
19

2
The Type System

C hapter 1 provided a high-level overview of the issues involved
in building distributed systems. It introduced a solution to these

issues, the .NET Framework, and used a simple “Hello World” example to
highlight the language interoperability offered by the .NET Framework.
But, as is so often the case, the devil lies in the details. Chapters 2 through
4 describe in more depth the three CLR subsystems: the type system
(described in this chapter) and the metadata and execution systems
(described in Chapters 3 and 4, respectively).

As noted in Chapter 1, the facilities provided by the type, metadata, and
execution systems are not new. However, the CLR does provide function-
ality in addition to the services provided by other architectures, such as
COM/DCOM, CORBA, and Java. For example:

• The type system supports many programming styles and languages,
allowing types defined in one language to be first-class citizens in
other languages.

• The metadata system supports an extensibility mechanism, called
custom attributes, that allows developers to extend the metadata
annotations.

• The execution system ensures security and supports versioning on
types in the CLR.

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 19

Using the .NET Framework, developers can both define and share
types. Defining and sharing new types in a single language is not particu-
larly challenging; allowing a newly defined type to be used in other lan-
guages is much more problematic. This chapter offers a sufficiently detailed
understanding of the CLR type system so that developers can appreciate
how it achieves type interoperability.

The Relationship Between Programming
Languages and Type Systems

The Evolution of Type Systems
Why is a type system necessary at all? Some early programming languages
did not provide a type system; they simply saw memory as a sequence of
bytes. This perspective required developers to manually craft their own
“types” to represent user-defined abstractions. For example, if a developer
needed four bytes to represent integer values, then he or she had to write
code to allocate four bytes for these integers and then manually check for
overflow when adding two integers, byte by byte.

Later programming languages provided type systems, which included
a number of built-in abstractions for common programming types. The first
type systems were very low level, providing abstractions for fundamental
types, such as characters, integers, and floating-point numbers, but little
more. These types were commonly supported by specific machine instruc-
tions that could manipulate them. As type systems become more expressive
and powerful, programming languages emerged that allowed users to
define their own types.

Of course, type systems provide more benefits than just abstraction.
Types are a specification, which the compiler uses to validate programs
through a mechanism such as static type checking. (In recent years,
dynamic type checking has become more popular.) Types also serve as doc-
umentation, allowing developers to more easily decipher code and under-
stand its intended semantics. Unfortunately, the type systems provided by
many programming languages are incompatible, so language integration
requires the integration of different types to succeed.

Programming in the .NET Environment20

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 20

Programming Language-Specific Type Systems
Before attempting to design a type system for use by multiple languages,
let’s briefly review the type systems used by some of the more popular pro-
gramming languages.

The C programming language provides a number of primitive built-in
types, such as int and float. These types are said to closely resemble a
machine’s architecture, as they can often be held in a single register and
may have specific machine instructions to process them. The C program-
mer can also create user-defined types, such as enumerations or structures.
Structures are essentially aggregate types that contain members of one or
more other types.

The C++ programming language takes the type system of C and extends
it with object-oriented and generic programming facilities. C++’s classes
(essentially C structures) can inherit from multiple other classes and extend
these classes’ functionality. C++ does not provide any new built-in types
but does offer libraries, such as the Standard Template Library (STL), that
greatly enhance the language’s functionality.

SmallTalk is an object-oriented language in which all types are classes.
SmallTalk’s type system provides single-implementation inheritance, and
every type usually directly or indirectly inherits from a common base class
called Object,1 providing a common root class in the SmallTalk type sys-
tem. SmallTalk is an example of a dynamically type-checked language.

Like SmallTalk, Java provides an object-oriented type system; unlike
SmallTalk, it also supports a limited number of primitive built-in types.
Java provides a single-implementation inheritance model with multiple
inheritance of interfaces.

The Design Challenge: Development of a
Single Type System for Multiple Languages
Given the variety of type systems associated with these programming lan-
guages, it should be readily apparent that developing a single type system
for multiple languages poses a difficult design challenge. (Most of the lan-

The Relationship Between Programming Languages and Type Systems 21

1 In Smalltalk, a class can inherit from nil rather than Object.

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 21

guages mentioned previously are object-oriented.) Also, it is clear from the
list of requirements that not all type systems are compatible. For example,
the single-implementation inheritance model of SmallTalk and Java differs
from the multiple-implementation inheritance capabilities of C++.

The approach taken when designing the CLR generally accommodated
most of the common types and operations supported in modern object-
oriented programming languages. In general terms, the CLR’s type system
can be regarded as the union of the type systems of many object-oriented
languages. For example, many languages support primitive built-in types;
the CLR’s type system follows suit. The CLR’s type system also supports
more advanced features such as properties and events, two concepts that
are found in more modern programming languages. An example of a
feature not currently supported in the CLR is multiple-implementation
inheritance—an omission that naturally affects languages that do support
multiple inheritance, such as C++, Eiffel, and Python.

Although the CLR’s type system most closely matches the typical object-
oriented type system, nothing in the CLR precludes non–object-oriented
languages from using or extending the type system. Note, however, that the
mapping from the CLR type system provided by a non–object-oriented lan-
guage may involve contortions. Interested readers should see the appen-
dices at the end of this book for more details on language mapping in
non–object-oriented languages.

CLR–Programming Language Interaction: An Overview
Figure 2.1 depicts the relationship between elements of the CLR and pro-
gramming languages. At the top of the diagram, the source file may hold
a definition of a new type written in any of the .NET languages, such as
Python. When the Python.NET compiler compiles this file, the resulting
executable code is saved in a file with a .DLL or .EXE extension, along with
the new type’s metadata. The metadata format used is independent of the
programming language in which the type was defined.

Once the executable file for this new type exists, other source files—per-
haps written in languages such as C#, Managed C++, Eiffel, or Visual Basic
(VB)—can then import the file. The type that was originally defined in
Python can then be used, for example, within a VB source code file just as
if it were a VB type. The process of importing types may be repeated

Programming in the .NET Environment22

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 22

numerous times between different languages, as represented by the arrow
from the executable file returning to another source file in Figure 2.1.

