiving Data over UDP

Both the sending and receiving of a datagram (or packet) over a connec-
tionless socket is handled by the System.Net.Sockets.UdpClient
class. A new UdpClient object is created by using one of the following
constructors:

public UdpClient();

public UdpClient(int port);

578 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 578

public UdpClient(IPEndPoint localEP);

public UdpClient(string hostname, int port);

The UdpClient class supports the methods and properties
described in Table 12.11.

Winsock and .NET 579

Method Description

Close() Closes the UDP socket
Connect() Connects to a remote host
DropMulticastGroup() Leaves a multicast group
JoinMulticastGroup() Joins a multicast group
Receive() Receives a UDP datagram from a remote host
Send() Sends a UDP datagram to a remote host

Property Get/Set Description

Active Get/set Indicates whether a connection has been made to a
remote host

Client Get/set Gets or sets the socket handle

Table 12.11 UdpClient Class Methods and Properties

The following code shows how you can create a socket that sends a
UDP datagram to a specific host and port:

using System;

using System.Data;

using System.Net;

using System.Net.Sockets;

namespace udpTest {

class UdpTestSend {

static void Main(string[] args) {

// Setup the target device address. For this sample, we

// are assuming it is a machine at 192.168.123.199, and on

// port 40040.

System.Net.IPEndPoint ipTarget = new

IPEndPoint(System.Net.IPAddress.Parse

("192.168.123.199"), 40040);

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 579

System.Net.Sockets.UdpClient udpSend = new

UdpClient(ipTarget);

// Send a datagram to the target device

byte[] sendBytes = System.Text.Encoding.ASCII.

GetBytes("Testing a datagram buffer");

udpSend.Send(sendBytes, sendBytes.Length);

}

}

}

The code for receiving the datagram would look like the following:

using System;

using System.Data;

using System.Net;

using System.Net.Sockets;

namespace udpTest {

class UdpTestListen {

static void Main(string[] args) {

// Listen for datagrams on port 40040

System.Net.Sockets.UdpClient udpListener = new

UdpClient();

if(udpListener == null)

return;

// Create an endpoint for the incoming datagram

IPEndPoint remoteEndPoint = new IPEndPoint

(IPAddress.Any, 40040);

// Get the datagram

byte[] recvBytes = udpListener.Receive(ref

remoteEndPoint);

string returnData = System.Text.Encoding.ASCII.

GetString(recvBytes, 0, recvBytes.Length);

// Do something with the data....

}

}

}

580 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 580

Internet Protocols and the .NET Pluggable
Protocol Model

When requesting data over the Internet using a standardized protocol
such as HTTP (the protocol for the Web), you use a Uniform Resource
Identifier (URI) to specify the protocol, server, and name of the resource
that you are attempting to access. The .NET Compact Framework pro-
vides two abstract classes for handling any Internet resource request
and response: System.Net.WebRequest and System.Net.Web
Response.

Client applications use the WebRequest class to make the request
for a specific URI from an Internet location over a specific protocol (such
as HTTP or FTP). Instead of calling a constructor for the WebRequest
class, you initialize a new request by calling the WebRequest.
Create() method. This automatically instantiates a new request object
based on the protocol that you used for the request. For example, if you
are trying to access a resource on the Web using the HTTP protocol, you
are returned an HttpWebRequest object for which you can set proper-
ties and receive a response stream.

Once your request has been configured, you can call the Web
Request.GetResponse() method to get a Stream class that is used
to receive the data from the request.

The WebRequest object is an abstract class that contains the meth-
ods and properties described in Table 12.12.

Internet Protocols and the .NET Pluggable Protocol Model 581

Method Description

Abort() Cancels an asynchronous request to an Internet
resource

BeginGetRequestStream() Begins an asynchronous
GetRequestStream() operation

BeginGetResponse() Begins an asynchronous GetResponse()
operation

Create() Creates a new WebRequest object
EndGetRequestStream() Ends an asynchronous GetRequestStream()

operation
EndGetResponse() Ends an asynchronous GetResponse()

operation

Table 12.12 WebRequest Class Methods and Properties

(continued)

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 581

The WebResponse object is also abstract, and contains the methods
and properties described in Table 12.13.

