
CHAPTER 5
About Management

Discussion

The purpose of this saying is to point out that measurement is invaluable to man-
agers. Clearly, managers need to know the answer to questions such as how much,
when, and how well. There is a whole software engineering subfield devoted to the
topic of software metrics, and proposals of new things to count—and how to
count things long understood—are rampant.

What is interesting about the field of software metrics is that it is used little
in practice. In surveys of tools and techniques used by software managers, metrics
generally come in close to last. There are exceptions, of course—some enterprises
(for example, IBM, Motorola, and Hewlett-Packard) place heavy emphasis on
metric approaches. But for the most part, metric approaches are soundly ignored.
Why is that? Perhaps managers are unconvinced of the value of metrics. Perhaps
some of the necessary data is too hard to collect.

But there have been lots of studies of both the value and the cost of metrics,
most of which have positive findings. At NASA-Goddard, for example, studies have
shown that the ongoing cost of collecting the necessary metrics should be no more
than 3 percent (data collection and analysis) + 4 to 6 percent (processing and ana-
lyzing the data) = 7 to 9 percent of the total cost of the project (Rombach 1990).
NASA-Goddard considers that to be a bargain, given the value of their results.

155

You can’t manage what you can’t measure.Fallacy 1



Some of the history of metrics approaches has been tainted, however.
Originally, managers all too often collected data that didn’t matter or that cost too
much to obtain. Such helter-skelter metrics collection was expensive and, as it
turned out, pointless. It wasn’t until the notion of the GQM approach (originally
proposed by Vic Basili)—establish Goals to be satisfied by the metrics, determine
what Questions should be asked to meet those goals, and only then collect the
Metrics needed to answer just those questions—that there began to be some
rationality in metrics approaches.

There was also the problem of software science. Software science was an
attempt by the brilliant computing pioneer Murray Halstead to establish an
underlying science for software engineering (Halstead 1977). He defined factors to
measure and ways of measuring them. It seemed a worthy and, at the time, an
important goal. But study after study of the numbers obtained showed neutral or
negative value to the software science data. Some even likened software science to
a form of astrology. The collection of “scientific” data about software projects
eventually fell into disrepute and has, for the most part, been abandoned. Those
who remember the software science debacle tend to taint all software metrics
activities with the same brush.

Nevertheless, the collection of software metric data now happens often
enough that there is even a “top 10” list of software metrics, the ones most com-
monly used in practice. To present an answer to the question “what are software
metrics?” we present that list here.

Software Metrics % Reported Using

Number of defects found after release 61

Number of changes or change requests 55

User or customer satisfaction 52

Number of defects found during development 50

Documentation completeness/accuracy 42

Time to identify/correct defects 40

Defect distribution by type/class 37

Error by major function/feature 32

Test coverage of specifications 31

Test coverage of code 31

156 ABOUT MANAGEMENT / Chapter 5



Perhaps equally interesting is the list of the bottom 5 metrics:

Software Metrics % Reported Using

Module/design complexity 24

Number of source lines delivered 22

Documentation size/complexity 20

Number of reused source lines 16

Number of function points 10

(This data comes from Hetzel [1993]. There is no reason to believe that the
intervening years since 1993 would have changed this list a great deal, although
advocates of function points claim a recent rise in their usage.)

Controversy

The problem with the saying “you can’t manage what you can’t measure”—what
makes it a fallacy—is that we manage things we can’t measure all the time. We
manage cancer research. We manage software design. We manage all manner of
things that are deeply intellectual, even creative, without any idea of what numbers
we ought to have to guide us. Good knowledge worker managers tend to measure
qualitatively, not quantitatively.

The fact that the saying is a fallacy should not cause us to reject the underlying
truth of the message it brings, however. Managing in the presence of data is far bet-
ter and easier than managing in its absence. In fact, it is the nature of managers—
and human beings in general—to use numbers to help us understand things. We
love batting and fielding and earned run averages. We love basket and rebound and
assist counts and invent terms like triple double to accommodate combinations of
them. We even invent data to cover subjects when there is no natural data, such as 
ice skating and diving (where judges assign scores to performances).

This is a case in which the fact is that measurement is vitally important to
software management, and the fallacy lies in the somewhat-cutesy saying we use to
try to capture that.

Source

The saying “you can’t manage what you can’t measure” appears most frequently 
in books and articles on software management, software risk, and (especially) 

ABOUT MANAGEMENT / Chapter 5 157

!



software metrics. An interesting thing happened when I set out to track down
where the saying originally came from. Several metrics experts said that it came
from Controlling Software Projects (DeMarco 1998), and so I got in touch with
Tom DeMarco himself. “Yes,” said DeMarco, “it’s the opening sentence in my book,
Controlling Software Projects. But,” he went on to say, “the saying is actually ‘you
can’t control what you can’t measure.’” Thus the fallacy version of the saying is
actually a corruption of what DeMarco really said!

References

➥ DeMarco, Tom. 1998. Controlling Software Projects: Management,
Measurement, and Estimation. Englewood Cliffs, NJ: Yourdon Press.

➥ Halstead, M.H. 1977. Elements of Software Science. New York: Elsevier
Science.

➥ Hetzel, Bill. 1993. Making Software Measurement Work. Boston: QED.

➥ Rombach, H. Dieter. 1990. “Design Measurement: Some Lessons Learned.”
IEEE Software, Mar.

Discussion

This is a reprise of an idea presented previously in this book. In the section About
Quality, I asked the question “whose responsibility is quality? My answer, as you
may remember, was that no matter how many people believed” that management
was responsible for product quality, there was too much technology to the subject
of software quality to leave it up to management. I then went on at that point to
say that nearly every one of the quality “-ilities” had deeply technical aspects,
aspects that only a technologist could work with.

Not only is the achievement of quality a technical task, but those who believe
that it is a management task often go about it in the wrong way. Over the years,
managers have tried to use motivational campaigns to instill a quality viewpoint,
as if the average technologist would be interested only in quality if he or she were
pushed to do so. Sloganeering—“Quality Is Job One”—and methodologizing—
“Total Quality Management”—seem to be management’s chief approaches to
achieving software product quality. Far from accepting these approaches, technol-

158 ABOUT MANAGEMENT / Chapter 5

You can manage quality into a software product.Fallacy 2


