
 

289

 

9 

 

Design-Time Integration

 

COMPONENT

 

 

 

IS

 

 

 

A

 

 

 

NONVISUAL

 

 

 

CLASS

 

 designed specifically to inte-
grate with a design-time environment such as Visual Studio .NET.

WinForms provides several standard components, and .NET lets you build
your own, gaining a great deal of design-time integration with very little
work.

On the other hand, with a bit more effort, you can integrate nonvisual
components and controls very tightly into the design-time environment,
providing a rich development experience for the programmer using your
custom components and controls.

 

Components

 

Recall from Chapter 8: Controls that controls gain integration into VS.NET
merely by deriving from the Control base class in the System.Win-
dows.Forms namespace. That’s not the whole story. What makes a control
special is that it’s one kind of 

 

component

 

: a .NET class that integrates with a
design-time environment such as VS.NET. A component can show up on
the Toolbox along with controls and can be dropped onto any design sur-
face. Dropping a component onto a design surface makes it available to set
the property or handle the events in the Designer, just as a control is. Figure
9.1 shows the difference between a hosted control and a hosted component.

A

 

Sells.book  Page 289  Thursday, August 7, 2003  9:51 AM



 

DESIGN-TIME INTEGRATION

 

290

 

Standard Components

 

It’s so useful to be able to create instances of nonvisual components and
use the Designer to code against them that WinForms comes with several
components out of the box:

 

•

 

Standard dialogs.

 

 The ColorDialog, FolderBrowserDialog, 
FontDialog, OpenFileDialog, PageSetupDialog, PrintDialog, Print-
PreviewDialog, and SaveFileDialog classes make up the bulk of the 
standard components that WinForms provides. The printing-related 
components are covered in detail in Chapter 7: Printing.

 

•

 

Menus.

 

 The MainMenu and ContextMenu components provide a 
form’s menu bar and a control’s context menu. They’re both covered 
in detail in Chapter 2: Forms.

 

•

 

User information.

 

 The ErrorProvider, HelpProvider, and ToolTip 
components provide the user with varying degrees of help in using a 
form and are covered in Chapter 2: Forms. 

 

•

 

Notify icon.

 

 The NotifyIcon component puts an icon on the shell’s 
TaskBar, giving the user a way to interact with an application without 
the screen real estate requirements of a window. For an example, see 
Appendix D: Standard WinForms Components and Controls.

 

•

 

Image List.

 

 The ImageList component keeps track of a developer-
provided list of images for use with controls that need images when 
drawing. Chapter 8: Controls shows how to use them.

Figure 9.1: Locations of Components and Controls Hosted on a Form

 

Sells.book  Page 290  Thursday, August 7, 2003  9:51 AM



 

 

 

COMPONENTS

 

291

 

•

 

Timer.

 

 The Timer component fires an event at a set interval measured 
in milliseconds.

 

Using Standard Components

 

What makes components useful is that they can be manipulated in the
design-time environment. For example, imagine that you’d like a user to
be able to set an alarm in an application and to notify the user when the
alarm goes off. You can implement that using a Timer component. Drop-
ping a Timer component onto a Form allows you to set the Enabled and
Interval properties as well as handle the Tick event in the Designer, which
generates code such as the following into InitializeComponent:

 

void InitializeComponent() {

 

  this.components = new Container();

  this.timer1 = new Timer(this.components);

 

  ...

 

  // timer1

  this.timer1.Enabled = true;

  this.timer1.Tick += new EventHandler(this.timer1_Tick);

 

  ...

}

 

As you have probably come to expect by now, the Designer-generated
code looks very much like what you’d write yourself. What’s interesting
about this sample InitializeComponent implementation is that when a new
component is created, it’s put on a list with the other components on the
form. This is similar to the Controls collection that is used by a form to
keep track of the controls on the form.

After the Designer has generated most of the Timer-related code for us,
we can implement the rest of the alarm functionality for our form:

 

DateTime alarm = DateTime.MaxValue; // No alarm

void setAlarmButton_Click(object sender, EventArgs e) {

  alarm = dateTimePicker1.Value;

}

 

// Handle the Timer's Tick event

void timer1_Tick(object sender, System.EventArgs e) {

 

  statusBar1.Text = DateTime.Now.TimeOfDay.ToString();

continues

 

Sells.book  Page 291  Thursday, August 7, 2003  9:51 AM



 

DESIGN-TIME INTEGRATION

 

292

 

  // Check to see whether we're within 1 second of the alarm

  double seconds = (DateTime.Now - alarm).TotalSeconds;

  if( (seconds >= 0) && (seconds <= 1) ) {

    alarm = DateTime.MaxValue; // Show alarm only once

    MessageBox.Show("Wake Up!");

  }

 

}

 

In this sample, when the timer goes off every 100 milliseconds (the
default value), we check to see whether we’re within 1 second of the alarm.
If we are, we shut off the alarm and notify the user, as shown in Figure 9.2.

If this kind of single-fire alarm is useful in more than one spot in your
application, you might choose to encapsulate this functionality in a custom
component for reuse.

 

Custom Components

 

A component is any class that implements the IComponent interface from
the System.ComponentModel namespace:

 

interface IComponent : IDisposable {

  ISite Site { get; set; }

  event EventHandler Disposed;

}

interface IDisposable {

  void Dispose();

}

 

A class that implements the IComponent interface can be added to the
Toolbox

 

1

 

 in VS.NET and dropped onto a design surface. When you drop a

Figure 9.2: The Timer Component Firing Every 100 Milliseconds

 

Sells.book  Page 292  Thursday, August 7, 2003  9:51 AM



 

 

 

COMPONENTS

 

293

 

component onto a form, it shows itself in a tray below the form. Unlike
controls, components don’t draw themselves in a region on their container.
In fact, you could think of components as nonvisual controls, because, just
like controls, components can be managed in the design-time environ-
ment. However, it’s more accurate to think of controls as visual compo-
nents because controls implement IComponent, which is where they get
their design-time integration.

 

A Sample Component

 

As an example, to package the alarm functionality we built earlier around
the Timer component, let’s build an AlarmComponent class. To create a
new component class, right-click on the project and choose Add | Add
Component, enter the name of your component class, and press OK. You’ll
be greeted with a blank design surface, as shown in Figure 9.3.

 

1. The same procedure for adding a custom control to the Toolbox in Chapter 8: Controls can 
be used to add a custom component to the Toolbox.

Figure 9.3: A New Component Design Surface

 

Sells.book  Page 293  Thursday, August 7, 2003  9:51 AM



 

DESIGN-TIME INTEGRATION

 

294

 

The design surface for a component is meant to host other components
for use in implementing your new component. For example, we can drop
our Timer component from the Toolbox onto the alarm component design
surface. In this way, we can create and configure a timer component just as
if we were hosting the timer on a form. Figure 9.4 shows the alarm compo-
nent with a timer component configured for our needs.

Switching to the code view

 

2

 

 for the component displays the following
skeleton generated by the component project item template and filled in by
the Designer for the timer:

 

using System;

using System.ComponentModel;

using System.Collections;

using System.Diagnostics;

namespace Components {

  /// <summary>

  /// Summary description for AlarmComponent.

  /// </summary>

 

2. You can switch to code view from designer view by choosing View | Code or pressing F7. 
Similarly, you can switch back by choosing View | Designer or by pressing Shift+F7.

Figure 9.4: A Component Design Surface Hosting a Timer Component

 

Sells.book  Page 294  Thursday, August 7, 2003  9:51 AM



 

 

 

COMPONENTS

 

295

 

  public class AlarmComponent : System.ComponentModel.Component {

    private Timer timer1;

    private System.ComponentModel.IContainer components;

    public AlarmComponent(System.ComponentModel.IContainer container) {

      /// <summary>

      /// Required for Windows.Forms Class Composition Designer support

      /// </summary>

      container.Add(this);

      InitializeComponent();

      //

      // TODO: Add any constructor code after InitializeComponent call

      //

    }

    public AlarmComponent() {

      /// <summary>

      /// Required for Windows.Forms Class Composition Designer support

      /// </summary>

      InitializeComponent();

      //

      // TODO: Add any constructor code after InitializeComponent call

      //

    }

  #region Component Designer generated code

    /// <summary>

    /// Required method for Designer support - do not modify

    /// the contents of this method with the code editor.

    /// </summary>

    private void InitializeComponent() {

      this.components = new System.ComponentModel.Container();

 

      this.timer1 = new System.Windows.Forms.Timer(this.components);

      // 

      // timer1

      // 

      this.timer1.Enabled = true;

 

    }

  #endregion

  }

}

 

Notice that the custom component derives from the Component base
class from the System.ComponentModel namespace. This class provides
an implementation of IComponent for us. 

 

Sells.book  Page 295  Thursday, August 7, 2003  9:51 AM



 

DESIGN-TIME INTEGRATION

 

296

 

After the timer is in place in the alarm component, it’s a simple matter
to move the alarm functionality from the form to the component by han-
dling the timer’s Tick event:

 

public class AlarmComponent : Component {

  ...

  DateTime alarm = DateTime.MaxValue; // No alarm

 

  public DateTime Alarm {

 

    get { return this.alarm; }

    set { this.alarm = value; }

 

  }

 

  // Handle the Timer's Tick event

 

  public event EventHandler AlarmSounded;

  void timer1_Tick(object sender, System.EventArgs e) {

 

    // Check to see whether we're within 1 second of the alarm

    double seconds = (DateTime.Now - this.alarm).TotalSeconds;

    if( (seconds >= 0) && (seconds <= 1) ) {

      this.alarm = DateTime.MaxValue; // Show alarm only once

      if( this.AlarmSounded != null ) {

        AlarmSounded(this, EventArgs.Empty);

      }

    }

 

  }

 

}

 

This implementation is just like what the form was doing before, except
that the alarm date and time are set via the public Alarm property; when
the alarm sounds, an event is fired. Now we can simplify the form code to
contain merely an instance of the AlarmComponent, setting the Alarm
property and handling the AlarmSounded event:

 

public class AlarmForm : Form {

 

  AlarmComponent alarmComponent1;

 

  ...

  void InitializeComponent() {

    ...

 

    this.alarmComponent1 = new AlarmComponent(this.components);

 

    ...

 

    this.alarmComponent1.AlarmSounded +=

      new EventHandler(this.alarmComponent1_AlarmSounded);

 

    ...

  }

}

 

Sells.book  Page 296  Thursday, August 7, 2003  9:51 AM



 

 

 

COMPONENTS

 

297

 

void setAlarmButton_Click(object sender, EventArgs e) {

 

  alarmComponent1.Alarm = dateTimePicker1.Value;

 

}

 

void alarmComponent1_AlarmSounded(object sender, EventArgs e) {

 

  MessageBox.Show("Wake Up!");

 

}

 

In this code, the form uses an instance of AlarmComponent, setting the
Alarm property based on user input and handling the AlarmSounded
event when it’s fired. The code does all this without any knowledge of the
actual implementation, which is encapsulated inside the AlarmCompo-
nent itself.

