
1

1
Facilis Descensus Averni1

When we decided to write this book, we chose the topic “Tuning Client/Server
SQL Programs”because we had a specific plan. Each word in the topic narrows
the focus. Let’s look at the main words.

Tuning means enhancing speed. It’s possible to make a distinction be-
tween tuning and optimizing—tuning is what you do to a database (e.g.,
change cache size, repartition, rebuild indexes) while optimizing is what you
do to a program (e.g., adjust queries, take advantage of existing resources, re-
write application code). But we do not make such a fine distinction in this
book. As for speed, the word can mean two things: response time (the time a
statement takes to execute) and throughput (the number of operations the
DBMS can do in a time unit). Our concern here is mostly with throughput.

SQL is a language that is supported by a Database Management System
(DBMS) implementation. We decided to use a generic term so you’ll know that
we’re not talking about a particular brand—this book is about what’s in com-
mon for all major brands. There really is a standard core that they all share, so
we can be specific in our recommendations without having to be specialists.
Where there are many differences between DBMSs, you’ll see charts outlining

1. Literally,“the descent into Hell is easy”. . . it’s getting back out again that’s hard! From Virgil.

ch01_1-10.qxd 8/13/02 1:18 PM Page 1

the differences. Where there are few differences, you’ll see a discussion of
what’s normal and (if necessary) a sidebar about the exceptional case.

Programs are things you write in a language such as SQL, C, or Java. So
don’t expect to see long discussions about how to choose equipment, what
flags to set when you install, or which tools you’ll need to monitor the users.
Those tasks properly belong to the Database Administrator (DBA). We
know that much of this book will interest DBAs; we know that many readers
are both DBAs and programmers. That’s great. We only want to make it clear
that, in this book, we are addressing the people who write applications.

This Subject Is Important
“In our experience (confirmed by many industry experts) 80% of performance gains
on SQL Server come from making improvements in SQL code, not from devising crafty
configuration adjustments or tweaking the operating system.”

—Kevin Kline et al., Transact-SQL Programming, O’Reilly & Associates

“Experience shows that 80 to 90 per cent of all tuning is done at the application level,
not at the database level.”

—Thomas Kyte, Expert One on One: Oracle, Wrox Press

No matter which DBMS you use, you can enhance its performance by doing
the right thing. Enhancing performance is a broad field. It includes:

• Coding SQL statements without doing things that everyone knows are
counter-productive

• Understanding the physical structure of a typical database

• Solving real problems rather than imaginary ones

Let’s take a trivial example. Suppose you have this SQL statement:

SELECT column1 FROM Table1
WHERE column1 = 77

For this kind of statement, we believe the essential question is—Should
there be an index on column1? So we’ve devoted a whole chapter to the sub-
ject of indexes—what they look like, what variations exist, how indexes affect
data changes, and so on. In another chapter, we address the question of how to
use EXPLAIN (or its equivalent) to find out whether your particular DBMS actu-

2 Chapter 1 Facilis Descensus Averni

ch01_1-10.qxd 8/13/02 1:18 PM Page 2

ally uses an index for a particular SELECT. That illustrates our priority—we
think that the first priority is the concept: indexes. Certainly, though, we must
also care about the method: diagnostic tools. We hope that, with the concepts
firmly planted in your mind, you will quickly arrive at the right point. We don’t
recommend that you implement any idea in this book without testing it first—
but without ideas, you’ll flounder randomly between plans without knowing if
your final choice really is the best one.

We think an idea is sound if performance improves by 5% or more on most
DBMSs. That may appear to be a modest goal,but consider. First,we always test
to ensure that the idea doesn’t harm performance on some other DBMS—we
believe an idea is only good when it applies universally. Second, we think that
even a small number like 5% matters when an operation occurs many times for
many rows. Third, we are asking you to read only once, because once you have
the information, it’s a tiny effort to reuse it for years. Fourth, the improvement
often will be many times more than 5%. Fifth, effects may be small, but they’re
also cumulative.

