

19

C

HAPTER

 3

A

DAPTER

An object is a

client

 if it needs to call your code. In some cases, client code
will be written after your code exists and the developer can mold the cli-
ent to use the interfaces of the objects that you provide. In other cases, cli-
ents may be developed independently of your code. For example, a
rocket simulation program might be designed to use rocket information
that you supply, but such a simulation will have its own definition of how
a rocket should behave. In such circumstances, you may find that an
existing class performs the services that a client needs but with different
method names. In this situation, you can apply the

A

DAPTER

 pattern. The
intent of

A

DAPTER

 is to provide the interface that a client expects while
using the services of a class with a different interface.

Adapting to an Interface

When you need to adapt your code, you may find that the client devel-
oper planned well for such circumstances. This is evident when the
developer provides an interface that defines the services that the client
code needs, as the example in Figure 3.1 shows. A client class makes calls
to a

RequiredMethod()

 method that is declared in an interface. You may
have found an existing class with a method that can fulfill the client’s
needs, with a name such as

UsefulMethod()

. You can adapt the existing
class to meet the client’s needs by writing a class that extends

Existing-

Class

, implements

RequiredInterface

, and overrides

RequiredMethod()

 so
that it delegates its requests to

UsefulMethod()

.

20 Chapter 3 • Adapter

The

NewClass

 class in Figure 3.1 is an example of

A

DAPTER

. An instance of
this class is an instance of

RequiredInterface

. In other words, the

New-

Class

 class meets the needs of the client.

For a more concrete example, suppose you are working with a package
that simulates the flight and timing of rockets such as those you manufac-
ture at Oozinoz. The simulation package includes an event simulator that
explores the effects of launching several rockets, along with an interface
that specifies a rocket’s behavior. Figure 3.2 shows this package.

Figure 3.1 When a developer of client code thoughtfully defines the
client’s needs, you may be able to fulfill the interface by
adapting existing code.

RequiredInterface

«interface»

NewClass

RequiredMethod()

RequiredMethod()

ExistingClass

UsefulMethod()

Client

Adapting to an Interface 21

Suppose that at Oozinoz you have a

PhysicalRocket

 class that you want
to plug into the simulation. This class has methods that supply, approxi-
mately, the behavior that the simulator needs. In this situation, you can
apply

A

DAPTER

, creating a subclass of

PhysicalRocket

 that implements
the

IRocketSim

 interface. Figure 3.3 partially shows this design.

Figure 3.2 The

Simulation

 package clearly defines its requirements for
simulating the flight of a rocket.

EventSim

Simulation

IRocketSim

«interface»

GetMass():double

GetThrust():double

SetSimTime(t:double)

22 Chapter 3 • Adapter

The

PhysicalRocket

 class has the information that the simulator needs,
but its methods do not exactly match those that the simulation declares in
the

IRocketSim

 interface. Most of the differences occur because the simu-
lator keeps an internal clock and occasionally updates simulated objects
by calling a

SetSimTime()

 method. To adapt the

PhysicalRocket

 class to
meet the simulator’s needs, an

OozinozRocket

 object can maintain a

_time

instance variable that it can pass to the methods of the

PhysicalRocket

class as needed.

Figure 3.3 When complete, this diagram shows the design of a class that
adapts the

Rocket

 class to meet the needs of the

IRocketSim

interface.

OozinozRocket

PhysicalRocket

GetMass(t:double):double

GetThrust(t:double):double

PhysicalRocket(
burnArea:double,
burnRate:double,
fuelMass:double,
totalMass:double)

GetBurnTime():double

IRocketSim

«interface»

GetMass():double

GetThrust():double

SetSimTime(t:double)

Adapting to an Interface 23

The code for

PhysicalRocket

 is somewhat complex as it embodies the
physics that Oozinoz uses to model a rocket. However, it is exactly that
logic we want to reuse without reimplementing. The

OozinozRocket

 class
simply translates calls to use its superclass’s methods. The code for this
new subclass will look something like:

public class OozinozRocket : PhysicalRocket, IRocketSim
{
 private double _time;
 public OozinozRocket(
 double burnArea, double burnRate,
 double fuelMass, double totalMass)
 : base (burnArea, burnRate, fuelMass, totalMass)
 {
 }
 public double GetMass()
 {
 // challenge!
 }
 public double Thrust()
 {
 // challenge!
 }
 public void SetSimTime (double time)
 {
 _time = time;
 }
}

When a client defines its expectations in an interface, you can apply

A

DAPTER

 by supplying a class that implements a provided interface and
that subclasses an existing class. You may also be able to apply

A

DAPTER

Challenge 3.1

Complete the class diagram in Figure 3.3 to show the design of an

OozinozRocket

 class that lets a

PhysicalRocket

 object participate in a
simulation as an

IRocketSim

 object.

