
343

C H A P T E R 10
The Theory of Cryptography

ONE of the essential ingredients of e-business and enterprise computing is
cryptography. Cryptography plays a critical role in J2SE and J2EE security, as
Part IV of this book demonstrates.

This chapter explains the theory of cryptography that will be used in Chap-
ters 11, 12, and 13. First, this chapter describes secret-key cryptographic systems,
as they are at the heart of most cryptographic services, including bulk-data en-
cryption, owing to their inherent performance advantage. Next is an overview of
public-key encryption, which is essential for conducting e-business, particularly
across public networks, because of the relative ease of distributing cryptographic
keys. In Chapter 11, secret- and public-key cryptography services are described
in the context of the standard Java APIs: the Java Cryptography Architecture and
the Java Cryptography Extension.

For readers who may feel intimidated by the mathematical jargon associated
with cryptography, we have tried to explain the mathematics associated with cryp-
tography in a clear and simple way. Our intent is to demystify the concepts and
terms surrounding cryptography.

10.1 The Purpose of Cryptography
The purpose of cryptography is to protect data transmitted in the likely presence
of an adversary. As shown in Figure 10.1, a cryptographic transformation of data
is a procedure by which plaintext data is disguised, or encrypted, resulting in an
altered text, called ciphertext, that does not reveal the original input. The cipher-
text can be reverse-transformed by a designated recipient so that the original
plaintext can be recovered.

Cryptography plays an essential role in

• Authentication. This process to prove the identity of an entity can be
based on something you know, such as a password; something you have,

Pistoia_ch10.fm Page 343 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY344

such as an encryption key or card; something you are, such as biometric
measurements, including retinal scans or voice recognition; or any com-
bination of these.

• Data confidentiality. With this property, information is not made avail-
able or disclosed to unauthorized individuals, entities, or processes. When
two or more parties are involved in a communication, the purpose of con-
fidentiality is to guarantee that only those parties can understand the data
exchanged. Confidentiality is enforced by encryption.

• Data integrity. This property refers to data that has not been changed,
destroyed, or lost in an unauthorized or accidental manner. The need for
data integrity is especially evident if data is transmitted across a nonsecure
network, such as the Internet, where a man-in-the-middle attack can easily
be mounted. Integrity is enforced by mathematical functions applied to the
message being transmitted.

• Nonrepudiation. Repudiation is the denial by one of the entities in-
volved in a communication of having participated in all or part of the com-
munication. Nonrepudiation is protection against repudiation and can be of
two types.

• Nonrepudiation with proof of origin provides the recipient of data with
evidence that proves the origin of the data and thus protects the recip-
ient against an attempt by the originator to falsely deny sending the
data. Its purpose is to prove that a particular transaction took place, by
establishing accountability of information about a particular event or
action to its originating entity.

• Nonrepudiation with proof of receipt provides the originator of data
with evidence proving that data was received as addressed and thus pro-
tects the originator against an attempt by the recipient to falsely deny
receiving the data.

Figure 10.1. The Process of Encryption and Decryption

Plaintext PlaintextCiphertext

Pistoia_ch10.fm Page 344 Friday, January 16, 2004 1:34 PM

���� �����	
������
��
�����
���� ���

��� ����� �	�
��� ��
� �

�� ��������������� ��� ��
�� 	�� 	� �������� ��� ����

����������������������������� �������
����
�
��������

����	���������	�
����

�	��
�	���	�� ���������� 	����
�� ��� ��
� �	�	� �
���� �
�

	�
�� ��
���� ��

�
	��	������

�

������
�

������	��������	�������
	����������������������
������	
���	�������

�

�
����
����
�����������������
���
�����
	���������
��� !���	��
�	��
��
�
��

�
����� ����

�
� ��� �������� ��� ����
��� �	�
�� ��� ������� �
�"�
���� ����� 	�� ��

���

�
��

��

� 	

� �"�� �
��	
�� 	��
�	��
�� ��� �
�����
	���� #�

� $���

� �!�%&�� ��

�
�

���
���
�����
	�������
��
����
������
�
������
�����

�
'�������
��	�
�	����

�
����	��"	����
�����
��
������
��
����	����	���
'��������������
���
�����
	�������

�
����
������
�
������
�����

�
'���������

����
�������

�	�
�������
��
����	��"	�

��
�����
��
������
��
����	����	���
'��

(���	��
�	����	��������

������	���"
	��
��
���)	��������
��
�����
	����

�

���
��
��

�
��
�	�����	�������

����
������	��
�	��
���*�"
�

�������	�����	�

������
�
���

��"���������
�	"	

������
����

�������	����

����	������
����
��

$�
�
'	���
���������

�����++��
�	��
��,
���
�"�

��	

�����	"	

� ��	������

��������	����
�

���
���
�����
	����	

�
��
���	���	
��������
�++���
�������

-	��
����"
��	��������	������
�����
	�����
��	
����	��	��
	�����
��

����

	���
'��	������ �
�

���� ����� ��� ��
� ������
���	����� �
��

��� ��	�� �
�����
	���

	���
�������*�"
�

�����

�
��
���	���
�����
	����� �

���
��	

��
����
���,�
�

'��	������	��
��	�
��"�
��

�
��
���
���
������"
����
��"	�������

�����������
��

�����+��
��
���	
�����	
��������������
�"�
�����	���	�
�������
����
��
��	�
�

.	�	����
�
�����

����	�����������
��	���
����	�������
��
����������
��
��	�
��,	�

��
��
��	�
��
�����
����
�
���	��"
��������
�����
��
��	�
/�0��
�"
�	��
�����	�

��
� �
��	�
� ��� �
��� 	�� 	���
����	�
��
������ 	��� "	�� ���� ������
�� 	��

� �
���

�

	�
���"
�	����"	������������

�"�
��

���
��
��

��	��

����	�
1�
����
���

���1��
��
��	�
������	��������	�����
��
�����
���
��
�����
	������
����
����

�����	
��
�
 +
�

���
��	���2�������
��(��
������

Different but Related Keys

Public-Key, or Asymmetric, Cryptography

Secret-Key, or Symmetric, Cryptography

Same Shared Key

Pistoia_ch10.fm Page 345 Monday, January 19, 2004 3:24 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY346

authenticate the message. Therefore, nonrepudiation is an essential feature of
cryptographic systems e-businesses use.

10.2 Secret-Key Cryptography
In secret-key cryptography, a sequence of bits, called the secret key, is used as an
input to a mathematical function to encrypt a plaintext message; the same key is
also used to decrypt the resulting ciphertext message and obtain the original plain-
text (see Figure 10.3). As the same key is used to both encrypt and decrypt data, a
secret key is also called a symmetric key.

10.2.1 Algorithms and Techniques

In this section, we examine the most common cryptographic algorithms that are
based on the use of a secret key.

10.2.1.1 Substitutions and Transpositions
Some very early cryptographic algorithms manipulated the original plaintext,
character by character, using the techniques of substitution and transposition.

• A substitution, or permutation, replaces a character of the input stream by
a character from the alphabet set of the target ciphertext.

• A transposition replaces a character from the original plaintext by another
character of that same plaintext. This results in shuffling yet still preserv-
ing the characters of the original plaintext.

An example of a substitution is the famous Caesar Cipher, which is said to
have been used by Julius Caesar to communicate with his army. The Caesar

Figure 10.3. Secret-Key Encryption and Decryption

Plaintext PlaintextCiphertext

Encryption Decryption

Secret Key

Pistoia_ch10.fm Page 346 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 347

Cipher replaces each character of the input text by the third character to its right
in the alphabet set. In Figure 10.4, the value 3 is added to the position of the input
character; then modulo 26 is taken to yield the replacement character. If we
assign numerical equivalents of 0–25 to the 26-letter alphabet A–Z, the trans-
formation sends each plain character with position P onto the character with posi-
tion f(P) := P + 3 (mod 26).