We also hope that you find the topic, well, interesting. If it’s any incentive at
all, let us assure you that many database practitioners, and all the good ones, are
fascinated by these two questions—How does it work? How ought it to work?

The Big Eight
“In theory there is no difference between theory
and practice. But, in practice, there is.”

—Jan L.A. van de Snepscheut

You don’t have to specialize to find useful ideas in this book. Over and over
again, we have found that basic matters that are true for DBMS #1 are also true
for DBMS #2, DBMS #3, and so on, across the board. For example, we can say
that “DBMSs store data in fixed-size pages and the size is a power of two.” But
isn’t that a bold generalization? Let’s be honest. We have not checked this state-
ment on every DBMS that exists, we know it’s not a law of nature, and in fact
we know of at least two DBMSs for which the statement is false. But, in this
book, when we make a claim for “all DBMSs” or just “DBMSs” we’re not being
vague or general—we mean, very specifically, eight particular DBMSs that we
have actually tested and for which we guarantee that the statement is true at
time of writing. We call these DBMSs “the Big Eight”—not a standard term, but
a convenient way to direct your memory to this introductory explanation.

The Big Eight 3

ch01_1-10.qxd 8/13/02 1:18 PM Page 3

We chose the Big Eight according to the following criteria:

• The DBMS must be an SQL client/server DBMS. DBMSs of other types
were excluded.

• The DBMS must have at least a 1% share of the market in North America
and Europe according to published and verifiable surveys, or it must be
widely known because it’s open source.

• The DBMS must support Java Database Connectivity (JDBC) and
Open Database Connectivity (ODBC).

We want to emphasize that no DBMS got on our list due to its quality. We chose
each of the Big Eight based only on the probability that you’ll encounter it or
something very much like it. Because the Big Eight have a combined market
share of over 85%, with the open source DBMSs having been downloaded hun-
dreds of thousands of times from Internet sites, we’re confident that you’ll be
dealing with one of the Big Eight at least 90% of the time. Table 1–1 shows
which DBMSs were tested for this book.

When researching the material for this book, we installed the latest ver-
sions of each DBMS available for the MS WindowsNT platform at the time of
writing. Each DBMS was installed and tested using the default systems recom-
mended in the vendors’ instructions, except as indicated in the following sec-
tion,“Installation Parameters.” In some cases, we used evaluation copies or
personal editions; in no case did we test with extra-cost or little-used options—
our policy was to ignore nondefault installation options, settings, and switches.

4 Chapter 1 Facilis Descensus Averni

Table 1–1 The Big Eight

Short Name Product Name & Version Remarks

IBM IBM DB2 Universal Database 7.2

Informix IBM Informix Dynamic Server 9.3 Now owned by IBM

Ingres Ingres II 2.5 Owned by Computer Associates International

InterBase InterBase 6.0 Open source version. Owned by Borland
Software Corporation

Microsoft Microsoft SQL Server 2000

MySQL MySQL 3.23 Open source. Owned by MySQL AB

Oracle Oracle 9i

Sybase Sybase ASE 12.5

ch01_1-10.qxd 8/13/02 1:18 PM Page 4

We have avoided endorsing or denouncing any vendor,because our object is to
help you improve your SQL, given the hand you’ve been dealt.

There are test results throughout this book; however, there are no absolute
performance figures or inter-DBMS comparisons. There are two reasons for
this. One is obvious: such figures wouldn’t fit the purpose of the book. The
other is interesting: three of the Big Eight—Informix, Microsoft, and Oracle—
have end-user license agreements that specifically prohibit publication of
benchmarks.

Installation Parameters

As indicated earlier, in order to minimize our use of extra-cost or little-used
options and to level the playing field between DBMSs as much as possible, we
installed the Big Eight using the default systems recommended in the vendors’
instructions except in the following cases:

• For the sake of consistency, we wanted to run all our tests using the
same character set—the Windows 1252 code page—for every DBMS if
at all possible. We chose this code page because we were testing on a
Windows NT system and wanted to utilize international character set
possibilities.