A solution appears on page 350.

Challenge 3.2

Complete the code for the

OozinozRocket

 class, including methods

GetMass()

 and

GetThrust()

.

A solution appears on page 351.

24 Chapter 3 • Adapter

even if no interface exists to define a client’s expectations. In this situa-
tion, you must use an “object adapter.”

Class and Object Adapters

The designs in Figures 3.1 and 3.3 show

class adapters

 that adapt through
subclassing. In a class adapter design, the new adapter class implements
the desired interface and subclasses an existing class. This approach will
not always work, particularly when the set of methods that you need to
adapt is not specified in a C# interface. In such a case, you can create an

object adapter,

 an adapter that uses delegation rather than subclassing. Fig-
ure 3.4 shows this design.

The

NewClass

 class in Figure 3.4 is an example of

A

DAPTER

. An instance of
this class is an instance of the

RequiredClass

 class. In other words, the

NewClass

 class meets the needs of the client. The

NewClass

 class can adapt
the

ExistingClass

 class to meet the client’s needs by using an instance of

ExistingClass

.

Figure 3.4 You can create an object adapter by subclassing the class that
you need, fulfilling the required methods by relying on an
object of an existing class.

RequiredClass

NewClass

RequiredMethod()

RequiredMethod()

Client

ExistingClass

UsefulMethod()

Class and Object Adapters 25

For a more concrete example, suppose that the simulation package
worked directly with a

Skyrocket

 class, without specifying an interface to
define the behaviors the simulation needs. Figure 3.5 shows this class.

The

Skyrocket

 class uses a fairly primitive model of the physics of a
rocket. For example, it assumes that the rocket is entirely consumed as its
fuel burns. Suppose that you want to apply the more sophisticated physi-
cal model that the Oozinoz

PhysicalRocket

 class uses. To adapt the logic
in the

PhysicalRocket

 class to the needs of the simulation, you can create
an

OozinozSkyrocket

 class as an object adapter that subclasses

Skyrocket

and that uses a

PhysicalRocket

 object, as Figure 3.6 shows.

Figure 3.5 In this alternative design, the

Simulation

 package does not
specify the interface it needs for modeling a rocket.

EventSim

Simulation

Skyrocket

GetMass():double

GetThrust():double

SetSimTime(t:double)

Skyrocket(
mass:double,
thrust:double
burnTime:double)

26 Chapter 3 • Adapter

Notice that the

OozinozSkyrocket

 class subclasses from

Skyrocket

, not

PhysicalRocket

. This will allow an

OozinozSkyrocket

 object to serve as a
substitute wherever the simulation client needs a

Skyrocket object. The
Skyrocket class supports subclassing by making its _time variable pro-
tected (as shown in the UML diagram) and by making its methods vir-
tual (not shown in the diagram).

Figure 3.6 When complete, this diagram shows an object adapter design
that uses information from an existing class to meet the needs
that a client has of a Skyrocket object.

Skyrocket

OozinozSkyrocket

GetMass():double

GetThrust():double

SetSimTime(t:double)

Skyrocket(
mass:double,
thrust:double
burnTime:double)

PhysicalRocket

GetMass(t:double):double

GetThrust(t:double):double

PhysicalRocket(
burnArea:double,
burnRate:double,
fuelMass:double,
totalMass:double)

GetBurnTime():double

#_time:double
...

Class and Object Adapters 27

The code for the OozinozSkyrocket class might be as follows:
public class OozinozSkyrocket : Skyrocket
{
 private PhysicalRocket _rocket;
 public OozinozSkyrocket(PhysicalRocket r) :
 base (r.GetMass(0), r.GetThrust(0), r.GetBurnTime())
 {
 _rocket = r;
 }
 public override double GetMass()
 {
 return _rocket.GetMass(_simTime);
 }
 public override double GetThrust()
 {
 return _rocket.GetThrust(_simTime);
 }
}

The OozinozSkyrocket class lets you supply an OozinozSkyrocket object
anywhere the simulation package requires a Skyrocket object. In general,
object adapters partially overcome the problem of adapting an object to
an interface that is not expressly defined.