582 Chapter 12 The .NET Compact Framework

Method Description

GetRequestStream() Gets a Stream class for writing data to the
Internet resource

GetResponse() Gets a WebResponse object that returns the
response to an Internet request

RegisterPrefix() Registers a new URI type

Property Get/Set Description

ConnectionGroupName Get/set Abstract property used to get or set the
connection group name in descendant
classes

ContentLength Get/set Abstract property used to get or set
the length of the request data

ContentType Get/set Abstract property used to get or set the
content type of the request

Credentials Get/set Abstract property used to get or set
the credentials for the request

Headers Get/set Abstract property used to get or set the
headers and values for the request

Method Get/set Abstract property used to get or set
the method used for the request

PreAuthenticate Get/set Abstract property used to determine
whether the request should be pre-
authenticated

Proxy Get/set Abstract property used to get or set
the proxy to be used for the request

RequestUri Get/set Abstract property used to get or set
the URI for the request

Timeout Get/set Abstract property used to get or set
the length of time before the request
times out

Table 12.12 WebRequest Class Methods and Properties (continued)

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 582

Both the WebRequest and WebResponse abstract classes form the
basis for what is known as pluggable protocols. The concept of plug-
gable protocols is fairly straightforward—a client application can make a
request for any Internet resource using a URI and not have to worry
about the underlying details of the network protocol being used. When a
request is made using the WebRequest.Create() method, the appro-
priate protocol-specific class is automatically instantiated and returned to
the client application.

Consider the following request for a Web resource:

// Set up the URI

System.Uri urlRequest = new System.Uri("http://www.furrygoat.com/");

// Make the request

HttpWebRequest httpReq = (HttpWebRequest)WebRequest.

Create(urlRequest);

// Get the response

HttpWebResponse webResponse = (HttpWebResponse)httpReq.

GetResponse();

Internet Protocols and the .NET Pluggable Protocol Model 583

Method Description

Close() Closes the response stream
GetResponseStream() Gets the Stream for reading the response

Property Get/Set Description

ContentLength Get/set Abstract property used to get or set the length of
the data being received

ContentType Get/set Abstract property used to get or set the content
type for the data being received

Headers Get/set Abstract property used to get or set the headers
and values of the request

RequestUri Get/set Abstract property used to get or set the URI for
the resource requested

Table 12.13 WebResponse Class Methods and Properties

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 583

This request will return a new object that is based on the Http
WebRequest class. The HttpWebRequest class is actually derived from
WebRequest, but adds all of the protocol specifics surrounding HTTP.

What makes the pluggable protocol model extremely useful is that
you can also use it to create your own classes for handling new protocols
that are not native to the .NET Compact Framework.

Creating a Pluggable Protocol

Any new class that is designed to be used as a pluggable protocol is always
derived from WebRequest and WebResponse. All new pluggable pro-
tocol classes must also be registered with the base WebRequest object
in order for the WebRequest.Create()method to appropriately instan-
tiate the correct object for the protocol.

To register a new protocol with the WebRequest class, you can use
the following function:

public static bool WebRequest.RegisterPrefix(string prefix,

IWebRequestCreate creator);

The first parameter, prefix, is a string that represents the protocol
that will be used in URI requests for the new object. For example, if you
were creating a new protocol that handled requests for resources over
the File Transfer Protocol (such as ftp://ftp.microsoft.com/
dir/filename.txt), you could simply use ftp for the prefix value.
The creator parameter should be set to an object that implements the
IWebRequestCreate interface, which is used to create the new
WebRequest class.