At runtime, the execution system will load and start executing an exe-
cutable file. References to a type defined in a different executable file will
cause that file to be loaded, its metadata will be read, and then values of the
new type can be exposed to the runtime environment. This scenario is rep-
resented by the line running from the execution system back to the exe-
cutable files in Figure 2.1.

Elements of the CLR Type System

Figure 2.2 depicts the basic CLR type system. The type system is logically
divided into two subsystems, value types and reference types.

Elements of the CLR Type System 23

C++, C#,
Eiffel, Python

C++, C#,
Eiffel, Python

IL Code and
Metadata

Execution
System

Source File

Language-Specific
.NET Compiler

Executable
File

Runtime

Figure 2.1 Interaction between languages, compilers, and the CLR

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 23

A value type consists of a sequence of bits in memory, such as a 32-bit
integer. Any two 32-bit integers are considered equal if they hold the same
number—that is, if the sequence of bits is identical.

Reference types combine the address of a value (known as its identity)
and the value’s sequence of bits. Reference types can, therefore, be com-
pared using both identity and equality. Identity means that two references
refer to the same object; equality means that two references refer to two dif-
ferent objects that have the same data—that is, the same sequence of bits.

On a more practical level, references types differ from value types in the
following ways:

• Value types always directly inherit from System.ValueType or Sys-
tem.Enum, which itself inherits from System.ValueType. The types
are always sealed, which means that no other types can inherit from
them. Reference types, in contrast, inherit from any class other than
System.ValueType or System.Enum.

Programming in the .NET Environment24

CLR Type
System

Value
Types

Built-in Value
Types

User-Defined Value
Types

User-Defined Reference
Types

Object
Types

Interface
Types

Pointer
Types

Reference
Types

Figure 2.2 The CLR type system

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 24

• Reference types are always allocated on the garbage collected heap,
whereas value types are normally allocated on the stack. Note, how-
ever, that value types may be allocated on the garbage collected
heap—for instance, as members of reference types.

• Reference types are accessed via strongly typed references. These ref-
erences are updated if the garbage collector moves an object.

As mentioned previously, in CLR terminology, an instance of any type
(value or reference) is known as a value. Every value in the CLR has one
exact type, which in turn defines all methods that can be called on that
value.

In Figure 2.2, note that the User-Defined Reference Types box does not
connect with the Pointer Types box. This fact is sometimes misconstrued
as meaning that pointers cannot point to user-defined types. This is not the
case, however; rather, the lack of a connection means that developers can-
not define pointer types but the CLR will generate pointers to user-defined
types as needed. This situation is similar to that observed with arrays of
user-defined types: Developers cannot define these arrays but the CLR gen-
erates their definitions whenever they are needed.

Value Types

Value types represent types that are known as simple or primitive types in
many languages. They include types such as int and float in C++ and
Java. Value types are often allocated on the stack, which means that they
can be local variables, parameters, or return values from functions. By
default, they are passed by value. Unlike in some programming languages,
CLR value types are not limited to built-in data types; developers may
define their own value types if necessary.

Built-in Value Types
Table 2.1 lists the CLR’s built-in value types. In the table, the “CIL Name”
column gives the type’s name as used in Common Intermediate Language
(CIL), which could best be described as the assembly language for the CLR.
CIL is described in more detail in Chapter 4, which covers the execution

Value Types 25

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 25

system. The next column, “Base Framework Name,” gives the name for the
type in the Base Framework. The Base Framework is often referred to as the
Framework Class Library (FCL). As the library contains more than just
classes, this name is somewhat inaccurate. Chapter 7 covers the Base
Framework in more detail.

Programming in the .NET Environment26

CLS
CIL Name Base Framework Name Description Support

bool System.Boolean Boolean, true or false Y

char System.Char Unicode character Y

int8 System.SByte Signed 8-bit integer N

int16 System.Int16 Signed 16-bit integer Y

int32 System.Int32 Signed 32-bit integer Y

int64 System.Int64 Signed 64-bit integer Y

unsigned int8 System.Byte Unsigned 8-bit integer Y

unsigned int16 System.UInt16 Unsigned 16-bit integer N

unsigned int32 System.UInt32 Unsigned 32-bit integer N

unsigned int64 System.UInt64 Unsigned 64-bit integer N

float32 System.Single IEEE 32-bit Y
floating-point number

float64 System.Double IEEE 64-bit
floating-point number Y

native int System.IntPtr Signed native integer, Y
equivalent to the

machine word size
(32 bits on a 32-bit
machine, 64 bits on
a 64-bit machine)

native unsigned int System.UIntPtr Unsigned native integer N

Table 2.1 CLR Built-in Value Types

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 26

Note that 8-bit integers appear to be named in an inconsistent manner
when compared to the other integral types. Normally, the unsigned inte-
gers are known as System.UIntX, where X is the size of the integer. With
8-bit integers, however, the signed version is known as System.SByte,
where S means signed. This nomenclature is preferred because unsigned
bytes are used more frequently than signed bytes are, so the unsigned byte
gets the simpler name.

Boolean Values

The bool type is used to represent true and false values. Unlike some lan-
guages that use an integer for this type (so that a value such as 0 represents
false and all other values represent true), the CLR designates a specific type
for this purpose. This choice eliminates errors that could potentially arise
when integer values are taken to signify Boolean values but that interpre-
tation was not the programmer’s intention.

Characters

All characters in the CLR are 16-bit Unicode code points.2 The UTF-16 char-
acter set uses 16 bits to represent characters; by comparison, the ASCII char-
acter set normally uses 8 bits for this purpose. This point is important for
a component model such as the .NET Framework, for which distributed
programming over the Internet was a prime design goal of the architecture.
Many newer languages and systems for Internet programming, such as
Java, have also decided to support Unicode.