• We wanted to test the differences between dictionary and binary sorts
for every DBMS if at all possible.

For IBM, these criteria meant that the IBM database was created with the
default “IBM-1252” character set and default “Local Alphabet” dictionary sort
order. We used CHAR columns to test dictionary sorts and CHAR FOR BIT
DATA columns to test binary sorts. IBM doesn’t provide SQL Standard-compli-
ant CHARACTER SET or COLLATE options.

For Informix, these criteria meant that Informix was installed with the default
“EN_US 8859-1” for client and server locales, and nondefault “EN_GB.8859-1”
db_locale, which provides a dictionary sort order for NCHAR columns. We
used NCHAR columns to test dictionary sorts and CHAR columns to test binary
sorts. Informix doesn’t provide SQL Standard-compliant CHARACTER SET or
COLLATE options.

For Ingres, these criteria meant that the Ingres database was created with
the default “WIN1252” character set and the nondefault “lmulti” dictionary sort
order. We used CHAR columns to test dictionary sorts and BYTE columns to

The Big Eight 5

ch01_1-10.qxd 8/13/02 1:18 PM Page 5

test binary sorts. Ingres doesn’t provide SQL Standard-compliant CHARACTER
SET or COLLATE options.

For InterBase, these criteria meant that the InterBase database was created
with DEFAULT CHARACTER SET WIN1252. We used NCHAR columns with COLLATE
EN_US to test dictionary sorts and NCHAR columns with no COLLATE clause to
test binary sorts. We also used NCHAR columns with (a) COLLATE DA_DA to test
Danish/Norwegian sorts, (b) COLLATE DE_DE to test German sorts, (c) COLLATE
IS_IS to test Icelandic sorts, (d) COLLATE EN_UK to test Irish sorts, (e) COLLATE
ES_ES to test Spanish sorts, and (f) COLLATE FI_FI and COLLATE SV_SV to test
Swedish/Finnish sorts.

For Microsoft, these criteria meant that SQL Server was installed with the
default “1252/ISO” Character Set and the default “Dictionary Order, case insen-
sitive” Sort Order for CHAR columns, and a nondefault “Binary” Unicode Colla-
tion. We used CHAR columns with no COLLATE clause to test dictionary sorts
and CHAR columns with COLLATE SQL_Latin1_General_BIN to test binary
sorts. We also used CHAR columns with (a) COLLATE SQL_Danish to test Dan-
ish/Norwegian sorts, (b) COLLATE German_PhoneBook to test German phone
book sorts, (c) COLLATE SQL_Icelandic to test Icelandic sorts, (d) COLLATE
Mexican_Trad_Spanish and COLLATE Modern_Spanish to test Spanish sorts,
and (e) COLLATE SQL_SwedishStd to test Swedish/Finnish sorts. (Note: Where
applicable,PREF was always indicated, the code page was 1252, case sensitivity
was CI, and accent sensitivity was AS.)

For MySQL, these criteria meant that MySQL was installed with the default
“Latin1” (aka iso_1) character set. We used CHAR columns to test dictionary
sorts and CHAR BINARY columns to test binary sorts. MySQL doesn’t provide
SQL Standard-compliant CHARACTER SET or COLLATE options.

For Oracle, these criteria meant that Oracle was installed with the default
“WIN1252” character set. We used CHAR columns with NLS_SORT=XWEST_
EUROPEAN to test dictionary sorts and CHAR columns with NLS_SORT=BINARY
to test binary sorts. We also used CHAR columns with (a) NLS_SORT=DANISH
and NLS_SORT=NORWEGIAN to test Danish/Norwegian sorts, (b) NLS_SORT=
XGERMAN to test German dictionary sorts, (c) NLS_SORT=GERMAN_DIN to test
German phone book sorts, (d) NLS_SORT=ICELANDIC to test Icelandic sorts,
(e) NLS_SORT=XWEST_EUROPEAN to test Irish sorts, (f) NLS_SORT=XSPANISH to
test Spanish Traditional sorts, (g) NLS_SORT=SPANISH to test Spanish Modern
sorts, and (h) NLS_SORT=FINNISH to test Swedish/Finnish sorts.