The object adapter for the Skyrocket class is a more dangerous design
than the class adapter that implements the IRocketSim interface. But we
should not complain too much. At least the Skyrocket designer marked
the methods as virtual. Suppose that this were not the case. Then the
OozinozSkyrocket class could not override the GetMass() or GetThrust()
methods. A subclass cannot force adaptability onto its superclass.

Challenge 3.3

Complete the class diagram in Figure 3.6 to show a design that allows
OozinozRocket objects to serve as Skyrocket objects.

A solution appears on page 351.

Challenge 3.4

Name one reason why the object adapter design that the
 OozinozSkyrocket class uses may be more fragile than a class adapter
approach.

Solutions appear on page 352.

28 Chapter 3 • Adapter

The best way to plan for adaptation is to define the needs of a client pro-
gram in an interface. If you do not foresee a specific type of adaptation,
you may still want other developers to be able to create object adapters
for your class. In this case, place a virtual modifier on any methods that
you want to let subclasses override.

Adapting Data in .NET
If you search for “adapter” in the online help for Visual Studio .NET, you
will find that almost all the results relate to adapting database data. This
is not too surprising, because a major goal of an n-tier architecture is to
define how data is represented in each tier: in persistent storage, in busi-
ness objects, and in visual presentations. An architecture must also sup-
ply mechanisms for transforming data between these representations, as
we will have frequent need to adapt data in one tier to the meet the needs
of another tier.

Although the .NET Framework Class Libraries provide ample support for
adapting data to the needs of different architectural layers, not all data
adapters are examples of the ADAPTER pattern. It is useful to look at a
data adapter example and then ask whether ADAPTER plays a role or
could play a role. Using the .NET FCL, it is easy to create an adapter that
can take a structured query language (SQL) query and extract database
data. The Oozinoz DataServices class encapsulates this adaptation as a
service as follows:

using System;
using System.Data;
using System.Data.OleDb;
//...
namespace DataLayer
{
 public class DataServices
 {
 //...
 public static OleDbDataAdapter
 CreateAdapter (string select)
 {
 return new OleDbDataAdapter(
 select, CreateConnection());
 }
 //...
 }
}

The static CreateAdapter() method returns an “adapter” of type OleDb-
DataAdapter that contains the results of a SQL select statement. One of the
most useful methods that the OleDbDataAdapter class supports is Fill(), a
method that pushes database data from the adapter object into a DataSet

Adapting Data in .NET 29

object. An instance of the DataSet class is essentially an in-memory rela-
tional database (sans engine) that houses tables and their relationships.
Several graphical control classes, such as the DataGrid class, can extract
data from a DataSet object. The OldDbDataAdapter, DataSet, and DataGrid
classes collaborate to make it easy to wire together applications that
whisk data along from a database, through a dataset, and into a visual
representation.

To see a data adapter in action at Oozinoz, we need first to take a quick
look at the Oozinoz UI utility class. This class provides several standard
graphical user interface (GUI) objects, including a standard font and a
standard DataGrid object, as the following code shows:

using System;
using System.Drawing;
using System.Windows.Forms;
namespace UserInterface
{
 public class UI
 {
 public static readonly UI NORMAL = new UI();
 protected Font _font =
 new Font("Book Antiqua", 18F);
 public virtual Font Font
 {
 get
 {
 return _font;
 }
 }
 //...
 public virtual DataGrid CreateGrid()
 {
 DataGrid g = new DataGrid();
 g.Dock = DockStyle.Fill;
 g.CaptionVisible = false;
 return g;
 }
 }
}

Using the UI class along with the OldDbDataAdapter, DataSet, and DataGrid
classes, a short program can marry a database adapter to a data grid to
display a database table as follows:

using System.Windows.Forms;
using System.Data;
using System.Data.OleDb;
using DataLayer;
using UserInterface;
public class ShowAdapter : Form
{
 public ShowAdapter()
 {
 DataSet d = new DataSet();