A transposition cipher consists of breaking the original plaintext into separate
blocks first. A deterministic procedure is then applied to shuffle characters across
different blocks. For example, a transposition can split the secret message "PHONE
HOME" into the two separate blocks "PHONE" and " HOME". Then, characters are
cyclically shuffled across the two blocks to result in the ciphertext of "POMHE
HOEN". Another example of a simple transposition cipher consists of writing the
plaintext along a two-dimensional matrix of fixed rows and columns and then sim-
ply transposing the matrix, as shown in Figure 10.5.

Figure 10.4. The Caesar Cipher

Figure 10.5. Transposition Matrix

D E F G H I J K L M N O P Q R S T U V W X Y Z A B CSubstitution

A B C D E F G H I J K L M N O P Q R S T U V W X Y ZOriginal

This is my will.

Build 4 x 4 matrix A.

A =
Transpose matrix A.

AT =

Get the ciphertext.

T mihiylis ls w.

1 3

2T h i s
i s

m y w
i l l .

T m i
h i y l
i s l
s w .

Pistoia_ch10.fm Page 347 Wednesday, January 21, 2004 2:52 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY348

Generally, transposition ciphers are easy to break. However, composing them
by setting the result of one transposition as the input of another one greatly en-
hances the ciphering against attacks.

With the age of computers, early modern cryptography carried on these same
concepts, using the various elementary transformations that we have listed. The
primary difference is that these transformations now apply at the bit level of the
binary representation of data instead of characters only.

10.2.1.2 The XOR Operation
A common transformation is the exclusive OR (XOR) operation, denoted by the
symbols XOR, or ⊕. XOR is a bitwise function that maps an element of {0, 1} ×
{0, 1} onto the set {0, 1}, as shown in Figure 10.6. If we interpret the second
operand as a key value, the XOR operation can be thought of as a bit-level substi-
tution based on the bit values of the key. With such an assumption, XOR sends a
0 or 1 to itself when the corresponding key bit is 0 and inverts a 0 into a 1 and a
1 into a 0 when the corresponding key bit is 1.

The last property implies that when using a fixed-key value, the XOR operation
can be applied to encipher a plaintext, which can then be recovered by simply
applying the XOR operation to the ciphertext with the same key value. This prop-
erty has led to the proliferation of many variants of weak encryption methods that
rely solely on the simple XOR operation and thus are easily breakable.

Figure 10.7 shows how to XOR blocks of some plaintext P with a fixed-length
key K, leading to ciphertext P′. The figure also shows that if P′ is then XORed with
K, the original plaintext P is produced.

Knowing a block of plaintext and its XOR transformation directly leads to K,
by way of XORing the plaintext with the corresponding ciphertext, as shown in Fig-
ure 10.8. Similarly, by knowing two ciphertext blocks P′ and Q′ alone, one can
XOR them together to yield the XOR of the corresponding plaintext blocks P and Q,
as in Figure 10.9.

Figure 10.6. The XOR Operation Table

XOR:{0,1} {0,1} {0,1}� �

011

100

10XOR

Pistoia_ch10.fm Page 348 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 349

Figure 10.7. XORing Plaintext Blocks with a Fixed-Length Key

Figure 10.8. How to Get the Fixed-Length Key by XORing a Plaintext Block with Its
Corresponding Ciphertext Block

Figure 10.9. Ciphertext-Block XOR and Plaintext-Block XOR Equality

P = 1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1

K = 1 1 0 0 0 1 0 1

P’ = 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0

0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0= P’

1 1 0 0 0 1 0 11 1 0 0 0 1 0 11 1 0 0 0 1 0 1XOR K

1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1P

1 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 0 1 0 1 0 0 0 1= P

1 1 0 0 0 1 0 11 1 0 0 0 1 0 11 1 0 0 0 1 0 1XOR K

0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0P’

1 1 0 0 0 1 0 1K

0 1 1 0 1 0 0 1XOR P’ block

1 0 1 0 1 1 0 0P block

0 1 1 0 1 0 0 1P’ block

1 0 1 0 1 1 0 0P block

1 0 0 1 1 0 1 1Q’ block

0 1 0 1 1 1 1 0Q block

1 1 1 1 0 0 1 0P’ block XOR Q’ block

1 1 1 1 0 0 1 0P block XOR Q block

Pistoia_ch10.fm Page 349 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY350

Therefore, examining the bit patterns of P ⊕ Q can easily result in recovering
one of the plaintexts by knowing some information about the other. The plaintext
can then be XORed with its ciphertext to yield the keystream, where the keystream
is the key used to encipher the plaintexts.

Despite the simplicity of the XOR operation and the weakness of encryption
algorithms that use it with fixed keys, there is a way to make the sole use of such
basic operation result in a perfect encryption scheme. A one-time pad is a key of
randomly generated digits that is used only once. Use of such a key yields a per-
fect cipher. Such a cipher is provably secure against attacks in which a code
breaker has knowledge of a set of ciphertexts.

The security of the one-time pad stems from the fact that the uncertainty in
attempting to guess the keystream is equal to that of directly guessing the plain-
text. Note, however, that the length of the keystream for the one-time pad is equal
to that of the plaintext being encrypted. Such a property makes it difficult to main-
tain and distribute keys, which could be very long. This difficulty has led to the
development of stream ciphers whereby the key is pseudorandomly generated
from a fixed secret key.

10.2.1.3 Stream Ciphers
Stream ciphers are geared for use when memory buffering is limited or when
characters are individually transformed as they become available for transmission.
Because stream ciphers generally transform plaintext bits independently from one
another, error propagation remains limited in the event of a transmission error. For
example, the XOR operation lends itself to be used as a stream cipher.

10.2.1.4 Block Ciphers
Block ciphers divide a plaintext into identically sized blocks. Generally, the blocks
are of length greater than or equal to 64 bits. The same transformations are applied
to each block to perform the encryption.

All the widely known secret-key block-cipher algorithms exhibit the crypto-
graphic properties desired in a block cipher. Foremost of these is the fact that each
bit of the ciphertext should depend on all key bits. Changing any key bit should
result in a 50 percent chance of changing any resulting ciphertext bit. Further-
more, no statistical relationships should be inferrable between a plaintext and its
corresponding ciphertext. In the reminder of this section, we present the most
common secret-key block-cipher algorithms.

Feistel Ciphers. A Feistel cipher uses a noninvertible function f, obtained as a
sequence of substitutions and transpositions. A Feistel cipher consists of the fol-
lowing basic steps:

1. A plaintext message m is divided into two separate blocks of equal size:
the left block, L, and the right block, R.

Pistoia_ch10.fm Page 350 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 351

2. The original message, m, is transformed into an intermediate message, m′,
in which the left block, L′, is the same as R, and the right block, R′, is L ⊕
f(R), where the symbol ⊕, as usual, denotes the XOR operation.

These two steps are shown in Figure 10.10. Even though f is a noninvertible
function, this design permits recovering m from m′ by concatenating R′ ⊕ f(L′) =
R′ ⊕ f(R) = L with L′ = R.

Steps 1 and 2 must be iteratively repeated a number of times for a Feistel
cipher to be secure. The number of iterations depends on the strength of the func-
tion f. It is possible to prove that, even with the strongest-possible function f, the
iterations must be at least three in order for the Feistel cipher to be reliable.

DES. One of the most widely recognized secret-key block ciphers is the Data
Encryption Standard (DES) algorithm. DES was developed by IBM cryptogra-
phers in the early 1970s and was adopted as a U.S. government standard in 1976.
DES is intended for the protection of sensitive but unclassified electronic informa-
tion. Because it uses the same key for both encryption and decryption, the algo-
rithm is referred to as a symmetric cipher.

DES is a block cipher in which a 64-bit input plaintext block is transformed
into a corresponding 64-bit ciphertext output. DES uses a 56-bit key expressed as
a 64-bit quantity in which the least relevant bit in each of the 8 bytes is used for
parity checking. DES is a Feistel algorithm that iterates over the data 16 times,
using a combination of permutation and substitution transformations along with
standard arithmetic and logical operations, such as XOR, based on the key value.

For many years, the DES algorithm withstood attacks. Recently, as the result
of increased speed of computing systems, DES has succumbed to brute-force
attack on several occasions, demonstrating its vulnerability to exhaustive search-
ing of the key space.