The following code shows the basic layout for creating a new protocol-
specific class that can be used by the WebRequest.Create() method:

/// <summary>Ftp request protocol handler</summary>

class FtpWebRequest: WebRequest {

// Private internal variables.

private NetworkCredential reqCredentials;

private WebHeaderCollection reqHeaders;

private WebProxy reqProxy;

private System.Uri reqUri;

private string reqConnGroup;

private long reqContentLength;

private string reqContentType;

private string reqMethod;

584 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 584

private bool reqPreAuthen;

private int reqTimeout;

// Constructor

public FtpWebRequest(System.Uri uri) {

reqHeaders = new WebHeaderCollection();

reqUri = uri;

}

// Properties

public override string ConnectionGroupName {

get { return reqConnGroup; }

set { reqConnGroup = value; }

}

public override long ContentLength {

get { return reqContentLength; }

set { reqContentLength = value; }

}

public override string ContentType {

get { return reqContentType; }

set { reqContentType = value; }

}

public override ICredentials Credentials {

get { return reqCredentials; }

set { reqCredentials = (System.Net.NetworkCredential)

value; }

}

public override WebHeaderCollection Headers {

get { return reqHeaders; }

set { reqHeaders = value; }

}

public override string Method {

get { return reqMethod; }

set { reqMethod = value; }

}

public override bool PreAuthenticate {

get { return reqPreAuthen; }

set { reqPreAuthen = value; }

}

public override IWebProxy Proxy {

get { return reqProxy; }

set { reqProxy = (System.Net.WebProxy)value; }

}

public override Uri RequestUri {

Internet Protocols and the .NET Pluggable Protocol Model 585

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 585

get { return reqUri; }

}

public override int Timeout {

get { return reqTimeout; }

set { reqTimeout = value; }

}

// Methods. These are just stubbed in here for this example.

// In an actual FTP client, you would need to implement these by

// using p/Invoke to call into the WinInet FTP functions.

public override void Abort() {

base.Abort();

}

public override IAsyncResult BeginGetRequestStream

(AsyncCallback callback, object state) {

return base.BeginGetRequestStream (callback, state);

}

public override IAsyncResult BeginGetResponse

(AsyncCallback callback, object state) {

return base.BeginGetResponse (callback, state);

}

public override Stream EndGetRequestStream(IAsyncResult

asyncResult) {

return base.EndGetRequestStream (asyncResult);

}

public override WebResponse EndGetResponse(IAsyncResult

asyncResult) {

return base.EndGetResponse (asyncResult);

}

public override Stream GetRequestStream() {

return base.GetRequestStream ();

}

public override WebResponse GetResponse() {

return base.GetResponse();

}

}

/// <summary>Ftp request registration interface</summary>

class FtpWebRequestCreate: IWebRequestCreate {

public System.Net.WebRequest Create(System.Uri uri) {

586 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 586

System.Net.WebRequest request = new FtpWebRequest

(uri);

return request;

}

}

/// <summary>Ftp request response handler</summary>

class FtpWebResponse: WebResponse {

// Private internal variables.

private WebHeaderCollection respHeaders;

private System.Uri respUri;

private long respContentLength;

private string respContentType;

// Properties

public override long ContentLength {

get { return respContentLength; }

set { respContentLength = value; }

}

public override string ContentType {

get { return respContentType; }

set { respContentType = value; }

}

public override WebHeaderCollection Headers {

get { return respHeaders; }

set { respHeaders = value; }

}

public override Uri ResponseUri {

get { return reqUri; }

}

// Methods. These are just stubbed in here for this example.

// In an actual FTP client, you would need to implement these by

// using p/Invoke to call into the WinInet FTP functions.

public override void Close() {

base.Close ();

}

public override Stream GetResponseStream() {

return base.GetResponseStream ();

}

}

Internet Protocols and the .NET Pluggable Protocol Model 587

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 587

Remember that you also need to register the protocol with the
WebRequest class in order for it to be properly instantiated:

class FtpTest {

static void Main(string[] args) {

// Create a pluggable protocol

System.Uri urlRequest = new

System.Uri("ftp://ftp.microsoft.com/developr/

readme.txt");

// Register it

WebRequest.RegisterPrefix("ftp", new

FtpWebRequestCreate());

// Make the request

FtpWebRequest ftpClient = (FtpWebRequest)WebRequest.