Integers

The CLR supports a range of built-in integer representations. Integers vary
in three ways:

• Their size can be 8, 16, 32, or 64 bits. This range covers the size of inte-
gers in many common languages and machine architectures.

Value Types 27

2 Throughout this book, the generic term character is used rather than terms from the
Unicode standard, such as abstract character and code point.

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 27

• Integers can be signed or unsigned, designating whether the values
they hold are positive only or positive/negative.

• Native integers are used to represent the most natural size integer on
the execution architecture. Because the CLR is designed to run on a
number of different platforms, it needs a mechanism to inform the
execution engine that it is free to choose the most efficient representa-
tion on the platform that the code executes on—hence the native inte-
ger type.

The last point highlights a recurring theme in the design of the CLR—
namely, that many issues are left to the execution system to resolve at run-
time. While this flexibility does incur some overhead, the execution system
can make decisions about runtime values to ensure more efficient execu-
tion. Another example of this facility, which is covered in more detail later,
involves the layout of objects in memory. Developers may explicitly spec-
ify how objects are laid out or they can defer this decision to the execution
engine. The execution engine can take aspects of the machine’s architecture,
such as word size, into account to ensure that the layout of fields aligns
with the machine’s word boundaries.

Floating-Point Types

CLR floating-point types vary between 32- and 64-bit representations and
adhere to the IEEE floating-point standard.3 Rather than providing a
detailed overview of this standard here, readers are referred to the IEEE
documentation. Native floating-point representations are used when val-
ues are manipulated in a machine, as they may be the natural size for float-
ing-point arithmetic as supported by the hardware of the underlying
platform. These values, however, will be converted to float32 or float64
when they are stored as values in the CLR. Providing internal representa-
tions for floating-point numbers that match the natural size for floating-
point values on the machine on which the code executes allows the runtime
environment to operate on a number of different platforms where inter-
mediate results may be larger than these types. A native floating-point

Programming in the .NET Environment28

3 IEC 60559:1989, Binary Floating-Point Arithmetic for Microprocessor Systems.

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 28

value will be truncated, if necessary, when the value is stored into a 32- or
64-bit location in the CLR.

Special Issues with Built-in Value Types

In Table 2.1, notice which of the built-in value types are CLS compliant. As
stated previously, languages must adhere to the CLS subset of the CLR to
achieve maximum interoperability between languages. It is not surprising
that types such as int32 are listed in the CLS whereas types such as native
unsigned int are not. Note, however, that most unsigned integers are not
included in the CLS.

Also, note that not all programming languages will expose all of these
value types to developers. Types such as native int, for instance, may not
have a natural mapping into a language’s type system. Also, language
designers may choose not to expose a type—instead exposing only CLS-
compliant types, for example.

A number of value types are defined in the Framework Class Library.
Technically speaking, they are really user-defined types; that is, they have
been defined by the developers of the Base Framework rather than being
integral CLR value types. Developers using the CLR often do not recognize
this distinction, however, so these types are mentioned here. Of course,
such a blurry distinction is precisely what the designers of the CLR type
system were hoping to achieve. Examples of such types include
System.DateTime, which represents time; System.Decimal, which rep-
resents decimal values in the approximate range from positive to negative
79,228,162,514,264,337,593,543,950,335; System.TimeSpan, which repre-
sents time spans; and System.Guid, which represents globally unique
identifiers (GUIDs).

User-Defined Value Types
In addition to providing the built-in value types described previously, the
CLR allows developers to define their own value types. Like the built-in
value types, these types will have copy semantics and will normally be allo-
cated on the stack. A default constructor is not defined for a value type.
User-defined value types may be enumerations or structures.

Value Types 29

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 29

Enumerations

Listing 2.1 gives an example of the declaration and use of a user-defined
enumeration.4 This program defines a simple enumeration representing the
months in the year and then prints a string to the console window match-
ing a month name with its number.

Listing 2.1 User-defined value type: EnumerationSample

using System;

namespace Enumeration

{

struct EnumerationSample

{

enum Month {January = 1, February, March,

April, May, June,

July, August, September,

October, November, December}

static int Main(string[] args)

{

Console.WriteLine("{0} is month {1}",

Month.September,

(int) Month.September);

return 0;

}

}

}

For the first few examples in the book, the C# code used is described so
that you will become familiar with how to read C#. Later, such detailed
descriptions of the example code are omitted.

The first line in Listing 2.1 is the using System directive, which
is included so that types whose names start with “System.”, such as
System.Console, can be referenced without fully qualifying those names.
While this tactic reduces the amount of typing developers need to do, its
overuse can eliminate the advantages gained by using namespaces, so
employ this technique judiciously.

Programming in the .NET Environment30

4 Although C# is used for most programming examples in this book, this choice was made
only because the C-derived syntax is assumed to be familiar to many programmers.

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 30

Next in Listing 2.1 comes the definition of a namespace called
Enumeration. This name has no programmatic significance; we could have
used any name for the namespace or even not used a namespace at all. Nev-
ertheless, because components developed within the CLR are designed to
be reused in many scenarios, including being downloaded from the Inter-
net, the use of namespaces is strongly encouraged to avoid collisions
between the names of components developed by different developers.

Listing 2.1 continues with the definition of the user-defined value type
EnumerationSample. This value type will hold the program’s entry point,
the method with which execution will commence. The C# keyword enum
is used to define an enumeration. In Listing 2.1, this enumeration is called
Month and contains constants representing each month of the year. The dec-
laration of the enumeration is reasonably straightforward, except for the
fact that the enumeration starts the constants with a value of 1; the default
value would be 0.

Main is the entry point for the program. It prints out a single line of
output that informs the user that September is the ninth month (9) of the
year.

Listing 2.1 produces the following output:

September is 9

Structures

In this book, user-defined value types are called structures. Some languages,
such as Managed C++, allow users to use a keyword such as class when
defining either value or reference types. Other languages, such as C#, use
a keyword such as struct to indicate a user-defined value type and class
to indicate a user-defined reference type. This choice is largely a language-
specific issue, but readers should be aware of these differences and under-
stand the behavior of the language they are using.