Figure 10.10. Basic Steps of a Feistel Cipher Algorithm

L Rm

m′

ƒ

⊕

L′ R ′

=

Pistoia_ch10.fm Page 351 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY352

Triple-DES. Triple-DES is the DES algorithm applied three times, using either
two or three keys.

• With two keys, Triple-DES proceeds by using the first key to encrypt a
block of data. The second key is then used to decrypt the result of the pre-
vious encryption. Finally, the first key is once more used to encrypt the re-
sult from the second step. Formally, let us indicate the encrypting and
decrypting functions based on a given key k with Ek and Dk, respectively.
If k1 and k2 are the two Triple-DES keys and if m is the message to be en-
crypted, the encrypted message m′ is obtained as

To decrypt m′ and obtain the original plaintext m, it is necessary to
compute

• The three-key Triple-DES, stronger than the two-key Triple-DES, uses a
separate key for each of the three steps described. With the notation that
we have introduced, if , , and are three distinct keys, a plaintext
message m is encrypted into its corresponding ciphertext message m′ by

To decrypt m′ and obtain the original plaintext m, it is then necessary to
compute

In Triple-DES, the second key is used for decryption rather than for encryp-
tion to allow Triple-DES to be compatible with DES. A system using Triple-DES
can still initiate a communication with a system using DES by using only one key
k. Formally, by choosing , the ciphertext m′ corresponding to a
plaintext message m is obtained from

By contrast, m is obtained from m′ by computing

This shows that Triple-DES with only one key reduces itself to DES.

Ek1
Dk2

Ek1
m()()()

Dk1
Ek2

Dk1
m ′()()()

k1 k2 k3

Ek3
Dk2

Ek1
m()()()

Dk1
Ek2

Dk3
m ′()()()

k1 k2 k3 k= = =

Ek Dk Ek m()()() Ek m()=

Dk Ek Dk m′()()() Dk m′()=

Pistoia_ch10.fm Page 352 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 353

IDEA. Although less visible than DES, the International Data Encryption Algo-
rithm (IDEA) has been classified by some contemporary cryptographers as the
most secure and reliable block algorithm. Like DES, IDEA encrypts plaintext data
organized in 64-bit input blocks and for each, outputs a corresponding 64-bit
ciphertext block. IDEA uses the same algorithm for encryption and decryption,
with a change in the key schedule during encryption. Unlike DES, IDEA uses a
128-bit secret key and dominantly uses operations from three algebraic groups;
XOR, addition modulo 216, and multiplication modulo 216 + 1. These operations are
combined to make eight computationally identical rounds, followed by an output
transformation resulting in the final ciphertext.

Rijndael. Recently chosen as the Advanced Encryption Standard (AES), a re-
placement of DES by the U.S. government, Rijndael is an iterated block cipher
with a variable block length and a variable key length, both of which can indepen-
dently be 128, 192, or 256 bits. The strong points of Rijndael are its simple and
elegant design and its being efficient and fast on modern processors. Rijndael uses
only simple whole-byte operations on single- and 4-byte words and requires a
relatively small amount of memory for its implementation. It is suitable for imple-
mentations on a wide range of processors, including 8-bit hardware, and power-
and space-restricted hardware, such as smart cards. It lends itself well to parallel
processing and pipelined multiarithmetic logic unit processors.

A major feature of the Rijndael algorithm is that it presents a departure from
the traditional Feistel ciphers. In such ciphers, some of the bits in the intermediate
states of a cipher are transposed unchanged. The Rijndael algorithm does not
adopt the Feistel structure. Instead, each round of transformations is composed of
three distinct invertible subtransformations that treat each bit of the intermediate
state of the cipher in a uniform and similar way.

10.2.1.5 Modes of Operation
Modes of operation are cryptographic techniques using block ciphers to encrypt
messages that are longer than the size of the block. The most common modes of
operation are electronic codebook (ECB) and cipher block chaining (CBC).

ECB. With the ECB mode of operation, a message is divided into blocks of
equal size. Each block is then encrypted using a secret key. Figure 10.11 shows
how ECB works, assuming the following.

1. The original message m is divided into n blocks .

2. For all , the plaintext block is encrypted into a cipher-
text block with a secret key k. The encryption function associated with k
is indicated with . In ECB mode, the block-cipher algorithm typically
used for encryption is DES.

m1 m2 … mn, , ,
i 1 2 … n, , ,= mi

ci
Ek

Pistoia_ch10.fm Page 353 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY354

3. The ciphertext blocks are concatenated to form the cipher-
text c corresponding to the message m.

ECB presents some limitations because each ciphertext block depends on one
plaintext block only, not on the entire message.

CBC. Given a secret key k, the CBC mode of operation works as follows (see
Figure 10.12).

1. The original message m is divided into n blocks .

2. A randomly chosen block of data is selected as the initial vector v. This
initial vector must be known to the receiver as well. Therefore, a possibil-
ity is for both the sender and the receiver to be able to generate v indepen-
dently as a function of the key k.

3. The first ciphertext block, , is obtained by XORing v with and en-
crypting the result of the XOR operation with the secret key k. In other
words,

Figure 10.11. ECB Mode

Figure 10.12. CBC Mode

m m1 m2 m
n

…

c c1 c2 c
n

…

E
k

E
k

E
k

c1 c2 … cn, , ,

m1 m2 … mn, , ,

c1 m1

c1 Ek v m⊕ 1()=

mm1 m2 m
n

…

cc1 c2 c
n

…

�

E
k

E
k

E
k

� �

v

Pistoia_ch10.fm Page 354 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 355

where is the encrypting function associated with the key k.

4. For all , the ciphertext block is obtained by XORing the
plaintext block with the ciphertext block and encrypting the
result of the XOR operation with the secret key k. In other words,

5. The ciphertext blocks are concatenated to form the cipher-
text c of the message m.

One of the key characteristics of CBC is that it uses a chaining mechanism that
causes the decryption of a block of ciphertext to depend on all the preceding
ciphertext blocks.

10.2.2 Secret-Key Security Attributes

This section examines the security implications of using secret-key cryptography.

10.2.2.1 Key Space
The strength of modern secret-key encryption methods no longer rests in the
secrecy of the algorithm being used but rather in the secrecy of the encryption key.
Breaking such cryptographic systems, therefore, can be achieved using a brute-
force attack, the process of exhaustive searches over the key space. The latter is
the set of all possible key values that a particular enciphering method can take.

For example, a generalization of the Caesar Cipher is an arbitrary permutation
over the English alphabet. This results in 26! (factorial) possible keys correspond-
ing to each of the permutations. Further constraining the permutation method to
one that simply maps each letter in the alphabet to one at a fixed number of posi-
tions to its right (with a wraparound) and by enciphering each letter at a time
(block length = 1), the key space narrows down to the much smaller set of the first
26 integers, {1, 2, … , 26}. It should be noted, however, that the level of a secret-
key encryption algorithm’s security is not necessarily proportional to the size of
the key space. For example, even though 26! is a very large number, it is possible
to break the generalization of the Caesar Cipher by means of statistical analysis.

Most common secret-key cryptographic systems use unique, randomly gener-
ated, fixed-size keys. These systems can certainly be exposed to the exhaustive
search of the key space. A necessary, although not sufficient, condition for any
such cryptographic systems to be secure is that the key space be large enough to
preclude exhaustive search attacks using computing power available today and for
the foreseeable future. As ironic as it may sound, efficiency of enciphering meth-
ods will aid in the exhaustive brute-force search attacks.

Ek

i 2 … n, ,= ci
mi ci 1–

ci Ek ci 1– mi⊕()=

c1 c2 … cn, , ,

Pistoia_ch10.fm Page 355 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY356

10.2.2.2 Confidentiality
Using a secret-key algorithm to encipher the plaintext form of some data content
allows only entities with the correct secret key to decrypt and hence retrieve the
original form of the disguised data. Reliability of the confidentiality service in this
case depends on the strength of the encryption algorithm and, perhaps more im-
portant, the length of the key used. The long lifetime of a secret key also might
help diminish assurance in such a confidentiality service. Increasing the frequency
with which a key is used increases the likelihood that an exhaustive key-search
attack will succeed. Most modern systems make use of secret keys that remain
valid for only the lifetime of a particular communication session.