Create(urlRequest);

// Get the response

FtpWebResponse ftpResponse = (FtpWebResponse)

ftpClient.GetResponse();

// Use a StreamReader class to read in the response

StreamReader responseStream = new

StreamReader(ftpResponse.GetResponseStream(),

System.Text.Encoding.ASCII);

// Since FTP can be binary or ASCII, you would want

// to copy it in chunks to the destination file...

// Close the stream

responseStream.Close();

}

}

Accessing Content on the Web

One of the built-in pluggable protocols available in the .NET Compact
Framework for handling HTTP and HTTPS requests to the Internet is
the HttpWebRequest class. As with any other protocol-specific class, it
has been derived from the WebRequest class and can be created by
using the WebRequest.Create() method:

588 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 588

HttpWebRequest httpReq =

(HttpWebRequest)WebRequest.Create("http://www.

furrygoat.com");

The HttpWebRequest class contains the methods and properties
described in Table 12.14.

Internet Protocols and the .NET Pluggable Protocol Model 589

Method Description

Abort() Cancels an asynchronous request to an
Internet resource

AddRange() Adds a Range header to the request
BeginGetRequestStream() Begins an asynchronous

GetRequestStream() operation
BeginGetResponse() Begins an asynchronous GetResponse()

operation
EndGetRequestStream() Ends an asynchronous GetRequestStream()

operation
EndGetResponse() Ends an asynchronous GetResponse()

operation
GetRequestStream() Gets a Stream class for writing data to the

Internet resource
GetResponse() Gets a WebResponse object that returns the

response to an Internet request
RegisterPrefix() Registers a new URI type

Property Get/Set Description

Accept Get/set Gets or sets the HTTP Accept header
Address Get Gets the URI of the resource that

responded to the request
AllowAutoRedirect Get/set Indicates whether the request should

follow a redirect
AllowWriteStream Get/set Indicates whether to buffer the data sent
Buffering to the resource
Connection Get/set Gets or sets the HTTP Connection

header
ConnectionGroupName Get/set Gets or sets the name of the connection

group

Table 12.14 HttpWebRequest Class Methods and Properties

(continued)

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 589

590 Chapter 12 The .NET Compact Framework

Property Get/Set Description

ContentLength Get/set Gets or sets the HTTP Content-Length
header

ContentType Get/set Gets or sets the HTTP Content-Type
header

ContinueDelegate Get/set Gets or sets the delegate for HTTP
requests

Credentials Get/set Gets or sets credentials for the request
Expect Get/set Gets or sets the HTTP Expect header
Headers Get Gets the collection of HTTP headers for

the request
IfModifiedSince Get/set Gets or sets the HTTP If-Modified-Since

header
KeepAlive Get/set Indicates whether or not the HTTP

request should use a persistent
connection

MaximumAutomatic Get/set Gets or sets the number of HTTP
Redirections redirects the request will comply with

MediaType Get/set Gets or sets the media type of the request
Method Get/set Gets or sets the HTTP method used with

the request
Pipelined Get/set Indicates whether the request is pipelined
PreAuthenticate Get/set Indicates whether to pre-authenticate a

request
ProtocolVersion Get/set Gets or sets the HTTP version to use with

the request
Proxy Get/set Gets or sets proxy information
Referer Get/set Gets or sets the HTTP Referer header
RequestUri Get Gets the original request URI
SendChunked Get/set Indicates whether to send the data in

segments
ServicePoint Get Gets the service point for the request
Timeout Get/set Gets or sets the time-out value
TransferEncoding Get/set Gets or sets the HTTP Transfer-

Encoding header
UserAgent Get/set Gets or sets the HTTP User-Agent

header

Table 12.14 HttpWebRequest Class Methods and Properties (continued)

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 590

To get the results for the request that was made by the HttpWeb
Request object, you can use the GetResponse() method:

HttpWebResponse webResponse =

(HttpWebResponse)httpReq.GetResponse();

The HttpWebResponse class supports the methods and properties
described in Table 12.15.