 

Component Resource Management

 

Although components and controls are similar as far as their design-time
interaction is concerned, they are not identical. The most obvious differ-
ence lies in the way they are drawn on the design surface. A less obvious
difference is that the Designer does not generate the same hosting code for
components that it does for controls. Specifically, a component gets extra
code so that it can add itself to the container’s list of components. When the
container shuts down, it uses this list of components to notify all the com-
ponents that they can release any resources that they’re holding.

Controls don’t need this extra code because they already get the Closed
event, which is an equivalent notification for most purposes. To let the
Designer know that it would like to be notified when its container goes
away, a component can implement a public constructor that takes a single
argument of type IContainer:

 

public AlarmComponent(IContainer container) {

  // Add object to container’s list so that

  // we get notified when the container goes away

  container.Add(this);

  InitializeComponent();

}

 

Notice that the constructor uses the passed container interface to add
itself as a container component. In the presence of this constructor, the
Designer generates code that uses this constructor, passing it a container

 

Sells.book  Page 297  Thursday, August 7, 2003  9:51 AM



 

DESIGN-TIME INTEGRATION

 

298

 

for the component to add itself to. Recall that the code to create the Alarm-
Component uses this special constructor:

 

public class AlarmForm : Form {

 

  IContainer components;

  AlarmComponent alarmComponent1;

 

  ...

  void InitializeComponent() {

 

    this.components = new Container();

 

    ...

 

    this.alarmComponent1 = new AlarmComponent(this.components);

 

    ...

  }

}

 

By default, most of the VS.NET-generated classes that contain compo-
nents will notify each component in the container as part of the Dispose
method implementation:

 

public class AlarmForm : Form {

  ...

 

  IContainer components;

 

  ...

 

  // Overridden from the base class Component.Dispose method

 

  protected override void Dispose( bool disposing ) {

    if( disposing ) {

 

      if (components != null) {

        // Call each component's Dispose method

        components.Dispose();

      }

 

    }

    base.Dispose( disposing );

  }

}

 

As you may recall from Chapter 4: Drawing Basics, the client is respon-
sible for calling the Dispose method from the IDisposable interface. The
IContainer interface derives from IDisposable, and the Container imple-
mentation of Dispose walks the list of components, calling IDisposable.
Dispose on each one. A component that has added itself to the container
can override the Component base class’s Dispose method to catch the noti-
fication that is being disposed of:

 

Sells.book  Page 298  Thursday, August 7, 2003  9:51 AM



 

 

 

COMPONENTS

 

299

 

public class AlarmComponent : Component {

 

  Timer timer1;

  IContainer components;

  ...

 

  void InitializeComponent() {

 

    this.components = new Container();

    this.timer1 = new Timer(this.components);

 

    ...

  }

 

  protected override void Dispose(bool disposing) {

 

    if( disposing ) {

      // Release managed resources

      ...

 

      // Let contained components know to release their resources

      if( components != null ) {

        components.Dispose();

      }

 

    }

    // Release unmanaged resources

    ...

 

  }

 

}

 

Notice that, unlike the method that the client container is calling, the
alarm component’s Dispose method takes an argument. The Component
base class routes the implementation of IDisposable.Dispose() to call its
own Dispose(bool) method, with the Boolean argument disposing set to
true. This is done to provide optimized, centralized resource management.

A disposing argument of true means that Dispose was called by a client
that remembered to properly dispose of the component. In the case of our
alarm component, the only resources we have to reclaim are those of the
timer component we’re using to provide our implementation, so we ask
our own container to dispose of the components it’s holding on our behalf.
Because the Designer-generated code added the timer to our container,
that’s all we need to do.

A disposing argument of false means that the client forgot to properly
dispose of the object and that the .NET Garbage Collector (GC) is calling
our object’s finalizer

 

. 

 

A 

 

finalizer

 

 is a method that the GC calls when it’s

 

Sells.book  Page 299  Thursday, August 7, 2003  9:51 AM



 

DESIGN-TIME INTEGRATION

 

300

 

about to reclaim the memory associated with the object. Because the GC
calls the finalizer at some indeterminate time—potentially long after the
component is no longer needed (perhaps hours or days later)—the final-
izer is a bad place to reclaim resources, but it’s better than not reclaiming
them at all.

The Component base class’s finalizer implementation calls the Dispose
method, passing a disposing argument of false, which indicates that the
component shouldn’t touch any of the managed objects it may contain.
The other managed objects should remain untouched because the GC may
have already disposed of them, and their state is undefined.

Any component that contains other objects that implement
IDisposable, or handles to unmanaged resources, should implement the
Dispose(bool) method to properly release those objects’ resources when
the component itself is being released by its container.

 

Design-Time Integration Basics

 

Because a component is a class that’s made to be integrated into a design-
time host, it has a life separate from the run-time mode that we normally
think of for objects. It’s not enough for a component to do a good job when
interacting with a user at run time as per developer instructions; a compo-
nent also needs to do a good job when interacting with the developer at
design time.

 

Hosts, Containers, and Sites
In Visual Studio .NET, the Windows Forms Designer is responsible for pro-
viding design-time services during Windows Forms development. At
a high level, these services include a form’s UI and code views. The
responsibility of managing integration between design-time objects and
the  designer is handled by the designer’s internal implementation of
IDesignerHost (from the System.ComponentModel.Design namespace).
The designer host stores IComponent references to all design-time objects
on the current form and also stores the form itself (which is also a compo-
nent). This collection of components is available from the IDesignerHost
interface through the Container property of type IContainer (from the
System.ComponentModel namespace):

Sells.book  Page 300  Thursday, August 7, 2003  9:51 AM



 DESIGN-TIME INTEGRATION BASICS 301

interface IContainer : IDisposable {

  ComponentCollection Components { get; }

  void Add(IComponent component);

  void Add(IComponent component, string name);

  void Remove(IComponent component);

}

This implementation of IContainer allows the designer host to establish
a relationship that helps it manage each of the components placed on the
form. Contained components can access the designer host and each other
through their container at design time. Figure 9.5 illustrates this two-way
relationship.

In Figure 9.5 you can see that the fundamental relationship between the
designer host and its components is established with an implementation of
the ISite interface (from the System.ComponentModel namespace):

interface ISite : IServiceProvider {

  IComponent Component { get; }

  IContainer Container { get; }

  bool DesignMode { get; }

  string Name { get; set; }

}

Figure 9.5: Design-Time Architecture

Sells.book  Page 301  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION302

Internally, a container stores an array of sites. When each component is
added to the container, the designer host creates a new site, connecting the
component to its design-time container and vice versa by passing the ISite
interface in the IComponent.Site property implementation:

interface IComponent : IDisposable {

  ISite Site { get; set; }

  event EventHandler Disposed;

}

The Component base class implements IComponent and caches the site’s
interface in a property. It also provides a helper property to go directly to the
component’s container without having to go first through the site:

class Component : MarshalByRefObject, IComponent, IDisposable {

  public IContainer Container { get; }

  public virtual ISite Site { get; set; }

  protected bool DesignMode { get; }

  protected EventHandlerList Events { get; }

}

The Component base class gives a component direct access to both the
container and the site. A component can also access the Visual Studio .NET
designer host itself by requesting the IDesignerHost interface from the
container:

IDesignerHost designerHost = this.Container as IDesignerHost;

In Visual Studio .NET, the designer has its own implementation of the
IDesignerHost interface, but, to fit into other designer hosts, it’s best
for a component to rely only on the interface and not on any specific
implementation.

Debugging Design-Time Functionality
To demonstrate the .NET Framework’s various design-time features and
services, I’ve built a sample.3 Because components and controls share the

3. While I use the term “I” to maintain consistency with the rest of the prose, it was actually 
Michael Weinhardt who built this sample as well as doing the initial research and even the 
initial draft of much of the material in this chapter. Thanks, Michael!

Sells.book  Page 302  Thursday, August 7, 2003  9:51 AM



 DESIGN-TIME INTEGRATION BASICS 303

same design-time features and because I like things that look snazzy, I built
a digital/analog clock control with the following public members:

public class ClockControl : Control {

  public ClockControl();

  public DateTime Alarm { get; set; }

  public bool IsItTimeForABreak { get; set; }

  public event AlarmHandler AlarmSounded;

  ...

}

Figure 9.6 shows the control in action.
When you build design-time features into your components,4 you’ll

need to test them and, more than likely, debug them. To test run-time func-
tionality, you simply set a breakpoint in your component’s code and run a
test application, relying on Visual Studio .NET to break at the right
moment. 

What makes testing design-time debugging different is that you need a
design-time host to debug against; an ordinary application won’t do.
Because the hands-down hosting favorite is Visual Studio .NET itself, this
means that you’ll use one instance of Visual Studio .NET to debug another
instance of Visual Studio .NET with a running instance of the component
loaded. This may sound confusing, but it’s remarkably easy to set up:

4. Remember that nonvisual components as well as controls are components for the pur-
poses of design-time integration.

Figure 9.6: Snazzy Clock Control

Sells.book  Page 303  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION304

1. Open the component solution to debug in one instance of Visual 
Studio .NET.

2. Set a second instance of Visual Studio .NET as your debug application 
by going to Project | Properties | Configuration Properties | Debug-
ging and setting the following properties:
a. Set Debug Mode to Program.
b. Set Start Application to <your devenv.exe path>\devenv.exe.
c. Set Command Line Arguments to <your test solution 

path>\yourTestSolution.sln.

3. Choose Set As StartUp Project on your component project.

4. Set a breakpoint in the component.

5. Use Debug | Start (F5) to begin debugging.

At this point, a second instance of Visual Studio.NET starts up with
another solution, allowing you to break and debug at will, as illustrated in
Figure 9.7.

The key to making this setup work is to have one solution loaded in one
instance of VS.NET that starts another instance of VS.NET with a com-
pletely different solution to test your component in design mode.

The DesignMode Property
To change the behavior of your component at design time, often you need
to know that you’re running in a Designer. For example, the clock control
uses a timer component to track the time via its Tick event handler:

public class ClockControl : Control {

  ...

  Timer timer = new Timer();

  ...

  public ClockControl() {

    ...

    // Initialize timer

    timer.Interval = 1000;

    timer.Tick += new System.EventHandler(this.timer_Tick);

    timer.Enabled = true;

  }

  ...

Sells.book  Page 304  Thursday, August 7, 2003  9:51 AM



 DESIGN-TIME INTEGRATION BASICS 305

  void timer_Tick(object sender, EventArgs e) {

    // Refresh clock face

    this.Invalidate();

    ...