10.2.2.3 Nonrepudiation
Secret-key cryptography alone is not sufficient to prevent the denial of an action
that has taken place, such as the initiation of an electronic transaction. Although
one can apply data privacy in such a scenario, the fundamental flaw of a non-
repudiation scheme based on secret-key cryptography alone is inherent in the fact
that the secret key is dispensed to more than one party.

10.2.2.4 Data Integrity and Data-Origin Authentication
At a much lesser cost than encrypting the entirety of a plaintext, data integrity and
data-origin authentication can be afforded by a secret cryptographic scheme using
a message authentication code (MAC) function. The basic idea is to attach to each
message m that is sent across a network the result h(m) of a mathematical function
h applied to the message m itself. If an error has occurred during the message
transmission, such that the received message a is different from the message m
that was originally sent, the message receiver will be able to detect the anomaly by
independently computing h(a) and comparing it to h(m) (see Figure 10.13).

The main component of a MAC function is a hash digest function (see Fig-
ure 10.14). Hash digest functions are considered one of the fundamental
primitives in modern cryptography. By definition, a hash digest function is a de-
terministic function that maps a message of arbitrary length to a string of fixed
length n. Typically, n is 128 or 160 bits. The result is commonly known as a mes-
sage digest. As the original data is often longer than its hash value, this result is
sometimes also referred to as the original message’s fingerprint.

Of course, a hash digest function is inherently noninjective. This simply
means that multiple messages will be mapping to the same digest. In fact, the uni-
verse of the messages that can be digested is potentially unlimited, whereas the
universe of all the message digests is limited by the set of the 2n strings with n bits.
However, the fundamental premise is that, depending on the strength of the hash-
ing algorithm, the hash value becomes a more compact representation of the
original data. This means that, although virtually possible, it should be computa-

Pistoia_ch10.fm Page 356 Friday, January 16, 2004 1:34 PM

10.2 SECRET-KEY CRYPTOGRAPHY 357

tionally infeasible to produce two messages having the same message digest or to
produce any message having a given, prespecified target message digest.

Message Digest V5 (MD5) and Secure Hash Algorithm V1 (SHA-1) are the
most widely used cryptographic hash functions. MD5 yields a 128-bit (16-byte)
hash value, whereas SHA-1 results in a 160-bit (20-byte) digest. SHA-1 appears to
be a cryptographically stronger function. On the other hand, MD5 edges SHA-1 in
computational performance and thus has become the de facto standard.

Hash functions alone cannot guarantee data integrity, because they fail in
guaranteeing data-origin authentication, defined as the ability to authenticate the
originator of a message (see Figure 10.15). The problem with digest functions is
that they are publicly available. If a message m is intercepted by an adversary after
being transmitted by Alice, the adversary can change m into a different message,
m′, compute h(m′), and send Bob the pair (m′, h(m′)). By simply applying the
function h to the received message m′, Bob has no means of detecting that an ad-
versary has replaced m with m′.

Data-origin authentication is inherently supported by secret-key cryptography,
provided that the key is shared by two entities only. When three or more parties
share the same key, however, origin authenticity can no longer be provided by

Figure 10.13. Data-Integrity Verification: Basic Scenario

Figure 10.14. Producing a Message Digest with a Hash Function

Alice

h

h(m)Message m

1. Apply function to messageh m.
2. Attach () to message .h m m
3. Send (()) to Bob.m,h m

1. Receive () from Alice.a,b
2. Apply function to .h a
3. If () , an anomaly has occurred.h a b≠

h

h(a)Message a

Bob

Hash

Function
hhh

Fixed Length,
Short Number
(16/20 bytes)

Message of Length n h

Pistoia_ch10.fm Page 357 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY358

secret-key cryptography alone. Various secret-key-based authentication protocols
have been developed to address this limitation. Public-key cryptography, de-
scribed in Section 10.3 on page 359, provides a simpler and more elegant solution
to this problem.

In contrast to using a pure and simple hash function to digest a message, a
MAC function combines a hash digest fuction with secret-key encryption and
yields a value that can be verified only by an entity having knowledge of the
secret key. This way, a MAC function takes care of the problem described in Fig-
ure 10.15 and enables both data integrity and data-origin authentication.

Another simple solution to achieve data integrity and data-origin authentica-
tion is to apply a regular hash function h, such as SHA-1 or MD5, but rather than
hashing the message m alone, the message is first concatenated with the key k, and
then the result of the concatenation is hashed. In other words, the sender attaches
to the message m the tag h(k, m). This solution, however, exposes some theoretical
weaknesses. A more reliable solution consists of attaching the tag h(k, h(k, m)).

A MAC can even be computed by using solely a secret-key block-cipher algo-
rithm. For example, the last ciphertext block, encrypted in CBC mode, yields the
final MAC value. This is a good choice for a MAC because one of the key charac-
teristics of CBC is that it uses a chaining mechanism that causes the decryption of
a block of ciphertext to depend on all the preceding ciphertext blocks. Therefore,

Figure 10.15. Data-Integrity Verification in the Presence of an Adversary

Alice Bob

h

h(m)Message m

Adversary

h(m)Message m

h

h(m�)Message m�

h

h(m�)Message m�

Pistoia_ch10.fm Page 358 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 359

the MAC so defined is a compact representation of the entire message that can be
computed only by an entity having knowledge of the secret key. Known instances
of this procedure use DES and Triple-DES, resulting in DES-MAC and Triple-
DES-MAC, respectively. A MAC mechanism that uses a cryptographic hash func-
tion is also referred to as HMAC. HMAC is specified in RFC 2104.1

10.3 Public-Key Cryptography
Public-key cryptography emerged in the mid-1970s with the work published by
Whitfield Diffie and Martin Hellman.2 The concept is simple and elegant yet has
had a huge impact on the science of cryptography and its application. Public-key
cryptography is based on the notion that encryption keys are related pairs, private
and public. The private key remains concealed by the key owner; the public key is
freely disseminated to various partners. Data encrypted using the public key can
be decrypted only by using the associated private key and vice versa. Because the
key used to encrypt plaintext is different from the key used to decrypt the cor-
responding ciphertext, public-key cryptography is also known as asymmetric
cryptography.

The premise behind public-key cryptography is that it should be computation-
ally infeasible to obtain the private key by simply knowing the public key. Toward
achieving this premise, modern public-key cryptography derives from sophisti-
cated mathematical foundations based on the one-way functions existing in the
abstractions of number theory.

A one-way function is an invertible function that is easy to compute but com-
putationally difficult to invert. A one-way trapdoor function is a one-way function
that can be easily inverted only if one knows a secret piece of information, known
as the trapdoor. Encryption is the easy one-way trapdoor function; its inverse,
decryption, is the difficult direction. Only with knowledge of the trapdoor—the
private key—is decryption as easy as encryption. Two of these currently known
one-way functions, factoring large numbers and computing discrete logarithms,
form the basis of modern public-key cryptography. Factoring large numbers is a
one-way trapdoor function, whereas computing discrete logarithms is a one-way
function with no trapdoors.

1. See http://www.ietf.org/rfc/rfc2104.txt.
2. W. Diffie and M. E. Hellman. “New Directions in Cryptography,” IEEE Transactions on

Information Theory 22, 6, (1976): 644–654.

Pistoia_ch10.fm Page 359 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY360

10.3.1 Algorithms and Techniques

This section examines the most common cryptographic algorithms that are based
on the use of a public- and private-key pair.

10.3.1.1 RSA
The most famous of the well-known trapdoor one-way functions is based on the
ease of multiplying two large prime numbers; the reverse process, factoring a very
large number, is far more complex. This consideration is at the basis of Rivest-
Shamir-Adleman (RSA), certainly the most widely used public-key encryption
algorithm.

Basic RSA Concepts. A prime number, by definition, is an integer that has no
positive divisors other than 1 and itself. A nonprime integer is called composite.
Two integers a ≥ 1 and b ≥ 2 are said to be relatively prime if their greatest com-
mon divisor GCD(a, b) is 1. The number of elements in the set

{a ∈ Z : 1 ≤ a < b, GCD(a, b) = 1}

where Z is the set of all integers, is often denoted by φ(b). The function φ is called
the Euler phi-function.