Structures can contain any of the following:

• Methods (both static and instance)
• Fields (both static and instance)
• Properties (both static and instance)
• Events (both static and instance)

Value Types 31

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 31

Methods Methods specify a contract that must be honored by both the
caller and the callee. Methods have a name, a parameter list (which may be
empty), and a return type. Clients that need to call a method must satisfy
the contract when calling the method.

Methods on value types can be either static methods or instance methods:

• Static methods are invoked on the type itself and are callable at any
time, even if no values of the type exist.

• Instance methods are always invoked on values of a type.

One limitation on value types is that they cannot define a constructor
that takes no parameters, known as a default constructor in some languages.

Listing 2.2 demonstrates the definition and use of both static and
instance methods on a value type in C#. Both methods write a greeting to
the console window. The code starts with a using directive; it allows types
whose names would start with System, such as “System.Console,” to be
referenced more simply: Console. Next comes the declaration of the user-
defined namespace, ValueTypeMethods. Note that the CLR does not
intrinsically support namespaces; instead, a type T declared in namespace
N is known to the CLR as the type N.T. This type, N.T, will reside in an
assembly; the CLR uses such assemblies to uniquely identify types—not
namespaces, as in some languages. (Assemblies are covered in Chapter 5.)

Listing 2.2 Use of static and instance methods with a user-defined value type

using System;

namespace ValueTypeMethods

{

struct Sample

{

public static void SayHelloType()

{

Console.WriteLine("Hello world from Type");

}

public void SayHelloInstance()

{

Console.WriteLine("Hello world from instance");

}

Programming in the .NET Environment32

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 32

static void Main(string[] args)

{

SayHelloType();

Sample s = new Sample();

s.SayHelloInstance();

}

}

}

The C# keyword struct is used to create a value type called Sample.
This struct has three methods, two of which are static methods:
SayHelloClass and Main. The method SayHelloInstance is an instance
method and is, therefore, always invoked on values of the type.

The static method Main is also the entry point for the program. As far
as the CLR is concerned, the entry point for a program need not be called
Main, although in C# it always has that name. The entry point must be a
static method and can be a member of either a value type or a reference
type. In Listing 2.2, Main calls both the static and instance methods. The
entry point function can return a 32-bit value indicating its success or fail-
ure; in Listing 2.2, however, Main returns void (i.e., nothing). (Methods also
have visibility and accessibility—topics covered later in this chapter.)

Listing 2.2 produces the following output:

Hello world from Type

Hello world from instance

Fields A type may contain zero or more fields, each of which has a type.
Like methods, fields can be either static or instance. Used to store values,
they represent the state of a type or value. Every field has a type and a name.
For example, a Point class may have two fields to represent its x and y
coordinates. These values may exist in every instance of the type, thereby
allowing the state to be different within each value. If these fields have pri-
vate accessibility, which is often the desired situation, then the state of an
instance remains hidden and only its other members may access it. (Visi-
bility and accessibility are covered later in this chapter.)

The next section, on properties, gives an example of defining and
using fields.

Value Types 33

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 33

Properties Languages that target the CLR are provided with support for
properties by the CLR; that is, they are not just a naming convention to be
followed by developers. This relationship proves particularly useful when
the goal is to provide expressive class libraries. The CLR implements prop-
erties through the use of some special metadata annotations and methods.
To a certain degree, properties are “syntactic sugar”: They represent set
and get methods defined on logical fields of a type.

What is a logical field of a type? As an example, a Person type may have
properties that represent the Person’s Birth Date, Star Sign, and Age.
Clearly, storing the actual date of birth is sufficient to allow all the other
values to be computed and supplied at runtime. Therefore, Age can be rep-
resented as a property—that is, a logical field of a type where an actual
member is not used. Properties have a name, a type, and a number of acces-
sor methods. A type, such as the Person type, would be free to implement
all of these logical members as properties.

In client code, although they may appear to be accessing public fields
when they read and write to these properties, compilers will insert code to
call the property’s methods. These methods may compute the needed val-
ues and provide all the data validation required to ensure the integrity of
the member’s values. Properties exist in COM and CORBA as well. In
CORBA, they are known as attributes (the IDL keyword used to describe
them).

Listing 2.3 demonstrates the definition and use of a value type with
properties and fields in C#. This program first defines a value type called
Point with properties representing its x and y coordinates, and then writes
and reads values to these properties. The value type is a C# struct that has
two integers as its data members. Because they are passed by value by
default, value types should generally be lightweight; this struct is an exam-
ple of this requirement.

Listing 2.3 Use of properties and fields with a user-defined value type

using System;

namespace ValueType

{

struct Point

{

Programming in the .NET Environment34

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 34

private int xPosition, yPosition;

public int X

{

get {return xPosition;}

set {xPosition = value;}

}

public int Y

{

get {return yPosition;}

set {yPosition = value;}

}

}

class EntryPoint

{

static void Main(string[] args)

{

Point p = new Point();

p.X = 42;

p.Y = 42;

Console.WriteLine("X: {0}", p.X);

Console.WriteLine("Y: {0}", p.Y);

}

}

}

The first item in Listing 2.3 is the using System directive, which
ensures that types whose names start with “System.” can be referenced
without the need to fully qualify these names. Next comes the definition of
a namespace called ValueType; this name has no particular significance, as
we could have used any name for this namespace or even no namespace at
all. The definition of the user-defined value type Point follows. This type
has two fields, both of type int, which represent the x and y coordinates of
a point.

The value type definition is followed by the definition of two more mem-
bers, both properties. The definition of the properties looks a little awkward
initially. The first part of the definition gives the accessibility, type, and
name of the property; this information looks identical to the description of
any field. The subsequent lines of the definitions provide the set and get
methods for these properties. In fact, using the metadata facilities to look at

Value Types 35

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 35

this struct (as is done in Chapter 3), it becomes apparent that two methods
are generated for each property, both with the words set_ and get_
prefixed to the names of the properties—for example, set_X and get_X.