  }

}

Inspection reveals that the control is overly zealous in keeping time
both at design time and at run time. Such code should really be executed at
run time only. In this situation, a component or control can check the

Figure 9.7: Design-Time Control Debugging

Sells.book  Page 305  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION306

DesignMode property, which is true only when it is executing at design
time. The timer_Tick event handler can use DesignMode to ensure that it is
executed only at run time, returning immediately from the event handler
otherwise:

void timer_Tick(object sender, EventArgs e) {

  // Don’t execute event if running in design time

  if( this.DesignMode ) return;

  this.Invalidate();

  ...

}

Note that the DesignMode property should not be checked from within
the constructor or from any code that the constructor calls. A constructor is
called before a control is sited, and it’s the site that determines whether or
not a control is in design mode. DesignMode will also be false in the
constructor.

Attributes
Design-time functionality is available to controls in one of two ways: pro-
grammatically and declaratively. Checking the DesignMode property is an
example of the programmatic approach. One side effect of using a pro-
grammatic approach is that your implementation takes on some of the
design-time responsibility, resulting in a blend of design-time and run-
time code within the component implementation. 

The declarative approach, on the other hand, relies on attributes to
request design-time functionality implemented somewhere else, such as
the designer host. For example, consider the default Toolbox icon for a
component, as shown in Figure 9.8.

If the image is important to your control, you’ll want to change the icon
to something more appropriate. The first step is to add a 16×16, 16-color
icon or bitmap to your project and set its Build Action to Embedded

Figure 9.8: Default Toolbox Icon

Sells.book  Page 306  Thursday, August 7, 2003  9:51 AM



 DESIGN-TIME INTEGRATION BASICS 307

Resource (embedded resources are discussed in Chapter 10: Resources).
Then add the ToolboxBitmapAttribute to associate the icon with your
component:

[ToolboxBitmapAttribute(

  typeof(ClockControlLibrary.ClockControl),

  "images.ClockControl.ico")]

public class ClockControl : Control {...}

The parameters to this attribute specify the use of an icon resource
located in the “images” project subfolder.

You’ll find that the Toolbox image doesn’t change if you add or change
ToolboxBitmapAttribute after the control has been added to the Toolbox.
However, if your implementation is a component, its icon is updated in the
component tray. One can only assume that the Toolbox is not under the
direct management of the Windows Form Designer, whereas the compo-
nent tray is. To refresh the Toolbox, remove your component and then add
it again to the Toolbox. The result will be something like Figure 9.9.

You can achieve the same result without using ToolboxBitmap-
Attribute: Simply place a 16×16, 16-color bitmap in the same project folder
as the component, and give it the same name as the component class. This
is a special shortcut for the ToolboxBitmapAttribute only; don’t expect to
find similar shortcuts for other design-time attributes.

Property Browser Integration
No matter what the icon is, after a component is dragged from the Toolbox
onto a form, it can be configured through the designer-managed Property
Browser. The Designer uses reflection to discover which properties the
design-time control instance exposes. For each property, the Designer
calls the associated get accessor for its current value and renders both the

Figure 9.9: New and Improved Toolbox Icon

Sells.book  Page 307  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION308

property name and the value onto the Property Browser. Figure 9.10 shows
how the Property Browser looks for the basic clock control.

The System.ComponentModel namespace provides a comprehensive
set of attributes, shown in Table 9.1, to help you modify your component’s
behavior and appearance in the Property Browser.

By default, public read and read/write properties—such as the Alarm
property highlighted in Figure 9.10—are displayed in the Property
Browser under the “Misc” category. If a property is intended for run time
only, you can prevent it from appearing in the Property Browser by adorn-
ing the property with BrowsableAttribute:

[BrowsableAttribute(false)]

public bool IsItTimeForABreak {

  get { ... }

  set { ... }

}

With IsItTimeForABreak out of the design-time picture, only the cus-
tom Alarm property remains. However, it’s currently listed under the
Property Browser’s Misc category and lacks a description. You can
improve the situation by applying both CategoryAttribute and
DescriptionAttribute:

[

  CategoryAttribute("Behavior"),

  DescriptionAttribute("Alarm for late risers")

]

public DateTime Alarm {

  get { ... }

  set { ... }

}

Figure 9.10: Visual Studio.NET with a Clock Control Chosen

Sells.book  Page 308  Thursday, August 7, 2003  9:51 AM



 DESIGN-TIME INTEGRATION BASICS 309

After adding these attributes and rebuilding, you will notice that the
Alarm property has relocated to the desired category in the Property
Browser, and the description appears on the description bar when you
select the property (both shown in Figure 9.11). You can actually use Cate-
goryAttribute to create new categories, but you should do so only if the
existing categories don’t suitably describe a property’s purpose. Other-
wise, you’ll confuse users looking for your properties in the logical
category.

TABLE 9.1: Design-Time Property Browser Attributes

Attribute Description

AmbientValueAttribute Specifies the value for this property that 
causes it to acquire its value from another 
source, usually its container (see the section 
titled Ambient Properties in Chapter 8: Con-
trols).

BrowsableAttribute Determines whether the property is visible in 
the Property Browser.

CategoryAttribute Tells the Property Browser which group to 
include this property in.

DescriptionAttribute Provides text for the Property Browser to dis-
play in its description bar.

DesignOnlyAttribute Specifies that the design-time value of this 
property is serialized to the form’s resource 
file. This attribute is typically used on prop-
erties that do not exist at run time.

MergablePropertyAttribute Allows this property to be combined with 
properties from other objects when more 
than one are selected and edited.

ParenthesizePropertyNameAttribute Specifies whether this property should be 
surrounded by parentheses in the Property 
Browser.

ReadOnlyAttribute Specifies that this property cannot be edited 
in the Property Browser.

Sells.book  Page 309  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION310

In Figure 9.11, some property values are shown in boldface and others
are not. Boldface values are those that differ from the property’s default
value, which is specified by DefaultValueAttribute:

 [

  CategoryAttribute("Appearance"),

  DescriptionAttribute("Whether digital time is shown"),

  DefaultValueAttribute(true)

]

public bool ShowDigitalTime {

  get { ... }

  set { ... }

}

Using DefaultValueAttribute also allows you to reset a property to its
default value using the Property Browser, which is available from the
property’s context menu, as shown in Figure 9.12.

This option is disabled if the current property is already the default
value. Default values represent the most common value for a property.

Figure 9.11: Alarm Property with CategoryAttribute and DescriptionAttribute 
Applied

Figure 9.12: Resetting a Property to Its Default Value

Sells.book  Page 310  Thursday, August 7, 2003  9:51 AM



 DESIGN-TIME INTEGRATION BASICS 311

Some properties, such as Alarm or Text, simply don’t have a default that’s
possible to define, whereas others, such as Enabled and ControlBox, do.

Just like properties, a class can have defaults. You can specify a default
event by adorning a class with DefaultEventAttribute:

[DefaultEventAttribute("AlarmSounded")]

class ClockControl : Control { ... }

Double-clicking the component causes the Designer to automatically
hook up the default event; it does this by serializing code to register with
the specified event in InitializeComponent and providing a handler for it:

class ClockControlHostForm : Form {

  ...

  void InitializeComponent() {

    ...

    this.clockControl1.AlarmSounded +=

      new AlarmHandler(this.clockControl1_AlarmSounded);

    ...

  }

  ...

  void clockControl1_AlarmSounded(

    object sender, 

    ClockControlLibrary.AlarmType type) {

  }

  ...

}

You can also adorn your component with DefaultPropertyAttribute:

[DefaultPropertyAttribute("ShowDigitalTime")]

public class ClockControl : Windows.Forms.Control { ... }

This attribute causes the Designer to highlight the default property
when the component’s property is first edited, as shown in Figure 9.13.

Default properties aren’t terribly useful, but setting the correct default
event properly can save a developer’s time when using your component.

Code Serialization
Whereas DefaultEventAttribute and DefaultPropertyAttribute affect the
behavior only of the Property Browser, DefaultValueAttribute serves a
dual purpose: It also plays a role in helping the Designer determine which

Sells.book  Page 311  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION312

code is serialized to InitializeComponent. Properties that don’t have a
default value are automatically included in InitializeComponent. Those
that have a default value are included only if the property’s value differs
from the default. To avoid unnecessarily changing a property, your initial
property values should match the value set by DefaultValueAttribute.

DesignerSerializationVisibilityAttribute is another attribute that affects the
code serialization process. The DesignerSerializationVisibilityAttribute con-
structor takes a value from the DesignerSerializationVisibility enumeration:

enum DesignerSerializationVisibility {

  Visible, // initialize this property if nondefault value

  Hidden, // don’t initialize this property

  Content // initialize sets of properties on a subobject

}

The default, Visible, causes a property’s value to be set in Initialize-
Component if the value of the property is not the same as the value of the
default. If you’d prefer that no code be generated to initialize a property,
use Hidden:

[

  DefaultValueAttribute(true),

  DesignerSerializationVisibilityAttribute(

    DesignerSerializationVisibility.Hidden)

]

public bool ShowDigitalTime {

  get { ... }

  set { ... }

}

Figure 9.13: Default Property Highlighted in the Property Browser

Sells.book  Page 312  Thursday, August 7, 2003  9:51 AM



 DESIGN-TIME INTEGRATION BASICS 313

You can use Hidden in conjunction with BrowsableAttribute set to false
for run-time-only properties. Although BrowsableAttribute determines
whether a property is visible in the Property Browser, its value may still be
serialized unless you prevent that by using Hidden.

By default, properties that maintain a collection of custom types cannot
be serialized to code. Such a property is implemented by the clock control
in the form of a “messages to self” feature, which captures a set of mes-
sages and displays them at the appropriate date and time. To enable serial-
ization of a collection, you can apply DesignerSerializationVisibility.
Content to instruct the Designer to walk into the property and serialize its
internal structure:

[

  CategoryAttribute("Behavior"),

  DescriptionAttribute ("Stuff to remember for later"),

  DesignerSerializationVisibilityAttribute

       (DesignerSerializationVisibility.Content)

]

public MessageToSelfCollection MessagesToSelf {

  get { ... }

  set { ... }

}

The generated InitializeComponent code for a single message looks like
this:

void InitializeComponent() {

  ...

  this.clockControl1.MessagesToSelf.AddRange(

  new ClockControlLibrary.MessageToSelf[] {

    new ClockControlLibrary.MessageToSelf(

      new System.DateTime(2003, 2, 22, 21, 55, 0, 0), "Wake up")});

  ...

}

This code also needs a “translator” class to help the Designer serialize
the code to construct a MessageToSelf type. This is covered in detail in the
section titled “Type Converters” later in this chapter.