Every integer b ≥ 2 can be factored as a product of powers of primes in a
unique way. For example, 60 = 22 × 3 × 5. Factoring large numbers—numbers that
expressed in binary format take 1,024 bits or more—is known to be computation-
ally infeasible with current computing technology. Consequently, the one-way
trapdoor problem is to make a very large number a public knowledge and secretly
maintain its prime factors. With this in mind, we can now summarize the widely
adopted RSA public-key algorithm.

How the RSA Algorithm Works. In simple terms, the RSA algorithm centers
on three integer numbers: the public exponent, e; the private exponent, d; and the
modulus, n. The modulus is obtained as the product of two distinct, randomly
picked, very large primes, p and q. A well-known result from number theory im-
plies that φ(n) = (p − 1)(q − 1). The two numbers e and d are characterized by the
fact that they are greater than 1 and smaller than φ(n). In addition, e must be rela-
tively prime with φ(n), and it must also be de = 1 (mod φ(n)), which means that d
and e are the multiplicative inverse of the other modulo φ(n). The pair (e, n) is the
RSA public key, whereas the pair (d, n) is the RSA private key.

A block of plaintext P whose numerical equivalent is less than the modulus is
converted into a ciphertext block by the formula Pe (mod n). Conversely, a cipher-
text block C is converted back to its corresponding plaintext representation by the
formula Cd (mod n). These two formulas are the inverse of the other. Therefore,

Pistoia_ch10.fm Page 360 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 361

whatever is encrypted with the public key can be decrypted only with the corre-
sponding private key; conversely, whatever is encrypted with the private key can
be decrypted only with the corresponding public key.

To better understand how RSA works, let us consider an example involving
small numbers. We randomly pick two prime numbers, p = 7 and q = 11. This
implies that n = = 77 and φ(n) = (p − 1)(q − 1) = 60. A valid choice for
the public exponent is e = 13. By solving the equation 13d = 1 (mod 60), we get
d = 37. Therefore, the RSA public key in this case is the pair (13, 77), and the
corresponding RSA private key is the pair (37, 77). Let us now consider the
plaintext message P = 9. By encrypting it with the RSA public key, we obtain
the ciphertext message C = 913 (mod 77) = 58. To decrypt this message, we have
to apply the RSA private key and compute 5837 (mod 77) = 9, which yields the
original plaintext P.

To encrypt or decrypt a message, the RSA algorithm uniquely represents a
block of data in either a plaintext or ciphertext form as a very large number, which
is then raised to a large power. Note here that the length of the block is appropri-
ately sized so that the number representing the block is less than the modulus.
Computing such exponentiations would be very time consuming were it not for an
eloquent property that the operation of exponentiation in modular arithmetic
exhibits. This property is known as the modular exponentiation by the repeated
squaring method.

Note that the one-way trapdoor function discussed in this section requires
deciding on whether a randomly picked very large integer is prime. Primality test-
ing, however, is a much easier task than factorization. Several methods have been
devised to determine the primality of an odd number p, the most trivial of which is
to run through the odd numbers starting with 3 and determine whether any of such
numbers divides p. The process should terminate when the square root of p, ,
is reached, because if p is not a prime, the smallest of its nontrivial factors must be
less than or equal to . Owing to the time complexity that it requires, in practice
this procedure is stopped much earlier before reaching and is used as a first
step in a series of more complicated, but faster, primality test methods.

Security Considerations. Breaking the RSA algorithm is conjectured to be
equivalent to factoring the product of two large prime numbers. The reason is that
one has to extract the modulus n from the public-key value and proceed to factor it
as the product of the two primes p and q. Knowing p and q, it would be easy to
compute φ(n) = (p − 1)(q − 1), and the private key (d, n) could then be obtained by
solving the equation de = 1 (mod φ(n)) for the unknown d. With the complexity of
the fastest known factoring algorithm being in the order of |n|, where |n| is the total
number of the binary bits in the modulus n, this roughly means that, for example,
every additional 10 bits make the modulus ten times more difficult to factor. Given

p q×

p

p
p

Pistoia_ch10.fm Page 361 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY362

the state of factoring numbers, it is believed that keys with 2,048 bits are secure
into the future. The fastest known factoring algorithm to date is the number field
sieve.

10.3.1.2 Diffie-Hellman
The Diffie-Hellman (DH) key-agreement algorithm is an elegant procedure for
use by two entities establishing a secret cryptographic key over a public network
without the risk of exposing or physically exchanging it. Indeed, DH presents a
critical solution to the secret-key distribution problem. The security of the algo-
rithm relates to the one-way function found in the discrete logarithm problem.

Basic DH Concepts. Let q be a prime number. An integer α is called a primi-
tive root, or base generator of q, if the numbers α (mod q), α2 (mod q), ... , αq-1

(mod q) are distinct and consist of the integers from 1 to q – 1 in some permuta-
tions. For any integer y and a primitive root α of the prime number q, one can
find a unique integer exponent x such that y = αx (mod q). The exponent x is
referred to as the discrete logarithm of y for the base α modulo q. This is a one-
way function. In fact, computing y from x using this function is easy; for q about
1,000 bits long, this would take only a few thousand multiplications. However,
the inverse function, x = logα y (mod q), which yields x from y, is computation-
ally infeasible, as far as anyone knows; Diffie proved that with q still about 1,000
bits long and the best known algorithm, the discrete logarithm would take ap-
proximately 1030 operations.

How the DH Algorithm Works. The mathematics encompassed in the DH
key-agreement algorithm is fairly simple. Let q and α be as explained previously.
These two numbers are publicly available. Suppose that Alice and Bob want to
agree on a secret key. Alice generates as her private key a secret random number

 such that 1 ≤ < q and publishes the corresponding public key

 := (mod q)

Similarly, Bob generates as his private key a secret random number such that 1
≤ < q and publishes the corresponding public key

 := (mod q)

The secret key for Alice and Bob is

 := (mod q)

xA xA

yA αxA

xB
xB

yB αxB

KAB αxAxB

Pistoia_ch10.fm Page 362 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 363

Alice can obtain this key by getting from a public directory and then
computing

(mod q) = (mod q) = (mod q) =

Bob computes the same secret key in a similar way.
One problem in the algorithm that we have just described consists of finding

a primitive root α of a given prime number q. The definition of primitive root
does not help from a computational point of view, because it requires computing
q – 1 powers in the worst case for every attempt to find a primitive root. How-
ever, a known algebraic theorem proves that an integer α is a primitive root of 9
if αi ≠ 1 for any integer such that i is a divisor of q – 1. There-
fore, the problem is reduced to factoring q – 1 and testing that αi ≠ 1, where this
time i varies only in the set of the divisors of q – 1. Unfortunately, as we dis-
cussed in Section 10.3.1.1 on page 360, factoring a large number is computation-
ally infeasible too. In fact, this is exactly the one-way trapdoor function on which
the security of the RSA algorithm relies. However, a solution to this problem for
the DH algorithm consists of generating q – 1 before generating q itself. In other
words, it is possible to generate q – 1 as the product of known primes—in which
case, the factorization of q – 1 is known in advance—and subsequently test q for
primality. As discussed in Section 10.3.1.1 on page 360, primality testing is a
much easier task than factorization. An advantage of this algorithm is that its
security does not depend on the secrecy of q and α. Once a pair of integers (q, α)
has been found that satisfies the requirements described previously, the same pair
can be published—in cryptography books, for example—and reused by algo-
rithm implementors.

Security Considerations. With the algorithm described, Alice and Bob do not
have to physically exchange keys over unsecure networks, because they can com-
pute the same secret key independently of each other. An attacker would have to
compute KAB from the only public information available, yA and yB. No way to
do this is known other than computing the discrete logarithm of yA and yB to find
xA and xB, an operation that, as we said, is conjectured to be computationally
infeasible even with the fastest known algorithm.