Note two points relating to Listing 2.3:

• The properties map to fields within the type, although such mapping
is not strictly necessary.

• Properties are not limited to types such int; they can be of any type.

The class EntryPoint provides the entry point for this program. This
class could have been given any name, but EntryPoint was chosen
because it describes the class’s purpose (rather than for any syntactical rea-
son). Within Main, the first line appears to allocate a new instance of the
Point type on the heap; in reality, this is not the case. For developers famil-
iar with other programming languages, this idea is very counterintuitive;
as value types are allocated on the stack, the local variable p is, in fact, allo-
cated on the stack. Next, the use of the properties is highlighted. Notice
how access to the properties appears similar to access to a public field, but
the compiler generated code to call the get_ and set_methods as required.
Properties also offer “hints” to the just-in-time (JIT) compiler, which may
choose to inline the method calls. (The JIT compiler is discussed in Chap-
ter 4.) For simple properties such as the ones defined in Listing 2.3, little (if
any) performance overhead is incurred and many reasons exist to prefer
properties over publicly exposing instance fields (e.g., the elimination of
versioning and data integrity issues).

Listing 2.3 produces the following output:

X: 42

Y: 42

Events As with properties, languages that target the CLR are provided
with support for events by the CLR; like properties, events are not just a
naming convention to be followed by developers. Events are used to expose
asynchronous changes in an observed object. At a fundamental level, they
are “syntactic sugar” that generates methods and associated metadata.

Programming in the .NET Environment36

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 36

An event has both a name and a type. The type specifies the method sig-
nature that clients must provide for the event’s callback method. When
types define an event, methods to add and remove listeners are created
automatically, named add_EventName and remove_EventName. Clients
register to listen for events. When an event is raised, a callback method is
invoked on the affected clients. When a client is no longer interested in
receiving notification of events, it can remove itself from the list of listen-
ers on an event source.

Both COM and CORBA support events, albeit somewhat differently. In
COM, an interface can be marked as a source interface, which means that
the methods in the interface need to be implemented by the client and the
component will call back to the client through these methods. CORBA uses
a similar method—namely, an interface is passed from a client to a server
and callbacks are made through the same interface. The CORBA interface is
not specifically marked as a callback interface, however, as it is in COM.
The approaches employed in COM and CORBA are similar to events in the
CLR, except that the CLR registers individual methods to be called back
rather than interfaces (which contain a number of methods). CORBA also
provides an Event Service that gives full control over events, providing, for
example, both push and pull functionality. Unfortunately, a functional
equivalent to CORBA Event Service does exist in the CLR.

Listing 2.4 demonstrates the definition and use of events in a value type
in C#. This program defines a value type called EventClass that exposes
an event, creates a value of this value type, attaches listeners, and then
invokes the event. Events are tied to the concept of delegates in the CLR. A
delegate is best described as a type-safe function pointer. With events, del-
egates are used to specify the signature of the method that the event will
call when it is raised. For example, the definition of ADelegate in Listing
2.4 states that ADelegate is a delegate (function pointer) that can point at
functions that take no parameters and return nothing. The value type
EventClass defines an event called AnEvent of type ADelegate; that is,
it can register and call back methods whose signature matches that of
ADelegate.

Value Types 37

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 37

Listing 2.4 Use of events with a user-defined value type

using System;

namespace EventSample

{

public delegate void ADelegate();

struct EventClass

{

public event ADelegate AnEvent;

public void InvokeEvent()

{

if(AnEvent !=null)

AnEvent();

}

static void CallMe()

{

Console.WriteLine("I got called!");

}

static void Main(string[] args)

{

EventClass e = new EventClass();

e.AnEvent += new ADelegate(CallMe);

e.AnEvent += new ADelegate(CallMe);

e.AnEvent += new ADelegate(CallMe);

e.InvokeEvent();

}

}

}

Within the class EventClass, the event can be raised by calling the
event’s name, such as AnEvent() in the method InvokeEvent. When this
event is called, all delegates currently listening on the event are called. The
sample program attaches three delegates to this event on the instance of the
class called e. Thus, whenever e raises the event, the static method CallMe
is called three times. Note that the called method does not always have to
be a static method as it is in Listing 2.4.

Listing 2.4 produces the following output:

I got called!

I got called!

I got called!

Programming in the .NET Environment38

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 38

Sealed Value Types

As mentioned previously, all value types inherit from specific classes—
enumerations from System.Enum and structures from System.ValueType.
It is not possible to build an inheritance hierarchy with value types; that is,
a value type cannot inherit from another value type. In CLR terminology,
a value type is said to be sealed. Sealing explains why instance methods are
not declared as virtual in value types, because it is not possible to subtype
them and, therefore, the definitions of methods cannot be overridden.

By contrast, reference types in the CLR can optionally be declared as
sealed, which prohibits subtyping of these types. An example of a reference
type that is sealed in the CLR is the String class.

Boxed Types

For every value type, including user-defined value types, there exists a cor-
responding object type, known as its boxed type. The CLR automatically
generates boxed types for user-defined value types, which means that val-
ues of any value type can be boxed and unboxed:

• Boxing a value type copies the data from the value into an object of its
boxed type allocated on the garbage collected heap.

• Unboxing a value type returns a pointer to the actual data—that is, the
sequence of bits—held in a boxed object. (In some programming lan-
guages, unboxing not only facilitates obtaining the pointer to the data
members of a boxed object but also copies the data from the boxed
object into a value of the value type on the stack.)

The fact that all value types can be converted to their corresponding
object types allows all values in the type system to be treated as objects if
required. This situation has the effect of unifying the two fundamentally
different types in the CLR, because everything can be treated as a subtype
of Object. This approach is somewhat similar to that created by the use of
COM’s IUnknown and CORBA’s Object interfaces, which also act as the
base interface in the IDLs. Because a box type is an object type, it may sup-
port interface types, thereby providing additional functionality to its

Value Types 39

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 39

unboxed representation. Object types, reference types, and interface types
are described later in this chapter.