For Sybase, these criteria meant that Sybase was installed with the non-
default “Character Set = iso_1” and nondefault “Sort Order = Dictionary.” We

6 Chapter 1 Facilis Descensus Averni

ch01_1-10.qxd 8/13/02 1:18 PM Page 6

used CHAR columns to test dictionary sorts and BINARY columns to test
binary sorts. Sybase doesn’t provide SQL Standard-compliant CHARACTER SET
or COLLATE options.

Test Results
Throughout this book,you’ll see sets of SQL statements that show a test we ran
against the Big Eight. The second statement in each example includes a note at
the bottom that states: GAIN: x/8. That’s an important number. The gain shows
how many of the Big Eight run faster when an SQL statement is optimized by
implementing the syntax shown in the second example. We recorded a gain for
a DBMS if performance improved by 5% or greater. Mileage varies with differ-
ent data and different machines, of course. We’re only reporting what our tests
showed.

“GAIN: 0/8” means “you’d be wasting your time if you rearranged this par-
ticular SQL statement into optimum order because the DBMS does this for
you.”“GAIN: 4/8,”on the other hand,means that half of the Big Eight performed
better when the suggested syntax was used,while the other half executed both
statements equally well. Even if the gain is only 1/8 (meaning only one of the
Big Eight improved on the second statement), you’ll be better off using our sug-
gested syntax because this means you’ll improve performance some of the
time without ever harming performance the rest of the time. That is, none of
our suggestions will cause a performance decline on any of the Big Eight—
with one exception.

The exception is that, in a few cases, one DBMS showed aberrant behavior
and declined in performance on the second statement, while all the rest
showed impressive gains. In such cases, we felt the possible improvement was
worthy of mention anyway. Each exception notes the DBMS with which you
should not use our improved syntax.

All tests were run on a single CPU Windows NT machine,with no other jobs
running at the same time. The main test program was written in C and used
ODBC calls to communicate with the DBMSs. A second test program used JDBC
to test the DBMSs’ response to specific calls. Unless otherwise indicated, each
performance test was run three times for 10,000 rows of randomly inserted
data, with the relevant column(s) indexed as well as without indexes. The gain
for each DBMS was then calculated as the average of the three test runs.

We want to emphasize that our gain figures do not show absolute perform-
ance benchmark results. That is, a “GAIN: 4/8” note does not mean that any or

Test Results 7

ch01_1-10.qxd 8/13/02 1:18 PM Page 7

all DBMSs ran 50% faster. It merely means that 50% of the DBMSs ran faster, and
the rest showed no change.

Portability
As a bit of a bonus, because we had access to all these DBMSs, we will also be
able to give you some information about portability.

We regard portability as a matter of great importance. In the first place, this
book is about client/server applications. We anticipate that you will want to
write code that works regardless of DBMS. In fact, we anticipate that you may
not even know for which DBMS you are coding!

To avoid depending on any vendor’s idiosyncrasies, all SQL examples and
descriptions of SQL syntax in this book are written in standard SQL—that is,
ANSI/ISO SQL:1999—whenever possible. When standard SQL omits a feature
but it’s common to all DBMSs—for example, the CREATE INDEX statement—
our examples use syntax that will run on most platforms. Where nonstandard
and uncommon syntax exists or had to be tested, we have identified it as such.
Look for our “Portability”notes; they indicate where syntax other than standard
SQL might be required.

To aid you, we’ve also added comparison charts that highlight differences
between the SQL Standard and the Big Eight. In these tables, you’ll sometimes
see “N/S” in the ANSI SQL row. This means that the SQL Standard considers the
feature to be implementation-defined; that is, there is no Standard-specified
requirement. Instead, the decision on how to implement the feature is made by
the DBMS vendor.