In order for Bob and Alice to be able to compute the same secret key indepen-
dently of each other, they have to know each other’s public keys. A general secu-
rity problem that arises at this point is how to ascertain that the public key of an
entity belongs to that entity. The DH algorithm does not offer a direct solution to
this problem. However, we will see how to solve this problem in Section 10.3.4 on
page 372.

yB

yB

xA α
xBx

A α
xAx

B KAB

i 1 … q 1–, ,{ }∈

Pistoia_ch10.fm Page 363 Friday, January 16, 2004 1:34 PM

������� �	 ���
������
�

��������������� �

�������� �����	�
��
���

���������	���
��
�	��
���	���
	�
�
��	�
����	����	����	�
������	��	������
	���
��	��

�������	 �
�����
	 �����
���	 ��
	 ���	 �
��	 ��
��
��	 ����
�����	 �
�����
���
�

��������

����	�
����
�	����������	��
�� ��	��������
�����	
�	���	�����	��	�	
�	���	��
��

��	 ���	 �
�������	�O�	�
��	 ���	 ���	 ��	 ���	��
���	 ��	�!	 ��	 ���	 �����	 ���
���
��	 ��

�"���
��	��	���	��
�

���
�	��	��	��	��	���	�	�
�	
���	�����
��	���	�	���	�	����	��	������	
�	���	
���	����

��
��	#��	�������	O	
�	������	�����
��
���������	$�
	��
	��
�����	
�	
�	����
�
���	��

����
��
	�"���
���	��	���	��
�

$
��
�	%&�%'	�����	���	���
��
�	��
��	�
��	�"���
��	 �

�	��
�	��	��������	���	��	���
���	���
	���	���	��	��
���	��	��	���
��
�	��
��	��

����
��	����	
�	���	��
��	��
���	��	��	���
��
�	��
��	�
�	��	�	��
�
���	�
���	 ���

���	
�	O�	#��	���
��
��	��	���
�
��	��
	��	���
��
�	��
���	
��
�����	�
��	���	������

(�	
�	�����
�����	��	���	������
��	
�����

%� #��	��
��	��	
��
�
���	O�	
�	���	��������
���������	#�
�	�����	����	O)	*O�	���

��
	���	��
��	�	��	���	���
��
�	��
���	�	(O)	O	(�)	��

+� �	��
�
���	�
��	�����	���	���
��
�	��
��	��	���	��
���	�
��	���	����	���
�
�

������	���	 	���	 �	#��	��
�
���	�
��	����	�����	���

��
��	 ��	
��	
��
�
��	 ��
���	O�	 #�
�	
���
��	 ����	 	 ((O)	O�	 ���

�	#��
���
��	���	�����
��	��	�	��
��	
�	�	��
��	�
��	���	����	�

���
�
����	���	�����
��	�	���
�
�����	#�
�	�����
���
��	
�	
�����
����	
�	$
��

�
�	%&�%,�

-� .�	 	���	�	�
�	���	��
���	�
��	�
���
���	�	���
�
������	�
��	�	��
�
���	�
��

�������	����	���	�
��	���	��

�	��
��	��	
���
����
��	 �	.�	
�	���
��	����

����	 	 ��
���	 ���	
�	 ��
"���	 ������	 ���	 �
��	
�	 �������	 ��	 ���	 ��
��	 ��

�
���
	 	�
	��	
�	��
��	����	��	 ����	 	�
	 �	
������
�����

/������	 �	 �	���	�	 �
�	��	 ���	����	��
�
���	 �
���	
�	����	��	 	(�	(

)	O�	��
��	
���
��	 	(�)	* �	#�
�	�����
���
��	
�	
�����
����	
�

$
��
�	%&�%,�

0� #�	������	�	��
��	 �	�
��	���	�������	�
��	
�	 	���	�
��	���	����
	��
��	��

���
����
��	!�	#���	 	()	+)	*!�	#�
�	�����
���
��	
�	
�����
����	
�

$
��
�	%&�%,�

�
+
��� ��((�

-
��

+
�� �((()

�
+

�
-
�� �(()

�
+

�
-
�*)

�% � �,()) �+ � �*,())

�% �+

�% �+*)

�%

�%

�%) �% �)

�%

�% �%

Pistoia_ch10.fm Page 364 Monday, January 19, 2004 3:27 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 365

Figure 10.17 shows how to perform the addition operation on the elliptic curve
. It can be shown that if , the operation of addition

constructed on rules 1–4 has the following properties.

• It is well defined. Given any two points P and Q on an elliptic curve,
their sum P + Q is still a point on the same elliptic curve.

• It is associative. Given any three points P, Q, and R on an elliptic curve,
(P + Q) + R = P + (Q + R).

• It is commutative. Given any two points P and Q on an elliptic curve,
P + Q = Q + P.

• It possesses a unity element. Rule 1 establishes that the unity element
for the operation of addtion is the point at infinity, O.

• Every point on the elliptic curve has an inverse. Given any point P on
an elliptic curve, rules 1 and 2 show how to construct its inverse, –P.

Figure 10.16. An Elliptic Curve

1 2 3 4−4 −3 −2 −1

1

2

3

4

−4

−3

−2

−1

x

y

y
2

x
3

x–= 4a
3 27b

2 0≠+

Pistoia_ch10.fm Page 365 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY366

These properties can be summarized by saying that the set of the points of an
elliptic curve, coupled with the operation of addition that we have just defined, is
an abelian group. Multiplication of a point P on an elliptic curve by a positive
integer k is defined as the sum of k copies of P. Thus 2P = P + P, 3P = P + P + P,
and so on.

An elliptic curve can be defined on a finite field as well. Let p > 3 be a prime
number. The elliptic curve y2 = x3 + ax + b over Zp is the set of solutions (x, y) ∈
Zp × Zp to the congruence y2 = x3 + ax + b (mod p), where a, b ∈ Zp are con-
stants such that 4a3 + 27b2 ≠ 0 (mod p), together with a special point O, called the
point at infinity. Addition of two points on an elliptic curve and multiplication of a
point for an integer are defined in a way that is similar to elliptic curves over real
numbers.

Note that the equation of an elliptic curve over the finite field Zp is defined as
for real numbers. The only difference is that an elliptic curve Zp is not continuous.
Rather, the points that belong in the curve are only the pairs of non-negative
integers in the quadrant from (0, 0) to (p, p) that satisfy the equation modulo p.

Given an integer k < p and the equation Q = kP, where P and Q are two points
on an elliptic curve E over the finite field Zp, the one-way function here consists

Figure 10.17. The Addition Operation on an Elliptic Curve

Q

R

–P1

P1

S

–S

Pistoia_ch10.fm Page 366 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 367

of the easy operation of computing Q given k and P. The inverse problem of find-
ing k given P and Q is similar to the discrete logarithm problem and is, in practice,
intractable.

The Elliptic-Curve Algorithm. One straightforward application of the one-
way function to DH is for two entities Alice and Bob to publicly agree on a point
P on an elliptic curve E over a finite field Zp, where p is a very large prime
number (). The criterion in selecting P is that the smallest integer value of
n for which np = O be a very large prime number. The point P is known as the gen-
erator point. The elliptic curve and the generator point are parameters of the cryp-
tosystem known to all the participants.

To generate the key, the initiating entity, Alice, picks a random large integer
a < n, computes aP over E, and sends it to the entity Bob. The integer a is
Alice’s private key, whereas the point aP is her public key. Bob performs a simi-
lar computation with a random large number b and sends entity Alice the result
of bP. The integer b is Bob’s private key, whereas the point bP is his public key.
Both entities then compute the secret key K = abP, which is still a point over E.

Security Considerations. Given an elliptic curve E on a finite field Zp, where p
is a very large prime number, the security of elliptic-curve cryptography depends
on how difficult it is to determine the integer k given a point P on the curve and
its multiple kP. The fastest known technique for taking the elliptic-curve loga-
rithm is known as the Pollard rho method. With this algorithm, a considerably
smaller key size can be used for elliptic-curve cryptography compared to RSA.
Furthermore, it has been shown that for equal key size, the computational effort
required for elliptic-curve cryptography and RSA is comparable. Therefore, there
is a computational advantage to using elliptic-curve cryptography with a shorter
key length than a comparably secure RSA.