Sells.book  Page 313  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION314

Host Form Integration

While we’re talking about affecting code serialization, there’s another trick
that’s needed for accessing a component’s hosting form. For example, con-
sider a clock control and a clock component, both of which offer the ability
to place the current time in the hosting form’s caption. Each needs to
acquire a reference to the host form to set the time in the form’s Text prop-
erty. The control comes with native support for this requirement:

Form hostingForm = this.Parent as Form;

Unfortunately, components do not provide a similar mechanism to
access their host form. At design time, the component can find the form in
the designer host’s Container collection. However, this technique will not
work at run time because the Container is not available at run time. To get
its container at run time, a component must take advantage of the way the
Designer serializes code to the InitializeComponent method. You can write
code that takes advantage of this infrastructure to seed itself with a refer-
ence to the host form at design time and run time. The first step is to grab
the host form at design time using a property of type Form:

Form hostingForm = null;

[BrowsableAttribute(false)]

public Form HostingForm {

  // Used to populate InitializeComponent at design time

  get {

    if( (hostingForm == null) && this.DesignMode ) {

     // Access designer host and obtain reference to root component

      IDesignerHost designer =

        this.GetService(typeof(IDesignerHost)) as IDesignerHost;

      if( designer != null ) {

        hostingForm = designer.RootComponent as Form;

      }

    }

    return hostingForm;

  }

  set {...}

}

The HostingForm property is used to populate the code in Initialize-
Component at design time, when the designer host is available. Stored in

Sells.book  Page 314  Thursday, August 7, 2003  9:51 AM



 DESIGN-TIME INTEGRATION BASICS 315

the designer host’s RootComponent property, the root component repre-
sents the primary purpose of the Designer. For example, a Form compo-
nent is the root component of the Windows Forms Designer.
DesignerHost.RootComponent is a helper function that allows you to
access the root component without enumerating the Container collection.
Only one component is considered the root component by the designer
host. Because the HostingForm property should go about its business
transparently, you should decorate it with BrowsableAttribute set to false,
thereby ensuring that the property is not editable from the Property
Browser.

Because HostForm is a public property, the Designer retrieves Host-
Form’s value at design time to generate the following code, which is
needed to initialize the component:

void InitializeComponent() {

  ...

  this.myComponent1.HostingForm = this;

  ...

}

At run time, when InitializeComponent runs, it will return the hosting
form to the component via the HostingForm property setter:

Form hostingForm = null;

[BrowsableAttribute(false)]

public Form HostingForm {

  get { ... }

  // Set by InitializeComponent at run time

  set {

    if( !this.DesignMode ) {

      // Don't change hosting form at run time

      if( (hostingForm != null) && (hostingForm != value) ) {

        throw new

          InvalidOperationException

            ("Can't set HostingForm at run time.");

      }

    }

    else hostingForm = value;

  }

}

Sells.book  Page 315  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION316

In this case, we’re using our knowledge of how the Designer works to
trick it into handing our component a value at run-time that we pick at
design-time.

Batch Initialization
As you may have noticed, the code that eventually gets serialized to Initial-
izeComponent is laid out as an alphanumerically ordered sequence of
property sets, grouped by object. Order isn’t important until your compo-
nent exposes range-dependent properties, such as Min/Max or Start/Stop
pairs. For example, the clock control also has two dependent properties:
PrimaryAlarm and BackupAlarm (the Alarm property was split into two
for extra sleepy people).

Internally, the clock control instance initializes the two properties 10
minutes apart, starting from the current date and time:

DateTime primaryAlarm = DateTime.Now;

DateTime backupAlarm = DateTime.Now.AddMinutes(10);

Both properties should check to ensure that the values are valid:

public DateTime PrimaryAlarm {

  get { return primaryAlarm; }

  set { 

    if( value >= backupAlarm )

      throw new ArgumentOutOfRangeException

           ("Primary alarm must be before Backup alarm");

    primaryAlarm = value; 

  }

}

public DateTime BackupAlarm {

  get { return backupAlarm; }

  set { 

    if( value < primaryAlarm )

      throw new ArgumentOutOfRangeException

           ("Backup alarm must be after Primary alarm");

    backupAlarm = value;

  }

}

Sells.book  Page 316  Thursday, August 7, 2003  9:51 AM



 DESIGN-TIME INTEGRATION BASICS 317

With this dependence checking in place, at design time the Property
Browser will show an exception in an error dialog if an invalid property is
entered, as shown in Figure 9.14.

This error dialog is great at design time, because it lets the developer
know the relationship between the two properties. However, there’s a
problem when the properties are serialized into InitializeComponent
alphabetically:

void InitializeComponent() {

  ...

  // clockControl1

  this.clockControl1.BackupAlarm = 

       new System.DateTime(2003, 11, 24, 13, 42, 47, 46);

  ...

  this.clockControl1.PrimaryAlarm = 

       new System.DateTime(2003, 11, 24, 13, 57, 47, 46);

  ...

}

Notice that even if the developer sets the two alarms properly, as soon
as BackupAlarm is set and is checked against the default value of Primary-
Alarm, a run-time exception will result.

To avoid this, a component must be notified when its properties are
being set from InitializeComponent in “batch mode” so that they can be val-
idated all at once at the end. Implementing the ISupportInitialize interface
(from the System.ComponentModel namespace) provides this capability,
with two notification methods to be called before and after initialization:

public interface ISupportInitialize {

  public void BeginInit();

Figure 9.14: Invalid Value Entered into the Property Browser

continues

Sells.book  Page 317  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION318

  public void EndInit(); 

}

When a component implements this interface, calls to BeginInit and
EndInit are serialized to InitializeComponent:

void InitializeComponent() {

  ...

  ((System.ComponentModel.ISupportInitialize)

       (this.clockControl1)).BeginInit();

  ...

  // clockControl1

  this.clockControl1.BackupAlarm = 

       new System.DateTime(2003, 11, 24, 13, 42, 47, 46);

  ...

  this.clockControl1.PrimaryAlarm = 

       new System.DateTime(2003, 11, 24, 13, 57, 47, 46);

  ...

  ((System.ComponentModel.ISupportInitialize)

       (this.clockControl1)).EndInit();

  ...

}

The call to BeginInit signals the entry into initialization batch mode, a
signal that is useful for turning off value checking:

public class ClockControl : Control, ISupportInitialize {

  ...

  bool initializing = false;

  ...

  void BeginInit() { initializing = true; }

  ...

  public DateTime PrimaryAlarm {

    get { ... }

    set { 

      if( !initializing ) { /* check value */ }

      primaryAlarm = value; 

    }

  }

  public DateTime BackupAlarm {

    get { ... }

    set { 

      if( !initializing ) { /* check value */ }

      backupAlarm = value;

    }

  }

}

Sells.book  Page 318  Thursday, August 7, 2003  9:51 AM



 EXTENDER PROPERTY PROVIDERS 319

Placing the appropriate logic into EndInit performs batch validation:

public class ClockControl : Control, ISupportInitialize {

  void EndInit() {

    if( primaryAlarm >= backupAlarm )

      throw new ArgumentOutOfRangeException

           ("Primary alarm must be before Backup alarm");

  }

  ...

}

EndInit also turns out to be a better place to avoid the timer’s Tick
event, which currently fires once every second during design time.
Although the code inside the Tick event handler doesn’t run at design time
(because it’s protected by a check of the DesignMode property), it would
be better not to even start the timer at all until run time. However, because
DesignMode can’t be checked in the constructor, a good place to check it is
in the EndInit call, which is called after all properties have been initialized
at run time or at design time:

public class ClockControl : Control, ISupportInitialize {

  ...

  void EndInit() {

    ...

    if( !this.DesignMode ) { 

      // Initialize timer

      timer.Interval = 1000;

      timer.Tick += new System.EventHandler(this.timer_Tick);

      timer.Enabled = true;

    }  

  }

}

The Designer and the Property Browser provide all kinds of design-
time help to augment the experience of developing a component, includ-
ing establishing how a property is categorized and described to the
developer and how it’s serialized for the InitializeComponent method.

Extender Property Providers

So far the discussion has focused on the properties implemented by a con-
trol for itself. TimeZoneModifier, an example of such a property, allows the

Sells.book  Page 319  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION320

clock control to be configured to display the time in any time zone. One
way to use this feature is to display the time in each time zone where your
organization has offices. If each office were visually represented with a pic-
ture box, you could drag one clock control for each time zone onto the
form, manually adjusting the TimeZoneModifier property on each clock
control. The result might look like Figure 9.15.

This works quite nicely but could lead to real estate problems, particu-
larly if you have one clock control for each of the 24 time zones globally
and, consequently, 24 implementations of the same logic on the form. If
you are concerned about resources, this also means 24 system timers. Fig-
ure 9.16 shows what this might look like.

Another approach is to have a single clock control and update its Time-
ZoneModifier property with the relevant time zone from the Click event of
each picture box. This is a cumbersome approach because it requires devel-
opers to write the code associating a time zone offset with each control, a

Figure 9.15: Form with Multiple Time Zones

Figure 9.16: One Provider Control for Each Client Control

Sells.book  Page 320  Thursday, August 7, 2003  9:51 AM



 EXTENDER PROPERTY PROVIDERS 321

situation controls are meant to help avoid. Figure 9.17 illustrates this
approach.

A nicer way to handle this situation is to provide access to a single
implementation of the clock control without forcing the developer to write
additional property update code. .NET offers extender property support to
do just this, allowing components to extend property implementations to
other components.

Logically, an extender property is a property provided by an extender
component, like the clock control, on other components in the same con-
tainer, like picture boxes. Extender properties are useful whenever a com-
ponent needs data from a set of other components in the same host. For
example, WinForms itself provides several extender components, includ-
ing ErrorProvider, HelpProvider, and ToolTip. In the case of the ToolTip
component, it makes a lot more sense to set the ToolTip property on each
control on a form than it does to try to set tooltip information for each con-
trol using an editor provided by the ToolTip component itself.

In our case, by implementing TimeZoneModifier as an extender prop-
erty, we allow each picture box control on the form to get its own value, as
shown in Figure 9.18.

Figure 9.17: One Provider Control for All Client Controls, Accessed with Code

Figure 9.18: One Provider Control for All Client Controls, Accessed with a Prop-
erty Set

Sells.book  Page 321  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION322

Exposing an extender property from your control requires that you first
use ProvidePropertyAttribute to declare the property to be extended:

[ProvidePropertyAttribute("TimeZoneModifier", typeof(PictureBox))]

public class ClockControl : Control { ... }

The first parameter to the attribute is the name of the property to be
extended. The second parameter is the “receiver” type, which specifies the
type of object to extend, such as PictureBox. Only components of the type
specified by the receiver can be extended. If you want to implement a more
sophisticated algorithm, such as supporting picture boxes and panels, you
must implement the IExtenderProvider CanExtend method:

class ClockControl : ..., IExtenderProvider {

  bool IExtenderProvider.CanExtend(object extendee) {

    // Don't extend self

    if( extendee == this ) return false;

    

    // Extend suitable controls

    return( (extendee is PictureBox) ||

            (extendee is Panel) );

  }

  ...