Internet Protocols and the .NET Pluggable Protocol Model 591

Method Description

Close() Closes the response stream
GetResponseHeader() Gets the header that was returned for the response
GetResponseStream() Gets the Stream for reading the response

Property Get/Set Description

CharacterSet Get Gets the character set for the response
ContentEncoding Get Gets the encoding scheme used for the

response
ContentLength Get Gets the length of the response
ContentType Get Gets the type of the response
Headers Get Gets the headers associated with the response
LastModified Get Gets the last modified time of the response
Method Get Gets the method used to return the response
ProtocolVersion Get Gets the HTTP version used for the response
ResponseUri Get Gets the URI of the resource that responded

to the request
Server Get Gets the name of the server that sent the

response
StatusCode Get Gets the HTTP status code for the response
StatusDescription Get Gets the HTTP status description for the

response

Table 12.15 HttpWebResponse Class Methods and Properties

The following code shows how to create a new request for a Web
resource, using the StreamReader class to read in the response that
you receive from the Web server:

using System;

using System.Data;

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 591

using System.Net;

using System.IO;

namespace WebSample {

class WebTest {

static void Main(string[] args) {

// Make a new WebRequest object

System.Uri urlRequest = new

System.Uri("http://www.furrygoat.com/");

HttpWebRequest webClient = (HttpWebRequest)

WebRequest.Create(urlRequest);

// Get the response

HttpWebResponse webResponse = (HttpWebResponse)

webClient.GetResponse();

// Use a StreamReader class to read in the response

StreamReader responseStream = new StreamReader(

webResponse.GetResponseStream(),

System.Text.Encoding.ASCII);

// Copy the stream to a string, do something with it

// string strResponse = responseStream.ReadToEnd();

// Close the stream

responseStream.Close();

}

}

}

The response stream, strResponse, contains the HTML code that
was downloaded from the Web site:

<HTML>

<title>The Furrygoat Experience</title>

<body>

<p>This is the Furrygoat homepage!

</p>

</body>

</HTML>

592 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 592

Consuming Web Services

.NET Web Services is a form of distributed computing that enables your
application to use the logic of a remote component over the Internet
using standard protocols. Web Services is one of the most exciting
aspects of using the Compact Framework on a mobile device such as
Pocket PC, because it enables you to create rich applications that can
access Web Service data from one or many sources without being teth-
ered to a desktop.

For example, consider a Pocket PC device that has a GPS unit
attached to it over the serial port (you may someday even be able to use a
Pocket PC Phone Edition device to request your current position based
on the nearest cellular tower). You could hypothetically use a Web Ser-
vice to request a map of you current surroundings based on the longitude
and latitude that the GPS provides. You could then access another Web
Service to get a list of the ATMs or restaurants in your local area. By
using Web Services, your applications can focus on tying remote data
together into a useful program, rather than concentrate on how to get the
data to your device, or replicate functionality that has already been devel-
oped elsewhere.

The .NET Compact Framework supports the following functionality
regarding Web Services on a Pocket PC device:

� All Web Services must be based on the HTTP protocol. Other
protocols, such as SMTP, are not supported.

� Data is transmitted using the Simple Object Access Protocol
(SOAP) XML format.

� The Compact Framework supports consuming Web Services by
client applications only, and does not natively support hosting
them. If you need to support hosting a Web Service using the
Compact Framework, you can manually build an HTTP listener
(using the TcpListener class) and manually handle incoming
SOAP requests.

TIP: A great Web site for finding Web Services that are publicly available
on the Internet is www.xmethods.com. There you can find Web Services
for everything from currency conversion to stock quotes.