10.3.2 Public-Key Security Attributes

This section examines the security implications of using public-key cryptography.
Generally speaking, the strength of each algorithm is directly related to the type of
the one-way function being used and the length of the cryptographic keys. Invert-
ing the one-way functions we have discussed, namely, factoring a very large num-
ber and computing the discrete logarithm, is known to be practically infeasible
within the computing means and the theoretic knowledge available today.

10.3.2.1 Confidentiality
The premise of the privacy service here is achieved by encrypting data, using the
recipient’s public key, and the fact that decryption can be done only by using the
recipient’s private key. For example, if Alice needs to send a confidential message

p 2
180≈

Pistoia_ch10.fm Page 367 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY368

to Bob, she can encrypt it with Bob’s public key, knowing that only Bob will be
able to decrypt the ciphertext with his private key (see Figure 10.18).

Thus, only the recipient with knowledge of the private key is able to decrypt
the enciphered data. It is worth noting that a privacy service strongly depends on
the assurance that a public key is valid and legitimately belongs to the recipient.

One confidentiality problem that needs to be addressed by public-key encryp-
tion is the fact that in some cases, the plaintext corresponding to a given ciphertext
can be easily understood. As an example, we consider the scenario in which Alice
is a stock client and Bob a stockbroker, as shown in Figure 10.19.

Typically, Alice’s messages are all likely to be of the type “Buy” or “Sell.”
Knowing this, an attacker could build a table mapping ciphertexts to plaintexts.

Figure 10.18. Public-Key Scenario

Figure 10.19. Scenario Requiring Message Randomization

Encryption Decryption

Bob’s
Public Key

Bob’s
Private Key

Alice Bob

Plaintext PlaintextCiphertext

Alice: Stock Client Bob: Stockbroker

Message m = “Buy”/“Sell”

Encrypt

@#$=-^~$#*&?|!+%

Decrypt

Message m = “Buy”/“Sell”@#$=-^~$#*&?|!+%

Pistoia_ch10.fm Page 368 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 369

This would break the confidentiality of the transmission. Even worse, the attacker
could impersonate Alice and replace the ciphertext corresponding to “Buy” with
the ciphertext corresponding to “Sell” and vice versa (see Figure 10.20).

This problem can be solved by randomizing the message. Before encrypting
the plaintext message “Buy” or “Sell,” the message-randomizing algorithm on
Alice’s side inserts a meaningless sequence of bits, which is randomly generated.
As the ciphertext depends on the entire plaintext message, the ciphertexts pro-
duced by Alice are no longer recognizable. In addition, message randomization
reduces the risks of message-prediction-and-replay-attacks (see footnote 6 on
page 150).

10.3.2.2 Data Integrity, Data-Origin Authentication, and Nonrepudiation
As we said in Section 10.3.2.1 on page 367, privacy is provided by encrypting
data, using a publicly available key, typically the recipient’s public key. However,
an eavesdropper may intercept the data, substitute new data, and encrypt it using
the same public key. Simply applying a public-key algorithm to achieve privacy
does not guarantee data integrity; nor does it guarantee data-origin authentication.
In practice, digital signatures are the preferred method of achieving data integrity
and data-origin authenticity. Another service that is inherently offered through
digital signatures is nonrepudiation.

Figure 10.20. Message Randomization

@#$=-^~$

“Buy”

Encrypt

@#$=-^~$

#*&?|!+%

#*&?|!+%

Decrypt

“Sell”

Alice: Stock Client Bob: Stockbroker

Adversary

Pistoia_ch10.fm Page 369 Wednesday, January 21, 2004 2:53 PM

������� �	 ���
������
�

��������������� �

������ ��	�
���
�	��
����

���� ���� ��� 	�
��
�����
��	�����	���
��
����� ����� �������� ����� ���
�����

���
���� ���� �������� �������� ��� ��
�������� ����� 	��
���� ����������� ���
���� ����

����������������������������������
������������������	������������������������	�����

�����������
�������������	����������������	�
��
������	�����������	���������
��	���

��������������������
�����
�����������
��
����	�������������������������������

��	���������

����
���������
��	�����������������
������ ��������� ��� ���	�������
����� ����

�������
���
��	����
���
�����������
���

	������������ �������
��� ������������� ��� ��� ����� ���� �� ����� ��
��	����� ���� ������

��
������

���
���������������������� ����������������������������������!��
�����
��	������

���������������
������������	�
��
��������������
�������"�
�������
��������������

����������������
�
���������
�	�����#��
���
����
��	������������������"�
$��	���

����������%��
����������������	��������

��������������������
�
��������
����
���������������"�
$��	�
��
����������
��	�

���������������������	���������������������������
��!��
���������������������
����

�����!��
������
���������������������������������
��	�������������������������������

����� ��� �
�������
�� �		������ �����������
��� ���
����� ��� ���� 	������#����������

��������������
������
�������	��������!��
�$��	�����������

!����������		������������	���������	��
������������������������������������

�������������
��	��������������������"�
$��	�
��
�����
�������������
���
���������

!��
�$�� 	������� ���� ��� ��������� !��
�$�� �������� ����������� &�
�� ��� ��
������ ���

��
��	���������������������������������������"�
���
��	�������
�	�����#����������

����	�����������������������������!��
�$��	�
��
���������������!��
�$����������������

���"�
�������������������������������������
���

�����
��!��
��������������
����
��	�����������������������������"�
�����!��
�$�

	������� ���� ����
���� ����� ���
��	���� ���� �������� ����������� ����� ������� 	��
���

���
����������������	���������'��������

����()�*(+�

��	���������� ,�������-���������-
������

E-Mail
File Transfer

Floppy

Bob verifies
with

Alice’s
public key.

Alice signs
with her

own
private key.

Pistoia_ch10.fm Page 370 Monday, January 19, 2004 3:32 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 371

With the fundamental premise that the private key remains in the confines of
its owner, verifying a digital signature using the associated public key certainly
leaves no possibility for the originator to deny involvement. Denial, however, can
always take place on the basis that a private key has been compromised. A strong
nonrepudiation service never exposes the private keys it manages, even to the
owner. Tamper-proof hardware modules for private keys become necessary for a
legally binding nonrepudiation service.

If a confidentiality service is not needed, Alice can transmit the signed
document to Bob in its cleartext form. The signature is provided to Bob for data-
integrity verification, data-origin authentication, and nonrepudiation purposes.

The most well-known digital signature algorithms are RSA and Digital
Signature Algorithm (DSA). These algorithms are discussed in the next two
subsections.

10.3.3.1 RSA Signature
The RSA digital-signature algorithm proceeds along two main steps, as shown in
Figure 10.22.

1. Using one of the common hashing algorithms, such as MD5 or SHA-1, a
document is first digested into a much smaller representation: its hash
value.

2. The hash value of the document, rather than the entire document itself, is
then encrypted with the private key of the originator.

If confidentiality is needed, the document itself must be encrypted, as explained in
Section 10.3.2.2 on page 369.

Figure 10.22. The Process of Computing a Message’s RSA Digital Signature

Variable Length

Fixed Length
(128 or 160 bits)

Key Pair

Private Key

Public Key

Digital Signature

Data to Be Sent

Hashing Algorithm

Encrypt

Message Digest

Pistoia_ch10.fm Page 371 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY372

10.3.3.2 DSA Signature
Other types of digital signatures rely on algorithms designed solely for signing but
not encrypting. In other words, the digital signature is still obtained by encrypting
the hash value of a document with the originator’s private key, but the public and
private key pair here can be used only for digital signing, not for encrypting
arbitrary-size messages.

An example of this class of algorithms is the standard DSA, which computes a
signature over an arbitrary-size input, using SHA-1 as a message digest, five
public parameters, and a private key. DSA signatures have better performance
characteristics than RSA does.

10.3.4 Digital Certificates

As we mention in Section 10.3.5 on page 375, authenticating the identity of a
sending entity and protecting data to allow only authenticated and authorized
receivers to view that data is an extremely important security requirement, espe-
cially for the exchange of security-sensitive data or when the nature of the transac-
tion requires data-origin authentication and nonrepudiation. Encrypting a message
with the receiver’s public key guarantees confidentiality, whereas digitally signing
a message by encrypting its hash value with the originator’s public key guarantees
data-origin authentication and nonrepudiation.