}

As you saw in Figure 9.18, the provider supports one or more extendee
controls. Consequently, the provider control must be able to store and dis-
tinguish one extendee’s property value from that of another. It does this
in the Get<PropertyName> and Set<PropertyName> methods, in which
PropertyName is the name you provided in ProvidePropertyAttribute.
Then GetTimeZoneModifier simply returns the property value when
requested by the Property Browser:

public class ClockControl : Control, IExtenderProvider {

  // Mapping of components to numeric timezone offsets

  HashTable timeZoneModifiers = new HashTable();

  public int GetTimeZoneModifier(Control extendee) {

    // Return component's timezone offset

    return int.Parse(timeZoneModifiers[extendee]);

  }

  ...

}

Sells.book  Page 322  Thursday, August 7, 2003  9:51 AM



 EXTENDER PROPERTY PROVIDERS 323

SetTimeZoneModifier has a little more work to do. Not only does it put
the property value into a new hash table for the extendee when provided,
but it also removes the hash table entry when the property is cleared. Also,
with the sample TimeZoneModifier property, you need to hook into each
extendee control’s Click event, unless the control isn’t using the extender
property. SetTimeZoneModifier is shown here:

class ClockControl : ..., IExtenderProvider {

  HashTable timeZoneModifiers = new HashTable();

  ...

  public void SetTimeZoneModifier(Control extendee, object value) {

    // If property isn't provided

    if( value == null ) {

      // Remove it

      timeZoneModifiers.Remove(extendee);

      if( !this.DesignMode ) {

        extendee.Click -= new EventHandler(extendee_Click);

      }

    }

    else {

      // Add the offset as an integer

      timeZoneModifiers[extendee] = int.Parse(value);

      if( !this.DesignMode ) {

        extendee.Click += new EventHandler(extendee_Click);

      }

    }

  }

}

As with other properties, you can affect the appearance of an extender
property in the Property Browser by adorning the Get<PropertyName>
method with attributes:

class ClockControl : ..., IExtenderProvider {

  [

    Category("Behavior"),

    Description("Sets the timezone difference from the current time"),

    DefaultValue("")

  ]

  public int GetTimeZoneModifier(Control extendee) { ... }

  ...

}

These attributes are applied to the extendee’s Property Browser view. 

Sells.book  Page 323  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION324

With all this in place, you can compile your extender component to see
the results. Extended properties will appear in the extendee component’s
properties with the following naming format:

<ExtendedPropertyName> on <ExtenderProviderName>

Figure 9.19 shows the TimeZoneModifier extender property behaving
like any other property on a PictureBox control.

If a property is set and is not the default value, it is serialized to Initial-
izeComponent(), as a SetTimeZoneModifier method call, and grouped
with the extendee component:

void InitializeComponent() {

  ...

  this.clockControl1.SetTimeZoneModifier(this.pictureBox1, -11);

  ...

}

Extender properties allow a component to add to the properties of other
components in the same host. In this way, the developer can keep the data
with the intuitive component, which is not necessarily the component that
provides the service.

Type Converters

When you select a component on a design surface, the entries in the Prop-
erty Browser are rendered from the design-time control instance. When
you edit properties in the Property Browser, the component’s design-time
instance is updated with the new property values. This synchronicity isn’t

Figure 9.19: Extended Property in Action

Sells.book  Page 324  Thursday, August 7, 2003  9:51 AM



 TYPE CONVERTERS 325

as straightforward as it seems, however, because the Property Browser
displays properties only as text, even though the source properties can be
of any type. As values shuttle between the Property Browser and the
design-time instance, they must be converted back and forth between the
string type and the type of the property.

Enter the type converter, the translator droid of .NET, whose main goal in
life is to convert between types. For string-to-type conversion, a type con-
verter is used for each property displayed in the Property Browser, as
shown in Figure 9.20.

.NET offers the TypeConverter class (from the System.Component-
Model namespace) as the base implementation type converter. .NET also
gives you several derivations—including StringConverter, Int32Converter,
and DateTimeConverter—that support conversion between common .NET
types. If you know the type that needs conversion at compile time, you can
create an appropriate converter directly:

// Type is known at compile time

TypeConverter converter = new Int32Converter();

Or, if you don’t know the type that needs conversion until run time, let
the TypeDescriptor class (from the System.ComponentModel namespace)
make the choice for you:

// Don't know the type before run time

object myData = 0;

TypeConverter converter = TypeDescriptor.GetConverter(myData.GetType());

Figure 9.20: The Property Browser and Design-Time Conversion

Sells.book  Page 325  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION326

The TypeDescriptor class provides information about a particular type
or object, including methods, properties, events, and attributes. Type-
Descriptor.GetConverter evaluates a type to determine a suitable Type-
Converter based on the following:

1. Checking whether a type is adorned with an attribute that specifies a 
particular type converter.

2. Comparing the type against the set of built-in type converters.

3. Returning the TypeConverter base if no other type converters are 
found.

Because the Property Browser is designed to display the properties of
any component, it can’t know specific property types in advance. Conse-
quently, it relies on TypeDescriptor.GetConverter to dynamically select the
most appropriate type converter for each property. 

After a type converter is chosen, the Property Browser and the design-
time instance can perform the required conversions, using the same funda-
mental steps as those shown in the following code:

// Create the appropriate type converter

object myData = 0;

TypeConverter converter = TypeDescriptor.GetConverter(myData.GetType());

// Can converter convert int to string?

if( converter.CanConvertTo(typeof(string)) ) {

  // Convert it

  object intToString = converter.ConvertTo(42, typeof(string));

}

// Can converter convert string to int?

if( converter.CanConvertFrom(typeof(string)) ) {

  // Convert it

  object stringToInt = converter.ConvertFrom("42");

}

When the Property Browser renders itself, it uses the type converter to
convert each design-time instance property to a string representation using
the following steps:

Sells.book  Page 326  Thursday, August 7, 2003  9:51 AM



 TYPE CONVERTERS 327

1. CanConvertTo: Can you convert from the design-time property type 
to a string?

2. ConvertTo: If so, please convert property value to string.

The string representation of the source value is then displayed at the
property’s entry in the Property Browser. If the property is edited and the
value is changed, the Property Browser uses the next steps to convert the
string back to the source property value:

1. CanConvertFrom: Can you convert back to the design-time property 
type?

2. ConvertFrom: If so, please convert string to property value.

Some intrinsic type converters can do more than just convert between
simple types. To demonstrate, let’s expose a Face property of type Clock-
Face, allowing developers to decide how the clock is displayed, including
options for Analog, Digital, or Both:

public enum ClockFace {

  Analog = 0,

  Digital = 1,

  Both = 2

}

class ClockControl : Control {

  ClockFace face = ClockFace.Both;

  public ClockFace Face {

    get { … }

    set { … }

  }

  ...

}

TypeDescriptor.GetConverter returns an EnumConverter, which con-
tains the smarts to examine the source enumeration and convert it to a
drop-down list of descriptive string values, as shown in Figure 9.21.

Sells.book  Page 327  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION328

Custom Type Converters

Although the built-in type converters are useful, they aren’t enough if your
component or control exposes properties based on custom types, such as
the clock control’s HourHand, MinuteHand, and SecondHand properties,
shown here:

public class Hand {

  public Hand(Color color, int width) {

    this.color = color;

    this.width = width;

  }

  public Color Color {

    get { return color; }

    set { color = value; }

  }

  public int Width {

    get { return width; }

    set { width = value; }

  }

  Color  color = Color.Black;

  int    width = 1;

}

public class ClockControl : Control {

  public Hand HourHand { ... }

  public Hand MinuteHand { ... }

  public Hand SecondHand { ... }

}

The idea is to give developers the option to pretty up the clock’s hands
with color and width values. Without a custom type converter,5 the unfor-
tunate result is shown in Figure 9.22.

5. Be careful when you use custom types for properties. If the value of the property is null, 
you won’t be able to edit it in the Property Browser at all.

Figure 9.21: Enumeration Type Displayed in the Property Browser via Enum-
Converter

Sells.book  Page 328  Thursday, August 7, 2003  9:51 AM



 TYPE CONVERTERS 329

Just as the Property Browser can’t know which types it will be display-
ing, .NET can’t know which custom types you’ll be developing. Conse-
quently, there aren’t any type of converters capable of handling them.
However, you can hook into the type converter infrastructure to provide
your own. Building a custom type converter starts by deriving from the
TypeConverter base class:

public class HandConverter : TypeConverter { ... }

To support conversion, HandConverter must override CanConvert-
From, ConvertTo, and ConvertFrom:

public class HandConverter : TypeConverter {

  public override bool

    CanConvertFrom(

      ITypeDescriptorContext context, Type sourceType) {...}

  public override object

    ConvertFrom(

      ITypeDescriptorContext context,

      CultureInfo info, 

      object value) {...}

  public override object

    ConvertTo(

      ITypeDescriptorContext context,

      CultureInfo culture, 

      object value,

      Type destinationType) {...}

}

Figure 9.22: Complex Properties in the Property Browser

Sells.book  Page 329  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION330

CanConvertFrom lets clients know what it can convert from. In this
case, HandConverter reports that it can convert from a string type to a
Hand type:

public override bool CanConvertFrom(

  ITypeDescriptorContext context, Type sourceType) {

  // We can convert from a string to a Hand type

  if( sourceType == typeof(string) ) { return true; }

  return base.CanConvertFrom(context, sourceType);

}

Whether the string type is in the correct format is left up to Convert-
From, which actually performs the conversion. HandConverter expects a
multivalued string. It splits this string into its atomic values and then uses
it to instantiate a Hand object:

public override object ConvertFrom(

  ITypeDescriptorContext context, CultureInfo info, object value) {

    // If converting from a string

    if( value is string ) {

      // Build a Hand type   

      try {

        // Get Hand properties

        string propertyList = (string)value;

        string[] properties = propertyList.Split(';');

        return new Hand(Color.FromName(properties[0].Trim()), 

                        int.Parse(properties[1]));

      }

      catch {}

      throw new ArgumentException("The arguments were not valid.");

    }

    return base.ConvertFrom(context, info, value);

  }

  ...