30 Chapter 3 • Adapter

 string s = "SELECT * FROM Rocket";
 OleDbDataAdapter a = DataServices.CreateAdapter(s);
 a.Fill(d, "Rocket");
 a.Dispose();

 DataGrid g = UI.NORMAL.CreateGrid();
 g.SetDataBinding(d, "Rocket");
 Controls.Add(g);

 Text = "All My Rockets";
 Font = UI.NORMAL.Font;
 }
 static void Main()
 {
 Application.Run(new ShowAdapter());
 }
}

This program creates an OleDbDataAdapter object that reads all the data in
the Rocket table in the database. (The Rocket table is actually a “query” in
the oozinoz.mdb Microsoft Access database. You can download this data-
base and all the files that go with this book from www.oozinoz.com. See
Appendix C, “Oozinoz Source,” for help with obtaining the source.)

The adapter’s Fill() method creates a DataTable object within the dataset
and names the table "Rocket". The program then releases its database
resources with a call to Dispose() and creates a DataGrid object as the only
control in the form. The SetDataBinding() method causes the grid to dis-
play data from the Rocket table within the supplied dataset.

Running this program produces the display shown in Figure 3.7.

Adapting Data in .NET 31

This example shows a flow of data from database through to presenta-
tion, but does not show the ADAPTER pattern at play. If ADAPTER were
present, we would see an interface that defines the DataGrid class’s needs
(for a class adapter) or we would see subclasses of DataGrid (for an object
adapter).

The lack of ADAPTER in this example does not imply that the design is
inflexible. In fact, the logic in the SetDataBinding() method accepts many
different types of arguments. A program can pass this method a DataSet
instance, a DataTable instance, a DataView instance, a DataViewManager
instance, or an instance of any class that implements the IListSource or
IList interfaces. The method can also accept a one-dimensional array.
Flexible indeed! But, rather than handling so many different sources of
data, the DataGrid class might actually be more flexible if it defined its
expectations in an interface. Figure 3.8 shows this approach, along with a
class that adapts the interface to an instance of IList.

Figure 3.7 A few lines of C# code can produce this presentation of a
database table’s contents.

32 Chapter 3 • Adapter

Note that the design in Figure 3.8 is merely a proposal: The existing FCL
classes are not laid out this way and there is no ITable interface in the
FCL. The design suggests that the developers of the DataGrid class might
supply an ITable interface to define the DataGrid class’s needs. Then,
instead of building support for IList objects into the DataGrid class’s Set-
DataBinding() method, a ListTable class could adapt a list’s data to
appear as a table.

Figure 3.8 This design uses an adapter to adapt a source object’s data to
the needs of a DataGrid object.

ITable

«interface» DataGrid

IList

GetColumnCount():int

ListTable

GetValueAt(row:int,col:int):Object

GetRowCount():int

GetColumnName():String

GetColumnCount():int

GetValueAt(row:int,col:int):Object

GetRowCount():int

GetColumnName():String

Challenge 3.5

The DataGrid class accepts many different data types as its data source
instead of specifying its requirements in an interface. List two benefits of
an ADAPTER design that would specify an ITable interface and that
would provide adapter classes for different data sources.

A solution appears on page 353.

Summary 33

As data flows from persistent storage through business layers and into
presentation code, there are often opportunities to adapt a data source to
meet the needs of a data consumer. The ADAPTER pattern is not too preva-
lent in .NET, and a greater presence would arguably slim down control
classes and provide more flexibility in how adaptation occurs.

Summary
The ADAPTER pattern lets you use an existing class to meet a client class’s
needs. When a client specifies its requirements in an interface, you can
usually create a new class that implements the interface and subclasses an
existing class. This approach creates a class adapter that translates a client’s
calls into calls to the existing class’s methods.

When a client does not specify the interface it requires, you may still be
able to apply ADAPTER, creating a new subclass class of the client that uses
an instance of the existing class. This approach creates an object adapter
that forwards a client’s calls to an instance of the existing class. This
approach can be dangerous, especially if you don’t (or perhaps can’t)
override all the methods that the client might call.

Data flow in the .NET architecture provides many examples of adapta-
tion, but few examples of the ADAPTER pattern. This is arguably a missed
opportunity that occurs when a class such as DataGrid does not define its
needs in an interface. When you architect your own systems, consider the
power and flexibility that you and other developers can derive from an
architecture that uses ADAPTER to advantage.