In the next section, you will learn what is involved on the client side
to consume a Web Service on the Pocket PC.

Consuming Web Services 593

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 593

The Microsoft TerraServer Web Service

The Microsoft TerraServer, located at http://terraserver.microsoft.com,
is a massive database (about 3.3 terabytes) of both satellite images and
topographic maps for much of the United States. By using TerraServer’s
search engine, you can zoom in on aerial images for almost any street in
the U.S., as well as obtain data about surrounding landmarks. Terra-
Server fortunately also provides a Web Service that you can use to per-
form queries and get maps from the database (which is rather nice, as it
would be rather difficult to store all 3.3 terabytes on a Pocket PC).

In this section, we will use the TerraServer Web Services (also called
TerraService) as an example of how you can use and consume .NET Web
Services on a Pocket PC device using the .NET Compact Framework.
More information about the Web Service API that TerraServer provides
is available at http://terraserver.homeadvisor.msn.com/webservices.aspx.

The first thing you need to do to consume a Web Service is create a
new project. To do this, select the Smart Device Application project type
under the Visual C# Project tree. For this example, let’s call the new proj-
ect TerraServiceTest.

After the project has been created, you need to add a new reference
for the Web Service you are planning to use in your class. All you need to
do is right-click on References in the Solution Explorer and select Add
Web Reference (see Figure 12.1).

The Add Web Reference dialog box will appear (see Figure 12.2). In
it, you specify the URL for the WSDL or ASMX file that describes the
Web Service. The TerraServer Web Service description is located at
http://terraserver.homeadvisor.msn.com/TerraService.asmx.

After you have entered the URL, click the Add Reference button.
This will cause Visual Studio to generate a proxy class that will be used by

594 Chapter 12 The .NET Compact Framework

Figure 12.1 Adding a Web reference

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 594

your project to access the Web Service. Once this has completed, you will
notice that the reference to the Web Service is now in your project (see
Figure 12.3).

Consuming Web Services 595

Figure 12.2 Entering the URL for the Web Service

Figure 12.3 The Web reference is added to the project.

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 595

Now, all you need to do to use the TerraServer Web Service is add
the namespace to your current project as follows:

using TerraServiceTest.com.msn.homeadvisor.terraserver;

That’s it! Your C# program can now use the APIs and structures that
are part of the Web Service just as if the component were on the device.

Let’s take a look at some sample code that uses TerraService to
download a “tile” of satellite image data for the Redmond, Washington,
area:

using System;

using System.Data;

using System.IO;

using TerraServiceTest.com.msn.homeadvisor.terraserver;

namespace TerraServiceTest {

/// <summary>Summary description for Class1. </summary>

class Class1 {

/// <summary> The main entry point for the

/// application. </summary>

static void Main(string[] args) {

// Create a new TerraService object

TerraService ts = new TerraService();

// Build a place to request tile information on

Place pl = new Place();

pl.City = "Redmond";

pl.State = "WA";

pl.Country = "USA";

PlaceFacts pf = ts.GetPlaceFacts(pl);

// Get the bounding box for the area

AreaBoundingBox abb = ts.GetAreaFromPt(pf.Center,

Theme.Photo, Scale.Scale16m, 640, 480);

// Grab the center tile

Byte[] imageBytes = ts.GetTile(abb.Center.

TileMeta.Id);

// Create a new file and dump the buffer to it

FileStream outputFileStream = new FileStream

("\\map.jpg", FileMode.CreateNew);

596 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 596

BinaryWriter outputBinaryWriter = new BinaryWriter

(outputFileStream);

// Write

outputBinaryWriter.Write(imageBytes, 0, imageBytes.

Length);

// Clean up

outputBinaryWriter.Close();

outputFileStream.Close();

}

}

}

After the class has completed, you can view the downloaded map by
launching Pocket Internet Explorer (see Figure 12.4).