Reference Types

Reference types combine a location and a sequence of bits. The location
provides identity by designating an area in memory where values can
be stored and the type of values that can be stored there. A location is “type
safe” in that only assignment-compatible types can be stored in it. (The
section “Assignment Compatibility” gives an example of assignment
compatibility.)

Because all reference types are allocated on the garbage collected heap
and the garbage collector is free to move objects during execution, reference
types are always accessed through a strongly typed reference rather than
directly. As the garbage collector moves the object, the reference can be
updated as part of the relocation process. As shown in Figure 2.2 on page
24, three categories of reference types exist: object types, interface types,
and pointer types.

Object Types
Object types represent types that are known as classes in many languages,
such as SmallTalk and Java. The built-in object types include Object and
String. The CLR uses the term object to refer to values of an object type; the
set of all exact types for all objects is known as the object types. Because
String is an object type, all instances of the String type are therefore
objects. Object types are always allocated on the garbage collected heap.
Table 2.2 lists the relevant information for the CLR’s built-in object types.

A number of reference types are supplied with the Base Framework.
They are not considered to be built-in types because the CLR provides no
inherent support for them; instead, these reference types are viewed as
being under the user-defined object types that are subtypes of Object.

Object

All object types inherit, either directly or indirectly, from the CLR type
System.Object class. A major facility of the Object class is its ability to

Programming in the .NET Environment40

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 40

enforce a singular rooted inheritance hierarchy on all types in the CLR.
Although you may think that this kind of inheritance does not apply to
value types, value types can be treated as a subtype of Object through box-
ing. The libraries make extensive use of the Object type as the parameters
to, and the return type of, many functions.

The Object class provides a number of methods that can be called on
all objects:

• Equals returns true if the two objects are equal. Subtypes may over-
ride this method to provide either identity or equality comparison.
Equals is available as both a virtual method that takes a single param-
eter consisting of the other object with which this object is being com-
pared and a static method that, naturally, requires two parameters.

• Finalize is invoked by the garbage collector before an object’s mem-
ory is reclaimed. Because the garbage collector is not guaranteed to
run during a program’s execution, this method may not be invoked.5

In C#, if a developer defines a destructor, then it is renamed to be the
type’s Finalize method.

• GetHashCode returns a hash code for an object. It can be used when
inserting objects into containers that require a key to be associated
with each such object.

• GetType returns the type object for this object. This method gives
access to the metadata for the object. A static method on the Type class

Reference Types 41

CLS
CIL Name Library Name Description Support

Object System.Object Base class for all object types Y

String System.String Unicode string Y

Table 2.2 CLR Built-in Reference Types: Object Types

5 The CLR provides no facility that guarantees the invocation of a destructor method.
The IDisposable interface contains a method called Dispose. By convention, clients
call this method when they finish with an object.

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 41

can be used for the same purpose; it does not require that an instance
of the class be created first.

• MemberwiseClone returns a shallow copy of the object. This method
has protected accessibility and, therefore, can be accessed only by
subtypes. It cannot be overridden. If a deep copy is required, then the
developer should implement the ICloneable interface.

• ReferenceEquals returns true if both object references passed to the
method refer to the same object. It also returns true if both references
are null.

• ToString returns a string that represents the object. As defined in
Object, this method returns the name of the type of the object—that
is, its exact type. Subtypes may override this method to have the
return string represent the object as the developer sees fit. For exam-
ple, the String class returns the value of the string and not the name
of the String class.

Most of the methods defined on Object are public. MemberwiseClone
and Finalize, however, have protected access; that is, only subtypes can
access them. The following program output shows the assembly qualified
name and the publicly available methods on the Object class.(Assemblies
are covered in Chapter 5.)

System.Object, mscorlib, Version=1.0.2411.0,

Culture=neutral, PublicKeyToken=b77a5c561934e089

Int32 GetHashCode()

Boolean Equals(System.Object)

System.String ToString()

Boolean Equals(System.Object, System.Object)

Boolean ReferenceEquals(System.Object, System.Object)

System.Type GetType()

Void .ctor()

A simple program using the metadata facilities of the CLR generated
this output. Chapter 3 describes how to build this approximately 10-line
program and explains the significance of the assembly qualified name

Programming in the .NET Environment42

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 42

shown as the first line of output. In brief, the program retrieves the Object
class’s Type object and then displays its public method’s prototypes. The
two protected methods are not shown. The preceding output also shows
the use of built-in types, such as Boolean, Int32, and String.

Listing 2.5 demonstrates how many classes override the ToString
method. The default behavior is to print a string representing the type of
the object on which it is invoked—that is the action of the Object class.
String and Int32 have both overridden this behavior to provide a more
intuitive string representation of the object on which it is invoked.

Listing 2.5 Overriding the ToString method

using System;

namespace Override

{

class Sample

{

static void Print(params Object[] objects)

{

foreach(Object o in objects)

Console.WriteLine(o.ToString());

}

static void Main(string[] args)

{

Object o = new Object();

String s = "Mark";

int i = 42;

Print(o, s, i);

}

}

}

One interesting feature of Listing 2.5 relates to the use of the C# params
keyword. You can call the Print method with any number of arguments,
and these arguments will be passed to the method in an array that holds
Object references. Within the Print method, each member of the array
will have its virtual ToString method called, so the correct method for
each argument will be invoked. You may wonder how the value i of type
int is passed given that it is a value type: It is boxed.

Reference Types 43

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 43

Listing 2.5 produces the following output:

System.Object

Mark

42

The constructor for Object should be called whenever an object is cre-
ated; it must be called if the goal is to produce verifiable code. Chapter 4 dis-
cusses verifiable code in more detail, but for now consider “verifiable code”
to mean proven type-safe code. As a simplification of the rules, compiler
writers must ensure that a call to the constructor for the base class occurs
during construction of all derived classes. This call can occur at any time
during the construction of derived classes; it need not be the first instruc-
tion executed in the constructor of subtype. Developers should be aware
that construction of the base class may not have occurred when a user-
defined constructor starts running.