}

ConvertTo converts from a Hand type back to a string:

public override object ConvertTo(

  ITypeDescriptorContext context,

  CultureInfo culture,

  object value,

  Type destinationType) {

Sells.book  Page 330  Thursday, August 7, 2003  9:51 AM



 TYPE CONVERTERS 331

  // If source value is a Hand type

  if( value is Hand ) {

    // Convert to string

    if( (destinationType == typeof(string)) ) {

      Hand hand = (Hand)value;

      string color = (hand.Color.IsNamedColor ? 

                      hand.Color.Name : 

                      hand.Color.R + ", " +

                        hand.Color.G + ", " +

                        hand.Color.B);

      return string.Format("{0}; {1}", color, hand.Width.ToString());

    }

  }                

  return base.ConvertTo(context, culture, value, destinationType);

}

You may have noticed that HandConverter doesn’t implement a Can-
ConvertTo override. The base implementation of TypeConverter.Can-
ConvertTo returns a Boolean value of true when queried for its ability to
convert to a string type. Because this is the right behavior for HandCon-
verter (and for most other custom type converters), there’s no need to over-
ride it.

When the Property Browser looks for a custom type converter, it looks
at each property for a TypeConverterAttribute:

public class ClockControl : Control {

  ...

  [ TypeConverterAttribute (typeof(HandConverter)) ]

  public Hand HourHand { ... }

  [TypeConverterAttribute (typeof(HandConverter)) ]

  public Hand MinuteHand { ... }

  [TypeConverterAttribute (typeof(HandConverter)) ]

  public Hand SecondHand { ... }

  ...

}

However, this is somewhat cumbersome, so it’s simpler to decorate the
type itself with TypeConverterAttribute:

[ TypeConverterAttribute(typeof(HandConverter)) ]

public class Hand { ... }

continues

Sells.book  Page 331  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION332

public class ClockControl : Control {

  ...

  public Hand HourHand { ... }

  public Hand MinuteHand { ... }

  public Hand SecondHand { ... }

  ...

}

Figure 9.23 shows the effect of the custom HandConverter type converter.

Expandable Object Converter
Although using the UI shown in Figure 9.23 is better than not being able to
edit the property at all, there are still ways it can be improved. For instance,
put yourself in a developer’s shoes. Although it might be obvious what the
first part of the property is, it’s disappointing not to be able to pick the
color from one of those pretty drop-down color pickers. And what is the
second part of the property meant to be? Length, width, degrees, some-
thing else?

As an example of what you’d like to see, the Font type supports brows-
ing and editing of its subproperties, as shown in Figure 9.24.

This ability to expand a property of a custom type makes it a lot easier
to understand what the property represents and what sort of values you
need to provide. To allow subproperty editing, you simply change the base
type from TypeConverter to ExpandableObjectConverter (from the
System.ComponentModel namespace):

public class HandConverter : ExpandableObjectConverter { ... }

Figure 9.23: HandConverter in Action (See Plate 23)

Sells.book  Page 332  Thursday, August 7, 2003  9:51 AM



 TYPE CONVERTERS 333

This change gives you multivalue and nested property editing support,
as shown in Figure 9.25.

Although you don’t have to write any code to make this property
expandable, you must write a little code to fix an irksome problem: a delay
in property updating. In expanded mode, a change to the root property
value is automatically reflected in the nested property value list. This
occurs because the root property entry refers to the design-time property
instance, whereas its nested property values refer to the design-time
instance’s properties directly, as illustrated in Figure 9.26.

When the root property is edited, the Property Browser calls Hand-
Converter.ConvertFrom to convert the Property Browser’s string entry to a
new SecondHand instance, and that results in a refresh of the Property
Browser. However, changing the nested values only changes the current
instance’s property values, rather than creating a new instance, and that
doesn’t result in an immediate refresh of the root property.

Figure 9.24: Expanded Property Value

Figure 9.25: HandConverter Derived from ExpandableObjectConverter

Sells.book  Page 333  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION334

TypeConverters offer a mechanism you can use to force the creation of a
new instance whenever instance property values change, something you
achieve by overriding GetCreateInstanceSupported and CreateInstance.
The GetCreateInstanceSupported method returns a Boolean indicating
whether this support is available and, if it is, calls CreateInstance to imple-
ment it:

public class HandConverter : ExpandableObjectConverter {

  public override bool

  GetCreateInstanceSupported(

    ITypeDescriptorContext context) {

    // Always force a new instance

    return true;

  }

  public override object

  CreateInstance(

    ITypeDescriptorContext context, IDictionary propertyValues) {

    // Use the dictionary to create a new instance

    return new Hand(

      (Color)propertyValues["Color"],

      (int)propertyValues["Width"]);

  }

  ...

}

If GetCreateInstanceSupported returns true, then CreateInstance will
be used to create a new instance whenever any of the subproperties of an
expandable object are changed. The propertyValues argument to Create-
Instance provides a set of name/value pairs for the current values of the
object’s subproperties, and you can use them to construct a new instance.

Figure 9.26: Relationship between Root and Nested Properties and Design-
Time Property Instance

Sells.book  Page 334  Thursday, August 7, 2003  9:51 AM



 TYPE CONVERTERS 335

Custom Type Code Serialization with TypeConverters

Although the Hand type now plays nicely with the Property Browser, it
doesn’t yet play nicely with code serialization. In fact, at this point it’s not
being serialized to InitializeComponent at all. To enable serialization of
properties exposing complex types, you must expose a public Should-
Serialize<PropertyName> method that returns a Boolean:

public class ClockControl : Control {

  public Hand SecondHand { ... }

  bool ShouldSerializeSecondHand() {

    // Only serialize nondefault values

    return(

      (secondHand.Color != Color.Red) || (secondHand.Width != 1) );

  }

  ...

}

Internally, the Designer looks for a method named ShouldSerialize
<PropertyName> to ask whether the property should be serialized. From
the Designer’s point of view, it doesn’t matter whether your ShouldSerial-
ize<PropertyName> is public or private, but choosing private removes it
from client visibility.

To programmatically implement the Property Browser reset functional-
ity, you use the Reset<PropertyName> method:

public Hand SecondHand { ... }

void ResetSecondHand() {

  SecondHand = new Hand(Color.Red, 1);

}

Implementing ShouldSerialize lets the design-time environment know
whether the property should be serialized, but you also need to write
custom code to help assist in the generation of appropriate Initialize-
Component code. Specifically, the Designer needs an instance descriptor,
which provides the information needed to create an instance of a particular
type. The code serializer gets an InstanceDescriptor object for a Hand by
asking the Hand type converter:

public class HandConverter : ExpandableObjectConverter {

  public override bool

continues

Sells.book  Page 335  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION336

    CanConvertTo(

      ITypeDescriptorContext context, Type destinationType) {

    // We can be converted to an InstanceDescriptor

    if( destinationType == typeof(InstanceDescriptor) ) return true;

    return base.CanConvertTo(context, destinationType);

  }

  public override object

    ConvertTo(

      ITypeDescriptorContext context, CultureInfo culture, 

      object value, Type destinationType) {

    if( value is Hand ) {

      // Convert to InstanceDescriptor

      if( destinationType == typeof(InstanceDescriptor) ) {

        Hand     hand = (Hand)value;

        object[] properties = new object[2];

        Type[]   types = new Type[2];

        // Color

        types[0] = typeof(Color);

        properties[0] = hand.Color;

        // Width

        types[1] = typeof(int);

        properties[1] = hand.Width;

        // Build constructor

        ConstructorInfo ci = typeof(Hand).GetConstructor(types);

        return new InstanceDescriptor(ci, properties);

      }

      ...

    }

   return base.ConvertTo(context, culture, value, destinationType);

  }

  ...

}

To be useful, an instance descriptor requires two pieces of information.
First, it needs to know what the constructor looks like. Second, it needs to
know which property values should be used if the object is instantiated.
The former is described by the ConstructorInfo type, and the latter is sim-
ply an array of values, which should be in constructor parameter order.
After the control is rebuilt and assuming that ShouldSerialize<Property-
Name> permits, all Hand type properties will be serialized using the infor-
mation provided by the HandConverter-provided InstanceDescriptor:

Sells.book  Page 336  Thursday, August 7, 2003  9:51 AM



 UI TYPE EDITORS 337

public class ClockControlHostForm : Form {

  ...

  void InitializeComponent() {

    ...

    this.clockControl1.HourHand = 

      new ClockControlLibrary.Hand(System.Drawing.Color.Black, 2);

    ...

  }

}

Type converters provide all kinds of help for the Property Browser and
the Designer to display, convert, and serialize properties of custom types
for components that use such properties.

UI Type Editors

ExpandableObjectConverters help break down a complex multivalue
property into a nested list of its atomic values. Although this technique
simplifies editing of a complicated property, it may not be suitable for
other properties that exhibit the following behavior:

• Hard to construct, interpret, or validate, such as a regular expression

• One of a list of values so large it would be difficult to remember all of 
them

• A visual property, such as a ForeColor, that is not easily represented 
as a string

Actually, the ForeColor property satisfies all three points. First, it would
be hard to find the color you wanted by typing comma-separated integers
like 33, 86, 24 or guessing a named color, like PapayaWhip. Second, there
are a lot of colors to choose from. Finally, colors are just plain visual.

In addition to supporting in-place editing in the Property Browser,
properties such as ForeColor help the developer by providing an alterna-
tive UI-based property-editing mechanism. You access this tool, shown in
Figure 9.27, from a drop-down arrow in the Property Browser.

The result is a prettier, more intuitive way to select a property value. This
style of visual editing is supported by the UI type editor, a design-time fea-
ture that you can leverage to similar effect. There are two types of “editor”

Sells.book  Page 337  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION338

you can choose from: modal or drop-down. Drop-down editors support
single-click property selection from a drop-down UI attached to the Prop-
erty Browser. This UI might be a nice way to enhance the clock control’s
Face property, allowing developers to visualize the clock face style as they
make their selection, shown in Figure 9.28.

You begin implementing a custom UI editor by deriving from the
UITypeEditor class (from the System.Drawing.Design namespace):

public class FaceEditor : UITypeEditor { ... }

The next step requires you to override the GetEditStyle and EditValue
methods from the UITypeEditor base class:

public class FaceEditor : UITypeEditor {

  public override UITypeEditorEditStyle GetEditStyle(

Figure 9.27: Color Property Drop-Down UI Editor

Figure 9.28: Custom View Drop-Down UI Editor

Sells.book  Page 338  Thursday, August 7, 2003  9:51 AM



 UI TYPE EDITORS 339

    ITypeDescriptorContext context)

  {...}

  public override object EditValue(

    ITypeDescriptorContext context, 

    IServiceProvider provider, 

    object value)

   {...}

}

As with type converters, the appropriate UI type editor, provided by
the GetEditor method of the TypeDescription class, is stored with each
property. When the Property Browser updates itself to reflect a control
selection in the Designer, it queries GetEditStyle to determine whether it
should show a drop-down button, an open dialog button, or nothing in the
property value box when the property is selected. This behavior is deter-
mined by a value from the UITypeEditorEditStyle enumeration:

enum UITypeEditorEditStyle {

  DropDown, // Display drop-down UI

  Modal, // Display modal dialog UI

  None, // Don’t display a UI

}

Not overriding GetEditStyle is the same as returning UITypeEditorEd-
itStyle.None, which is the default edit style. To show the drop-down UI
editor, the clock control returns UITypeEditorEditStyle.DropDown:

public class FaceEditor : UITypeEditor {

  public override UITypeEditorEditStyle GetEditStyle(

    ITypeDescriptorContext context) {

    if( context != null ) return UITypeEditorEditStyle.DropDown;

    return base.GetEditStyle(context);

  }

  ...