These scenarios are very attractive, but for them to work, it is necessary to
have a means to bind a public- and private-key pair to its owner. To understand
why, let us consider the following scenario. Alice wants to send Bob a confidential
message in a secure manner over a public network. To do so, she needs to encrypt
the message with Bob’s public key. For sure, only Bob will be able to read the
message once it is transmitted, because the message’s ciphertext can be decrypted
only with Bob’s private key. However, how can Alice be sure that Bob is really
Bob? Owning a public- and private-key pair does not give any assurance about the
real identity of a person. Similarly, Bob may receive a signed message from Alice,
and he can verify the digital signature’s authenticity by decrypting it with Alice’s
public key, but how can he be sure that the entity that signed the message declar-
ing to be Alice is really Alice?

A solution to this problem is to use digital certificates, which can be used to
exchange public keys and to verify an entity’s identity. An entity’s digital certifi-
cate is a binary file that contains the entity’s public key and Distinguished Name
(DN), which uniquely identifies that entity, along with other pieces of informa-
tion, such as the start and expiration dates of the certificate and the certificate’s se-
rial number (see Figure 10.23).

The international standard for public-key certificates is called X.509 (see Ap-
pendix B on page 553). This standard has evolved over time, and the latest version
is V3. The most significant enhancement in X.509 V3 is the ability to add other,

Pistoia_ch10.fm Page 372 Friday, January 16, 2004 1:34 PM

10.3 PUBLIC-KEY CRYPTOGRAPHY 373

arbitrary data in addition to the basic name, address, and organization identity
fields of the DN. This is useful when constructing certificates for specific pur-
poses. For example, a certificate could include a bank account number or credit
card information.

Digital certificates are released by trusted third-party registry organizations
called Certificate Authorities. These CAs are public organizations that are trusted
by both the sender and the receiver participating in a secure communication. An
entity, Alice, can receive her own certificate by generating a public- and private-
key pair and by transmitting the public key along with a certificate request and
proof of ownership of the public key to a CA. For serious applications, Alice can
obtain a certificate only by applying in person and showing evidence of her iden-
tity. If Alice’s request for a certificate is accepted, the CA wraps Alice’s public
key in a certificate and signs it with its own private key.

Alice can now convey her public key information to other entities by transmit-
ting her certificate. A receiving entity, Bob, can verify the certificate’s authenticity
by verifying the CA’s digital signature. This can be done without even contacting
the CA, because CAs’ public keys are available in all the most common client and
server applications, such as Web browsers, Web servers, and other programs that
require security. If the signature is verified, Bob is assured that the certificate
really belongs to Alice. From this moment on, when he receives a message digi-
tally signed by Alice, he knows that it is really Alice who signed it and transmitted
it—data-origin authentication—and Alice will not be able to deny that the mes-
sage originated from her—nonrepudiation. Similarly, by accessing Bob’s certifi-
cate from a CA and by encrypting a message with Bob’s public key, Alice is
assured that only Bob, and no other person, will be able to decrypt the message—
confidentiality.

As Figure 10.23 shows, certificates contain start and end dates. The validity of
a certificate should not be too long, to minimize the risks associating with having
inadvertently exposed the associated private key and to make sure that the current

Figure 10.23. Information Contained in a Digital Certificate

Distinguished Name,
Start Date, End Date,
Certificate Authority
Name, Serial Number,
Extensions

Signature

Pistoia_ch10.fm Page 373 Friday, January 16, 2004 1:34 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY374

key strength still makes it computationally infeasible to compute the private key
from the public key. If the private key associated with the public key in a certifi-
cate gets inadvertently exposed, a certificate’s owner should make an immediate
request for suspending the certificate’s validity. In this case, the CA will add an
entry for that certificate in its certificate revocation list. A CRL also enumerates
those certificates that have been revoked because their owners failed to comply
with specific requirements. A CRL should always include data explaining why a
certificate was suspended or revoked.

In the scenario that we have described in this section, there is only one CA
that the sender and the receiver participating in a secure communication use to
verify each other’s public key’s authenticity. In real-life situations, there are chains
of CAs, whereby each successive CA verifies and vouches for the public key of
the next identity in the chain. In this case, a public-key certificate embodies a
chain of trust. Consider the situation shown in Figure 10.24.

A system has received a request containing a chain of certificates, each of
which is signed by the next higher CA in the chain. The system has also a collec-
tion of root certificates from trusted CAs. The system can then match the top of
the chain in the request with one of these root certificates, say, Ham’s. If the chain
of signatures is intact, the receiver can infer that Nimrod is trustworthy and has

Figure 10.24. Certificate Hierarchy

Trusted Root Certificates Received Certificate Chain

This is to certify
that you can trust

by Nimrod.
anything signed

Cush

Japhet’s
Certificate

This is to certify
that Japhet is a
trusted CA.

Japhet

Ham s
Certificate

’

Cush s
Certificate

’
This is to certify
that Cush is a
trusted CA.

Ham

Nimrod s
Certificate

’

Ham’s
Certificate

This is to certify
that Ham is a
trusted CA.

Ham

Shem’s
Certificate

This is to certify
that Shem is a
trusted CA.

Shem

This is to certify
that Ham is a
trusted CA.

Ham

Pistoia_ch10.fm Page 374 Wednesday, January 21, 2004 3:02 PM

���� ����	
��
��
����������� ���

���������� ���� ��	
���������

�
�������������� ����� ���� �
� ���� �����������
� �
� �

�����
�������������
���������������
������������������
������������
�������������

������ ��	
��
���������

��� �	��������� �������������� ��� �������
� �������� ���� ������ ��
� ��� ��� ����
���

������
����������
���������	����������
�������	������������������ ��
�����
���

��

������������������
�������������������	����������������������	�����������������

����� ���������������	��������� �����
����	��� ����
������ ����� �����������������

�	��������� ������������� �
� ����� ��� �
� ����	����������� �����
����� !�����
����

��������������������������
����������"�������#$�%���������&'(���

��
������������

�������� ����
����
������
���)������
� ���� ��
����	���� ����	����� �����������

*+!,-�
��	��������������	�����
���������������
��������
������������������
�����

���

���
���������
��������������

�	�
��	����������
�

!��������� �	��������� ����
���������� ������������� �����
� ���� ���
�������

���������
��
�
�������������������������������
��	����������������
��
��	�����

�������������������
�
��������.��	���#$�%/��0�������������������������
��	�����

��������
������������������������
�+��*
���"�������#$�&�#�%���������&(%-�������

�����
�����������
����������������������	�������
����
����������� ��������
������

������
������ !���������1	�����)�������"������)���!�����������

� Advantage: Performance
� Many Uses Today:

Kerberos
DCE

� Advantages: Key Distribution
and Scalability

� Many Uses Today:
Authentication
Establish Secret Keys

� SSL
� IPSec
� S/MIME

Combination

Secret Key Public Key

Pistoia_ch10.fm Page 375 Monday, January 19, 2004 3:33 PM

CHAPTER 10 THE THEORY OF CRYPTOGRAPHY376

entity uses its own private key and the other entity’s public key. With Diffie-
Helmann, the shared secret key is mathematically computed by the two parties,
and there is no need to physically exchange it over the network.

Another way to use public-key cryptography for secure secret-key establish-
ment over a public network is, essentially, to consider the secret key as the data
that needs to be distributed with a privacy requirement. Thus, the secret key is
encrypted using the public key of the target entity. The receiving entity uses its
private key to decrypt the enciphered secret key and hence has established a
common secret key with the sending entity. This is, for example, the approach
used by the SSL and TLS protocols (see Section 13.1 on page 449). Other proto-
cols that combine secret- and public-key cryptography are IPSec and S/MIME
(see Section 12.2 on page 439).

Note that authenticating the identity of the sending entity is a strong security
requirement. A breach in such a key-establishment mechanism risks exposing the
entire cryptographic channel that follows key establishment.

Pistoia_ch10.fm Page 376 Friday, January 16, 2004 1:34 PM