Consuming Web Services 597

Figure 12.4 Satellite map of the Redmond, WA, area downloaded via
TerraServer

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 597

Pocket PC and P/Invoke

The last topic we are going to cover regarding the .NET Compact
Framework is its ability to call into unmanaged code using Platform
Invoke (P/Invoke). As you have seen throughout this book, most of the
APIs that are supported on a Pocket PC platform are exported by using
dynamic link libraries (DLLs) that your application imports. By using the
P/Invoke service, you can also access the same API functions from within
a .NET application. This enables you to integrate much of the functional-
ity that is native to the Pocket PC, and not natively supported by the
Compact Framework. For example, the Pocket PC Phone Edition sup-
ports the capability to send and receive SMS messages (see Chapter 8).
Although the Compact Framework does not come with any classes to
support this, you can use P/Invoke to enable your managed code to call
into the unmanaged SMS API found in the cellcore.dll library.

To declare within your application a method that will use P/Invoke,
you need to use the DllImport attribute, which supports the fields
described in Table 12.16.

598 Chapter 12 The .NET Compact Framework

Field Description

EntryPoint The function name that you want to call into
CharSet Specifies how the string arguments should be marshaled
CallingConvention Specifies the calling convention to use when passing

arguments
SetLastError Set this value to TRUE to enable calling the

Marshal.GetLastWin32Error method to check if an
error occurred when invoking this method

Table 12.16 DllImport Attributes

For example, the following code shows how you can use the Message
Box() function from a managed application by using P/Invoke:

using System;

using System.Data;

using System.Runtime.InteropServices;

namespace invokeTest {

class Class1 {

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 598

// Hook up Windows API methods

[DllImport("coredll.dll", EntryPoint="MessageBox",

CharSet=CharSet.Unicode, SetLastError=true)]

static extern Int32 MessageBox(Int32 hWnd, string

stText,

string stCaption, Int32 mbType);

static void Main(string[] args) {

// Call into the MessageBox function

MessageBox(0, "MessageText", "MessageCaption", 0);

}

}

}

Once a function has been declared with the DllImport attribute,
you can then call it in the same manner as any other managed function.

Note a few minor differences regarding P/Invoke on the .NET Com-
pact Framework when comparing it to its desktop counterpart:

� There is no Unicode-to-ANSI string conversion. All string pointers
are passed to an unmanaged function as a Unicode string.

� There is no marshaling of objects contained within structures.
� If a function returns a pointer to a structure, it is not marshaled to

a managed structure. You need to create a wrapper function that
handles simple data types.

� Platform Invoke services does not support COM interoperability
with the Compact Framework. If you wish to call into COM
objects, you need to create a wrapper DLL that exports non-
COM-based functions.

� The DllImport attribute supports only the CharSet.Unicode
and CharSet.Auto character sets.

� The DllImport attribute supports only the Calling
Convention.Winapi calling convention.

Sending an SMS Message from .NET

The following example shows a slightly more complicated way of using
the Platform Invoke services. Because the Compact Framework does not
support the marshaling of objects that are contained within a structure,
you need to create a C++ “wrapper” library in order to call the Pocket PC
Phone Edition’s SMS API functions (see Chapter 8).

Pocket PC and P/Invoke 599

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 599

First, create the wrapper library using Embedded Visual C++ 3.0.
The code for the library will look as follows:

// First is the definition file for the DLL

// smsinvoke.def

LIBRARY SMSINVOKE

EXPORTS

SendSMSInvokeMsg @1

// Here is the wrapper DLL

// smsinvoke.cpp

#include <windows.h>

#include <sms.h>

#ifdef __cplusplus

extern "C" {

#endif

__declspec(dllexport) BOOL SendSMSInvokeMsg(TCHAR

*tchPhoneNumber, TCHAR *tchMessage);

#ifdef __cplusplus

}

#endif

BOOL WINAPI DllMain(HANDLE hinstDLL, DWORD dwReason,

LPVOID lpvReserved)