String

Like Object, String is a built-in type in the CLR. This class is sealed,
which means that no type can be subtyped from it. The sealed nature of
String allows for much greater optimization by the execution system if it
is known that subtypes cannot be passed where a type, such as String, is
expected. Strings are also immutable, such that calling any method to mod-
ify a string creates a new string. The fact that the String class is sealed and
immutable allows for an extremely efficient implementation. Developers
can also use a StringBuilder class if creating temporary strings while
doing string manipulations with the String class proves too expensive.

The String class contains far too many members to describe them all
here. A nonexhaustive list of the general functionality of the class would
include the following abilities:

• Constructors: No default constructor exists. Constructors take argu-
ments of type char, arrays of char, and pointers to char.

• Compare: These methods take two strings (or parts thereof) and com-
pare them. The comparison can be case sensitive or case insensitive.

Programming in the .NET Environment44

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 44

• Concatenate: This method returns a new string that represents the
concatenation of a number of individual strings.

• Conversion: This method returns a new string in which the characters
within the string have been converted to uppercase or lowercase.

• Format: This method takes a format string and an array of objects and
returns a new string. It replaces each placeholder in the format string
with the string representation of an object in the array.

• IndexOf: This method returns an integer index that identifies the loca-
tion of a character or string within another string.

• Insert: This method returns a new string representing the insertion of
one string into another string.

• Length: This property represents the length of the string. It supplies
only a get method—that is, it is a read-only value.

• Pad and Trim Strings: These methods return a new string that repre-
sents the original string with padding characters inserted or removed,
respectively.

Listing 2.6 is a simple example demonstrating the use of the built-in
String reference type in C#. This program creates objects of type string,
converts them between uppercase and lowercase, concatenates them, and
then checks for a substring within a string.

Listing 2.6 Using the String reference type

using System;

namespace StringSample

{

class Sample

{

static void Main(string[] args)

{

String s = "Mark";

Console.WriteLine("Length is: " + s.Length);

Console.WriteLine(s.ToLower());

String[] strings = {"Damien", "Mark", "Brad"};

String authors = String.Concat(strings);

if(authors.IndexOf(s) > 0)

continues

Reference Types 45

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 45

Console.WriteLine("{0} is an author", s.ToUpper());

}

}

}

Main begins by defining an instance of the String class called s with the
contents “Mark”. Normally, you allocate an instance of a reference type by
using a language construct such as new. In the CLR and in many languages,
such as C#, a string is a special case because it is a built-in type and, there-
fore, can be allocated using special instructions or different syntax. The
CLR has an instruction for just this purpose. Likewise, as shown in List-
ing 2.6, C# has a special syntax for allocating a string.

The next line accesses a property of the string object called Length,
returns an integer representing the number of characters in a string. You
have already seen how a property is defined, but now you may wonder
how an integer is “added” to a string. Of course, the answer is that it is not.
While an int is a value type, a reference type is always created for all value
types, known as the boxed type. In this case, code is inserted to box the inte-
ger value and place it on the garbage collected heap.

How, then, are a string and a boxed integer concatenated? Again, the
answer is that they are not. One of the overloaded concatenation methods
on the String class takes parameters of type Object. The compiler calls
this method, and the resulting string is added to the first string; this value
is then written to the screen. Developers need to be aware that compilers
may silently insert a number of calls to provide conversion and coercion
methods, such as boxing. The exact behavior is a function of the particular
compiler; some compilers will insert these method calls, whereas others
will require the developer to call them explicitly. Of course, Listing 2.6
could be rewritten to avoid boxing altogether; again, this choice requires
the developer to know and understand the code generated by the particu-
lar compiler.

Finally, the program in Listing 2.6 makes a single string containing all
the names of the authors of this book and then searches to see whether
“Mark” is one of the authors.

Your attention is also drawn to the generation of temporary string
objects in Listing 2.6. Note that calls to methods such as ToLower and

Programming in the .NET Environment46

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 46

ToUpper generate temporary string objects that may produce performance
problems.

Listing 2.6 produces the following output:

Length is: 4

mark

MARK is an author

Interface Types
Programming with interface types is an extremely powerful concept; in
fact, with COM and CORBA, interface-based programming is the predom-
inate paradigm. Object-oriented programmers will already be familiar with
the concept of substituting a derived type for a base type. Sometimes, how-
ever, two classes are not related by implementation inheritance but do
share a common contract. For example, many classes contain methods to
save their state to and from persistent storage. For this purpose, classes not
related by inheritance may support common interfaces, allowing pro-
grammers to code for their shared behavior based on their shared interface
type rather than their exact types.

An interface type is a partial specification of a type. This contract binds
implementers to providing implementations of the members contained in
the interface. Object types may support many interface types, and many
different object types would normally support an interface type. By defini-
tion, an interface type can never be an object type or an exact type. Interface
types may extend other interface types; that is, an interface type can inherit
from other interface types.

An interface type may define the following:

• Methods (static and instance)
• Fields (static)
• Properties
• Events

Of course, properties and events equate to methods. By definition, all
instance methods in an interface are public, abstract, and virtual. This is the
opposite of the situation with value types, where user-defined methods on

Reference Types 47

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 47

the value type, as opposed to the boxed type, are always nonvirtual because
no inheritance from value types is possible. The CLR does not include any
built-in interface types, although the Base Framework provides a number
of interface types.

Listing 2.7 demonstrates the use of the IEnumerator interface supported
by array objects. The array of String objects allows clients to enumerate
over the array by requesting an IEnumerator interface. (Developers never
need to define an array class even for their own types, because the CLR gen-
erates one automatically if needed. The automatically defined array type
implements the IEnumerator interface and provides the GetLength
method so they can be used in exactly the same manner as arrays for built-
in types.) The IEnumerator interface defines three methods:

• Current returns the current object.
• MoveNext moves the enumerator on to the next object.
• Reset resets the enumerator to its initial position.