}

ITypeDescriptorContext is passed to GetEditStyle to provide contextual
information regarding the execution of this method, including the following:

• The container and, subsequently, the designer host and its 
components

Sells.book  Page 339  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION340

• The component design-time instance being shown in the Property 
Browser

• A PropertyDescriptor type describing the property, including the 
TypeConverter and UITypeEditor assigned to the component

• A PropertyDescriptorGridEntry type, which is a composite of the 
PropertyDescriptor and the property’s associated grid entry in the 
Property Browser

Whereas GetEditStyle is used to initialize the way the property
behaves, EditValue actually implements the defined behavior. Whether the
UI editor is drop-down or modal, you follow the same basic steps to edit
the value:

1. Access the Property Browser’s UI display service, IWindowsForms-
EditorService.

2. Create an instance of the editor UI implementation, which is a control 
that the Property Browser will display.

3. Pass the current property value to the UI editor control.

4. Ask the Property Browser to display the UI editor control.

5. Choose the value and close the UI editor control.

6. Return the new property value from the editor.

Drop-Down UI Type Editors
Here’s how the clock control implements these steps to show a drop-down
editor for the Face property:

public class FaceEditor : UITypeEditor {

  ...

  public override object EditValue(

    ITypeDescriptorContext context, 

    IServiceProvider provider,

    object value) {

    if( (context != null) && (provider != null) ) {

      // Access the Property Browser’s UI display service

      IWindowsFormsEditorService editorService =

        (IWindowsFormsEditorService)

          provider.GetService(typeof(IWindowsFormsEditorService));

Sells.book  Page 340  Thursday, August 7, 2003  9:51 AM



 UI TYPE EDITORS 341

      if( editorService!= null ) {

        // Create an instance of the UI editor control

        FaceEditorControl dropDownEditor =

          new FaceEditorControl(editorService);

        // Pass the UI editor control the current property value

        dropDownEditor.Face = (ClockFace)value;

        // Display the UI editor control

        editorService.DropDownControl(dropDownEditor);

        // Return the new property value from the UI editor control

        return dropDownEditor.Face;

      }

    }

    return base.EditValue(context, provider, value);

  }

}

When it comes to displaying the UI editor control, you must play nicely
in the design-time environment, particularly regarding UI positioning in
relation to the Property Browser. Specifically, drop-down UI editors must
appear flush against the bottom of the property entry and must be sized to
the width of the property entry. 

To facilitate this, the Property Browser exposes a service, an implemen-
tation of the IWindowsFormsEditorService interface, to manage the load-
ing and unloading of UI editor controls as well as their positioning inside
the development environment. The FaceEditor type references this service
and calls its DropDownControl method to display the FaceEditorControl,
relative to Property’s Browser edit box. When displayed, FaceEditor-
Control has the responsibility of capturing the user selection and returning
control to EditValue with the new value. This requires a call to IWindows-
FormsEditorService.CloseDropDown from FaceEditorControl, something
you do by passing to FaceEditorControl a reference to the IWindowsForms-
EditorService interface:

public class FaceEditorControl : UserControl {

  ClockFace face = ClockFace.Both;

  IWindowsFormsEditorService editorService = null;

  ...

  public FaceEditorControl(IWindowsFormsEditorService editorService) { 

    ...

continues

Sells.book  Page 341  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION342

    this.editorService = editorService;

  }

  public ClockFace Face {

    get { ... }

    set { ... }

  }

  void picBoth_Click(object sender, System.EventArgs e) {

    face = ClockFace.Both;

    // Close the UI editor control upon value selection

    editorService.CloseDropDown();

  }

  void picAnalog_Click(object sender, System.EventArgs e) {

    face = ClockFace.Analog;

    // Close the UI editor control upon value selection

    editorService.CloseDropDown();

  }

  void picDigital_Click(object sender, System.EventArgs e) { 

    face = ClockFace.Digital;

    // Close the UI editor control upon value selection

    editorService.CloseDropDown();

  }

  ...

}

The final step is to associate FaceEditor with the Face property by
adorning the property with EditorAttribute:

[

  CategoryAttribute("Appearance"),

  DescriptionAttribute("Which style of clock face to display"),

  DefaultValueAttribute(ClockFace.Both),

  EditorAttribute(typeof(FaceEditor), typeof(UITypeEditor))

]

public ClockFace Face { ... }

Now FaceEditor is in place for the Face property. When a developer
edits that property in Propery Browser, it will show a drop-down arrow
and the FaceEditorControl as the UI for the developer to use to choose a
value of the ClockFace enumeration.

Sells.book  Page 342  Thursday, August 7, 2003  9:51 AM



 UI TYPE EDITORS 343

Modal UI Type Editors
Although drop-down editors are suitable for single-click selection, there
are times when unrestricted editing is required. In such situations, you
would use a modal UITypeEditor implemented as a modal form. For
example, the clock control has a digital time format sufficiently complex to
edit with a separate dialog outside the Property Browser:

public class ClockControl : Control { 

  ...

  string digitalTimeFormat = "dd/MM/yyyy hh:mm:ss tt";

  ...

  [

    CategoryAttribute("Appearance"),

    DescriptionAttribute("The digital time format, ..."),

    DefaultValueAttribute("dd/MM/yyyy hh:mm:ss tt"),

  ]

  public string DigitalTimeFormat {

    get { return digitalTimeFormat; }

    set { 

      digitalTimeFormat = value;

      this.Invalidate();

    }

  }

}

Date and Time format strings are composed of a complex array of for-
mat specifiers that are not easy to remember and certainly aren’t intuitive
in a property browser, as shown in Figure 9.29.

Modal UITypeEditors are an ideal way to provide a more intuitive way
to construct hard-to-format property values. By providing a custom form,
you give developers whatever editing experience is the most conducive for

Figure 9.29: The DigitalTimeFormat Property

Sells.book  Page 343  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION344

that property type. Figure 9.30 illustrates how the Digital Time Format
Editor dialog makes it easier to edit the clock control’s DigitTimeFormat
property.

A modal UITypeEditor actually requires slightly different code from
that of its drop-down counterpart. You follow the same logical steps as
with a drop-down editor, with three minor implementation differences:

• Returning UITypeEditorEditStyle.Modal from UITypeEditor.GetEdit-
Style

• Calling IWindowsFormsEditorService.ShowDialog from EditValue to 
open the UI editor dialog

• Not requiring an editor service reference to be passed to the dialog, 
because a Windows Form can close itself

The clock control’s modal UI type editor is shown here:

public class DigitalTimeFormatEditor : UITypeEditor {

  public override UITypeEditorEditStyle GetEditStyle(

    ITypeDescriptorContext context) {

    if( context != null ) {

      return UITypeEditorEditStyle.Modal;

    }

    return base.GetEditStyle(context);

  }

  public override object EditValue(

    ITypeDescriptorContext context, 

    IServiceProvider provider,

    object value) {

Figure 9.30: Custom DigitalTimeFormat Modal UI Editor

Sells.book  Page 344  Thursday, August 7, 2003  9:51 AM



 UI TYPE EDITORS 345

    if( (context != null) && (provider != null) ) {

      // Access the Property Browser’s UI display service

      IWindowsFormsEditorService editorService =

        (IWindowsFormsEditorService)

          provider.GetService(typeof(IWindowsFormsEditorService));

      if( editorService != null ) {

        // Create an instance of the UI editor form

        DigitalTimeFormatEditorForm modalEditor =

          new DigitalTimeFormatEditorForm();

        // Pass the UI editor dialog the current property value

        modalEditor.DigitalTimeFormat = (string)value;

        // Display the UI editor dialog

        if( editorService.ShowDialog(modalEditor) == DialogResult.OK ) {

          // Return the new property value from the UI editor form

          return modalEditor.DigitalTimeFormat;

        }

      }

    }

    return base.EditValue(context, provider, value);

  }

}

At this point, normal dialog activities (as covered in Chapter 3: Dialogs)
apply for the UI editor’s modal form:

public class DigitalTimeFormatEditorForm : Form {

  ...

  string digitalTimeFormat = "dd/MM/yyyy hh:mm:ss tt";

  public string DigitalTimeFormat {

    get { return digitalTimeFormat; }

    set { digitalTimeFormat = value; }

  }

  ...

  void btnOK_Click(object sender, System.EventArgs e) {

    DialogResult = DialogResult.OK;

    digitalTimeFormat = txtFormat.Text;

  }

  ...

}

Again, to associate the new UI type editor with the property requires
applying the EditorAttribute:

Sells.book  Page 345  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION346

[

  CategoryAttribute("Appearance"),

  DescriptionAttribute("The digital time format, ..."),

  DefaultValueAttribute("dd/MM/yyyy hh:mm:ss tt"),

  EditorAttribute(typeof(DigitalTimeFormatEditor), typeof(UITypeEditor))

]

public string DigitalTimeFormat { ... }

After EditorAttribute is applied, the modal UITypeEditor is accessed
via an ellipsis-style button displayed in the Property Browser, as shown in
Figure 9.31.

UI type editors allow you to provide a customized editing environment
for the developer on a per-property basis, whether it’s a drop-down UI to
select from a list of possible values or a modal dialog to provide an entire
editing environment outside the Property Browser.

Custom Designers

So far, you have seen how properties are exposed to the developer at
design time, and you’ve seen some of the key infrastructure provided by
.NET to improve the property-editing experience, culminating in UIType-
Editor. Although the focus has been on properties, they aren’t the only
aspect of a control that operates differently in design-time mode compared
with run-time mode. In some situations, a control’s UI might render differ-
ently between these modes. 

For example, the Splitter control displays a dashed border when its
BorderStyle is set to BorderStyle.None. This design makes it easier for
developers to find this control on the form’s design surface in the absence
of a visible border, as illustrated in Figure 9.32.

Figure 9.31: Accessing a Modal UITypeEditor

Sells.book  Page 346  Thursday, August 7, 2003  9:51 AM



 CUSTOM DESIGNERS 347

Because BorderStyle.None means “don’t render a border at run time,”
the dashed border is drawn only at design time for the developer’s
benefit. Of course, if BorderStyle is set to BorderStyle.FixedSingle or
BorderStyle.Fixed3D, the dashed border is not necessary, as illustrated by
Figure 9.33.