{

return TRUE;

}

BOOL SendSMSInvokeMsg(TCHAR *tchPhoneNumber, TCHAR

*tchMessage)

{

SMS_HANDLE hSms = NULL;

HANDLE hSmsEvent = NULL;

HRESULT hr = S_OK;

BOOL fReturn = FALSE;

// Make sure we have a number and a message

if(!tchPhoneNumber || !tchMessage)

return fReturn;

600 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 600

// Open up SMS

hr = SmsOpen(SMS_MSGTYPE_TEXT, SMS_MODE_SEND, &hSms,

&hSmsEvent);

if(FAILED(hr)) {

OutputDebugString(TEXT("Could not open a handle to

the SMS text message service."));

return fReturn;

}

// Wait for SMS to become signaled as ready

DWORD dwReturn = 0;

dwReturn = WaitForSingleObject(hSmsEvent, INFINITE);

// SMS Event has become signaled

if(dwReturn == WAIT_ABANDONED || dwReturn ==

WAIT_TIMEOUT) {OutputDebugString(TEXT("No longer waiting for

a message"));

SmsClose(hSms);

return fReturn;

}

// Send an SMS Message through default SMSC

SMS_ADDRESS smsDestination;

SMS_MESSAGE_ID smsMsgId = 0;

// Set the destination address for the message

memset(&smsDestination, 0, sizeof(SMS_ADDRESS));

smsDestination.smsatAddressType = SMSAT_INTERNATIONAL;

_tcsncpy(smsDestination.ptsAddress, tchPhoneNumber,

SMS_MAX_ADDRESS_LENGTH);

// Create the message

DWORD dwMessageLength = 0;

dwMessageLength = lstrlen(tchMessage)*sizeof(TCHAR);

// Configure the Text Provider

TEXT_PROVIDER_SPECIFIC_DATA txtProviderData;

DWORD dwProviderLength = 0;

memset(&txtProviderData, 0, sizeof(TEXT_PROVIDER_

SPECIFIC_DATA));

Pocket PC and P/Invoke 601

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 601

txtProviderData.dwMessageOptions =

PS_MESSAGE_OPTION_STATUSREPORT;

txtProviderData.psMessageClass = PS_MESSAGE_CLASS0;

txtProviderData.psReplaceOption = PSRO_NONE;

dwProviderLength = sizeof(TEXT_PROVIDER_SPECIFIC_DATA);

// Send the message

hr = SmsSendMessage(hSms, NULL, &smsDestination, NULL,

(BYTE *)tchMessage, dwMessageLength, (LPBYTE)&txtProviderData,

dwProviderLength, SMSDE_OPTIMAL, SMS_OPTION_DELIVERY_NONE,

&smsMsgId);

if(FAILED(hr))

OutputDebugString(TEXT("Could not send SMS Text

Message."));

else {

OutputDebugString(TEXT("Message has been sent."));

fReturn = TRUE;

}

SmsClose(hSms);

return fReturn;

}

Second, use P/Invoke from C# to send an SMS by calling into the
wrapper function, as follows:

using System;

using System.Data;

using System.Runtime.InteropServices;

namespace SmsInvokeTest {

class Class1 {

// Hook up to wrapper function

[DllImport("smsinvoke.dll", EntryPoint=

"SendSMSInvokeMsg", CharSet=CharSet.Unicode,

SetLastError=true)]

static extern Int32 SendSmsMessage(string

stPhoneNumber, string stMessage);

static void Main(string[] args) {

// Create a message, and send it via SMS

602 Chapter 12 The .NET Compact Framework

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 602

string stPhone = "4254432273";

string stMessage = "Hi there from the Compact

Framework!";

int nResult = 0;

nResult = SendSmsMessage(stPhone, stMessage);

}

}

}

Pocket PC and P/Invoke 603

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 603

Makofsky_ch12.qxd.ps 6/12/03 11:06 AM Page 604