Optimizing SQL for all dialects is different from tuning for a single package.
But the coverage in this book is strictly the universal stuff.

Terminology and Expectations
We expect that you’re a programmer coding for (or about to begin coding for)
an SQL DBMS. Because of this,we won’t be explaining basic SQL syntax or pro-
gramming techniques. Our assumption is that you already know basic SQL syn-
tax, how to program with an SQL Application Programming Interface
(API) such as ODBC or JDBC,how to write stored procedures,are familiar with
how indexes operate, and so on. We also expect that you’re familiar with SQL
terms as used in introductory SQL texts. For example, suppose we illustrate a
SELECT statement like this:

8 Chapter 1 Facilis Descensus Averni

ch01_1-10.qxd 8/13/02 1:18 PM Page 8

SELECT <select list>
WHERE <search conditions>
FROM <Table list>
GROUP BY <grouping columns>

HAVING <conditions>
ORDER BY <sorting columns>

We assume you’ve already seen terms like “select list”and “search condition”
and “grouping column,” and we won’t repeat their well-known definitions. At
most, we’ll just provide a brief refresher for common SQL syntax and concepts.

Some further terms are not so well known, but are important for under-
standing this book. We will define such terms the first time we use them. If you
miss such a definition, you can look it up in the glossary in Appendix B.

Conventions

We use a particular style in our examples. SQL keywords are always in uppercase
(e.g.,SELECT). Table and other major SQL object names are initial capitalized (e.g.,
Table1,Index1); column names are in lowercase (e.g.,column1). When it is neces-
sary to use more than one line,each line will begin with a clause-leader keyword.

We deliberately avoid “real-world” names like Employees or cust_id be-
cause we believe that meaningful names would distract from the universality of
the example. Sometimes, though, when illustrating a particular characteristic,
we will use a name that hints at the item’s nature. For example:

SELECT column1, column2
FROM Table1
WHERE indexed_column = <literal>

This book doesn’t contain many SQL syntax diagrams, but here’s a very
brief refresher on the common variant of Backus-Naur Form (BNF) notation
that we’ve used:

• < >

Angle brackets surround the names of syntactic elements. Replace the
names with real data.

• []

Square brackets surround optional syntax. You may either use or omit
such syntax.

Terminology and Expectations 9

ch01_1-10.qxd 8/13/02 1:18 PM Page 9

• { }

Braces surround mandatory syntax groups. You must include one of the
options for the group in your SQL statement.

• |

The vertical bar separates syntactic elements. You may use only one of
the options in your SQL statement.

Generalities
“Beware of entrance to a quarrel; but being in,
Bear’t that th’opposed may beware of thee.”

—William Shakespeare, Hamlet

We can start off with some general tips.
SQL is a procedural language. Despite the confusion and outright lies about

this point, it is a fact that an SQL statement’s clauses are processed in a fixed
order. And despite the set orientation of SQL, the DBMS must often operate on
an SQL result set one row at a time. That is, if you’re executing this statement:

UPDATE Table1
SET column1 = 5
WHERE column2 > 400

SQL’s set orientation means the DBMS will determine that, for example, six
rows meet the condition that requires them to be updated. After that, though,
the DBMS must actually change all six of the rows—one row at a time.

The relational model is inherently efficient. Dr. Codd’s rules and the subse-
quent work on normalization are based on the proven truism that mathematical
foundations lead to solid structures. (Normalization is the process of designing a
database so that its tables follow the rules specified by relational theory.)

Always assume you will do a query at least 100 times. That will make you
ask yourself whether you want to use a procedure, a view, a trigger, or some
other object and might also make you ask—If this is so common, has someone
already written something like it?

And now, let’s get started.

10 Chapter 1 Facilis Descensus Averni

ch01_1-10.qxd 8/13/02 1:18 PM Page 10