What’s interesting about the splitter control is that the dashed border is
not actually rendered from the control implementation. Instead, this work
is conducted on behalf of them by a custom designer, another .NET design-
time feature that follows the tradition, honored by type converters and UI
type editors, of separating design-time logic from the control.

Custom designers are not the same as designer hosts or the Windows
Forms Designer, although a strong relationship exists between designers
and designer hosts. As every component is sited, the designer host creates
at least one matching designer for it. As with type converters and UI type
editors, the TypeDescriptor class does the work of creating a designer in
the CreateDesigner method. Adorning a type with DesignerAttribute ties it
to the specified designer. For components and controls that don’t possess
their own custom designers, .NET provides ComponentDesigner and

Figure 9.32: Splitter Dashed Border When BorderStyle Is None

Figure 9.33: Splitter with BorderStyle.Fixed3D

Sells.book  Page 347  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION348

ControlDesigner, respectively, both of which are base implementations of
IDesigner:

public interface IDesigner : IDisposable {

  public void DoDefaultAction();

  public void Initialize(IComponent component);

  public IComponent Component { get; } 

  public DesignerVerbCollection Verbs { get; }

}

For example, the clock face is round at design time when the clock con-
trol either is Analog or is Analog and Digital. This makes it difficult to
determine where the edges and corners of the control are, particularly
when the clock is being positioned against other controls. The dashed bor-
der technique used by the splitter would certainly help, looking something
like Figure 9.34.

Because the clock is a custom control, its custom designer will derive
from the ControlDesigner base class (from the System.Windows.Forms.
Design namespace):

public class ClockControlDesigner : ControlDesigner { ... }

To paint the dashed border, ClockControlDesigner overrides the Initial-
ize and OnPaintAdornments methods:

public class ClockControlDesigner : ControlDesigner { 

  ...

Figure 9.34: Border Displayed from ClockControlDesigner

Sells.book  Page 348  Thursday, August 7, 2003  9:51 AM



 CUSTOM DESIGNERS 349

  public override void Initialize(IComponent component) { ... } 

  protected override void OnPaintAdornments(PaintEventArgs e) { ... }

  ...

}

Initialize is overridden to deploy initialization logic that’s executed as
the control is being sited. It’s also a good location to cache a reference to the
control being designed:

public class ClockControlDesigner : ControlDesigner { 

  ClockControl clockControl = null;

  public override void Initialize(IComponent component) { 

    base.Initialize(component);

      

    // Get clock control shortcut reference

    clockControl = (ClockControl)component;

  }

  ...

}

You could manually register with Control.OnPaint to add your design-
time UI, but you’ll find that overriding OnPaintAdornments is a better
option because it is called only after the control’s design-time or run-time
UI is painted, letting you put the icing on the cake:

public class ClockControlDesigner : ControlDesigner {

  ...

  protected override void OnPaintAdornments(PaintEventArgs e) {

    // Let the base class have a crack

    base.OnPaintAdornments(e);

    // Don't show border if it does not have an Analog face

    if( clockControl.Face == ClockFace.Digital ) return;

    // Draw border

    Graphics g = e.Graphics;

    using( Pen pen = new Pen(Color.Gray, 1) ) {

      pen.DashStyle = DashStyle.Dash;

      g.DrawRectangle(

        pen, 0, 0, clockControl.Width - 1, clockControl.Height - 1);

    }

  }

  ...

}

Sells.book  Page 349  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION350

Adding DesignerAttribute to the ClockControl class completes the
association:

[ DesignerAttribute(typeof(ClockControlDesigner)) ]

public class ClockControl : Control { ... }

Design-Time-Only Properties
The clock control is now working as shown in Figure 9.34. One way to
improve on this is to make it an option to show the border, because it’s a
feature that not all developers will like. Adding a design-time-only Show-
Border property will do the trick, because this is not a feature that should
be accessible at run time. Implementing a design-time-only property on
the control itself is not ideal because the control operates in both design-
time and run-time modes. Designers are exactly the right location for
design-time properties. 

To add a design-time-only property, start by adding the basic property
implementation to the custom designer:

public class ClockControlDesigner : ControlDesigner { 

  ...

  bool showBorder = true;

  ...

  protected override void OnPaintAdornments(PaintEventArgs e) {

    ...

    // Don’t show border if hidden or

    // does not have an Analog face

    if( (!showBorder) ||

        (clockControl.Face == ClockFace.Digital) ) return;

    ...

  }

  // Provide implementation of ShowBorder to provide 

  // storage for created ShowBorder property

  bool ShowBorder {

    get { return showBorder; }

    set { 

      showBorder = value;

      clockControl.Refresh();

    }

  }

}

Sells.book  Page 350  Thursday, August 7, 2003  9:51 AM



 CUSTOM DESIGNERS 351

This isn’t enough on its own, however, because the Property Browser
won’t examine a custom designer for properties when the associated com-
ponent is selected. The Property Browser gets its list of properties from
TypeDescriptor’s GetProperties method (which, in turn, gets the list of
properties using .NET reflection). To augment the properties returned by
the TypeDescriptor class, a custom designer can override the PreFilter-
Properties method:

 public class ClockControlDesigner : ControlDesigner { 

  ...

  protected override void PreFilterProperties(

    IDictionary properties) {

    // Let the base have a chance

    base.PreFilterProperties(properties);

    // Create design-time-only property entry and add it to 

    // the Property Browser’s Design category

    properties["ShowBorder"] = TypeDescriptor.CreateProperty(

      typeof(ClockControlDesigner), 

      "ShowBorder", 

      typeof(bool), 

      CategoryAttribute.Design, 

      DesignOnlyAttribute.Yes);

  }

  ...

}

The properties argument to PreFilterProperties allows you to populate
new properties by creating PropertyDescriptor objects using the Type-
Descriptor’s CreateProperty method, passing the appropriate arguments
to describe the new property. One of the parameters to TypeDescriptor.
CreateProperty is DesignOnlyAttribute.Yes, which specifies design-time-
only usage. It also physically causes the value of ShowBorder to be per-
sisted to the form’s resource file rather than to InitializeComponent, as
shown in Figure 9.35.

If you need to alter or remove existing properties, you can override
PostFilterProperties and act on the list of properties after TypeDescriptor
has filled it using reflection. Pre/Post filter pairs can also be overridden for
methods and events if necessary. Figure 9.36 shows the result of adding the
ShowBorder design-time property.

Sells.book  Page 351  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION352

Design-Time Context Menu Verbs
To take the design-time-only property even further, it’s possible to add
items to a component’s design-time context menu. These items are called
verbs, and ShowBorder would make a fine addition to our clock control’s
verb menu.

Adding to the verb menu requires that we further augment the custom
designer class:

public class ClockControlDesigner : ControlDesigner { 

  ...

  public override DesignerVerbCollection Verbs {

    get {

      // Return new list of context menu items

      DesignerVerbCollection verbs = new DesignerVerbCollection();

      showBorderVerb =

        new DesignerVerb(

Figure 9.35: ShowBorder Property Value Serialized to the Host Form’s 
Resource File

Figure 9.36: ShowBorder Option in the Property Browser

Sells.book  Page 352  Thursday, August 7, 2003  9:51 AM



 CUSTOM DESIGNERS 353

          GetVerbText(),

          new EventHandler(ShowBorderClicked));

      verbs.Add(showBorderVerb);

      return verbs;

    }

  }

  ...

}

The Verbs override is queried by the Designer shell for a list of Designer-
Verbs to insert into the component’s context menu. Each DesignerVerb in
the DesignerVerbCollection takes a string name value plus the event han-
dler that responds to verb selection. In our case, this is ShowBorderClicked:

public class ClockControlDesigner : ControlDesigner { 

  ...

  void ShowBorderClicked(object sender, EventArgs e) {

    // Toggle property value

    ShowBorder = !ShowBorder;

  }

  ...

}

This handler simply toggles the ShowBorder property. However,
because the verb menu for each component is cached, it takes extra code to
show the current state of the ShowBorder property in the verb menu:

public class ClockControlDesigner : ControlDesigner { 

  ...

  bool ShowBorder {

    get { return showBorder; }

    set {

      // Change property value

      PropertyDescriptor property =

        TypeDescriptor.GetProperties(typeof(ClockControl))["ShowBorder"];

      this.RaiseComponentChanging(property);

      showBorder = value;

      this.RaiseComponentChanged(property, !showBorder, showBorder);

      // Toggle Show/Hide Border verb entry in context menu

      IMenuCommandService   menuService =

        (IMenuCommandService)this.GetService

             (typeof(IMenuCommandService));

      if( menuService != null ) {
continues

Sells.book  Page 353  Thursday, August 7, 2003  9:51 AM



DESIGN-TIME INTEGRATION354

        // Re-create Show/Hide Border verb

        if( menuService.Verbs.IndexOf(showBorderVerb) >= 0 ) {

          menuService.Verbs.Remove(showBorderVerb);

          showBorderVerb =

            new DesignerVerb(

              GetVerbText(),

              new EventHandler(ShowBorderClicked));

          menuService.Verbs.Add(showBorderVerb);

        }

      }

      // Update clock UI

      clockControl.Invalidate ();

    }

  }

  ...

}

ShowBorder now performs two distinct operations. First, the property
value is updated between calls to RaiseComponentChanging and Raise-
ComponentChanged, helper functions that wrap calls to the designer host’s
IComponentChangeService. The second part of ShowBorder re-creates the
Show/Hide Border verb to reflect the new property value. This manual
intervention is required because the Verbs property is called only when a
component is selected on the form. In our case, “Show/Hide Border” could
be toggled any number of times after the control has been selected. 

Fortunately, after the Verbs property has delivered its DesignerVerbCol-
lection payload to the Designer, it’s possible to update it via the designer
host’s IMenuCommandService. Unfortunately, because the Text property
is read-only, you can’t implement a simple property change. Instead, the
verb must be re-created and re-associated with ShowBorderClicked every
time the ShowBorder property is updated.

On top of adding Show/Hide Border to the context menu, .NET throws
in a clickable link for each verb, located on the Property Browser above the
property description bar. Figure 9.37 illustrates all three options, including
the original editable property.

Custom designers allow you to augment an application developer’s
design-time experience even further than simply adding the effects to the
Property Browser. Developers can change how a control renders itself, con-
trolling the properties, methods, and events that are available at design
time and augmenting a component’s verbs.

Sells.book  Page 354  Thursday, August 7, 2003  9:51 AM



 WHERE ARE WE? 355

Where Are We?

Although components (and, by association, controls) gain all kinds of inte-
gration into a .NET design-time environment with very little work, .NET
also provides a rich infrastructure to augment the design-time experience
for your custom components.

Figure 9.37: ShowBorder Option in the Property Browser and the Context 
Menu

Sells.book  Page 355  Thursday, August 7, 2003  9:51 AM



Sells.book  Page 356  Thursday, August 7, 2003  9:51 AM