Listing 2.7 Using the IEnumerator interface

using System;

using System.Collections;

namespace StringArray

{

class EntryPoint

{

static void Main(string[] args)

{

String [] names = {"Brad", "Damien", "Mark"};

IEnumerator i = names.GetEnumerator();

while(i.MoveNext())

Console.WriteLine(i.Current);

}

}

}

Of course, you could have written the while loop in Listing 2.7 as a
foreach loop, but the former technique seems slightly more explicit for
demonstration purposes. The program produces the following output:

Programming in the .NET Environment48

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 48

Brad

Damien

Mark

Array objects support many other useful methods, such as Clear,
GetLength, and Sort. The Sort method makes use of another Base Frame-
work interface, IComparable, which must be implemented by the type that
the array holds. Array objects also provide support for synchronization, an
ability that is provided by methods such as IsSynchronized and SyncRoot.

Pointer Types
Pointer types provide a means of specifying the location of either code or
a value. The CLR supports three pointer types:

• Unmanaged function pointers refer to code and are similar to function
pointers in C++.6

• Managed Pointers are known to the garbage collector and are updated
if they refer to an item that is moved on the garbage collected heap.

• Unmanaged pointers are similar to unmanaged function pointers but
refer to values. Unmanaged pointers are not CLS compliant, and many
languages do not even expose syntax to define or use them. By com-
parison, managed pointers can point at items located on the garbage
collected heap and are CLS compliant.

The semantics for these pointer types vary greatly. For example, point-
ers to managed objects must be registered with the garbage collector so that
as objects are moved on the heap, the pointers can be updated. Pointers to
local variables have different lifetime issues. When using unmanaged
pointers, objects will often need to be pinned in memory so that the garbage
collector will not move the object while it is possible to access the object via
an unmanaged pointer.

This book will not cover pointer types in detail for two reasons. First, a
greater understanding of the .NET platform architecture is needed to

Reference Types 49

6 Delegates, discussed later, provide an alternative to unmanaged function pointers.

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 49

understand the semantic issues relating to pointers. Second, most pro-
gramming languages will abstract the existence of pointers to such a degree
that they will be invisible to programmers.

Example: User-Defined Object Type

User-defined object types are the types that most developers will use to
expose their services. These types correspond most closely to classes in
many object-oriented languages. As discussed earlier, classes can define
different types of members. However, at the fundamental level, only two
types of members exist: methods and fields. Abstractions layered over
methods include the notions of properties and events. Methods are also
specialized to produce constructors, which can be either instance or class
constructors (.ctor and .cctor). Once again, on a basic level these con-
structs are simply methods with added semantics and additional runtime
support. This runtime support includes the notion that the class construc-
tor will begin executing before any of its members is used for the first
time.7

Let’s look an example of how to create a user-defined object type. To
make the example more complete, Listing 2.8 creates an object type called
Point that implements two interfaces—one interface with an event, and
one interface with properties—as well as the user-defined object type. After
creating the Point type, the program attaches a listener to the event, writes
the properties via interface references that fire the event, and then accesses
the properties.

Programming in the .NET Environment50

7 The language designer chooses which CLR abstractions are exposed to developers and
how they are exposed. For example, some languages that target the CLR provide little
support for object-oriented programming. Instead, they just provide global functions that
communicate by passing data as parameters. These languages may still participate in the
CLR, but their global functions will normally be mapped to static functions on a “well-
known” class, possibly one with a name like Global. Although the way these languages
expose their functionality in the CLR is very interesting, the many variations are beyond
the scope of this book. The appendices do describe how many languages map their
semantics to the CLR.

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 50

Listing 2.8 Creating a user-defined object type

using System;

namespace ObjectType

{

public delegate void ADelegate();

public interface IChanged

{

event ADelegate AnEvent;

}

public interface IPoint

{

int X {get; set;}

int Y {get; set;}

}

class Point: IPoint, IChanged

{

private int xPosition, yPosition;

public event ADelegate AnEvent;

public int X

{

get {return xPosition;}

set {xPosition = value; AnEvent();}

}

public int Y

{

get {return yPosition;}

set {yPosition = value; AnEvent();}

}

}

class EntryPoint

{

static void CallMe()

{

Console.WriteLine("I got called!");

}

static void Main(string[] args)

{

Point p = new Point();

IChanged ic = p;

IPoint ip = p;

ic.AnEvent += new ADelegate(CallMe);

ip.X = 42;

continues

Example: User-Defined Object Type 51

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 51

ip.Y = 42;

Console.WriteLine("X: {0} Y: {1} ", p.X, p.Y);

}

}

}

The delegate is declared first in the program. It serves as a delegate for
functions that accept no arguments and return nothing (void). The return-
ing of void is common with many delegates.

The first interface, which is called IChanged, contains a single event that
is of the same type as the delegate. The second interface, which is called
IPoint, provides two properties that allow access to two properties known
as X and Y. Both properties have get and set methods.

Next comes the definition of the class Point. It would be fair to say that
a Point could just as easily be a value type as an object type. Here, how-
ever, it is used as a simple abstraction. The class Point inherits from
Object, although this relationship is not stated explicitly, and from the two
interfaces just defined, IChanged and IPoint. By inheriting from IPoint,
for example, the class Point agrees to implement the four abstract methods
required for the two properties. The set methods fire the event whenever
they are called.

The class EntryPoint provides the entry point for the Main program.
This class also provides a static function called CallMe, which matches the
prototype of the delegate. The program registers that this method is to be
called whenever the event is fired on the Point object named p.

A number of fine points can be emphasized about the program in List-
ing 2.8. First, only one object is ever created through the activity of the new
operator on the first line of Main. The IChanged and IPoint interface types
are merely references used to access this Point object. As Point is the exact
type for the object, all methods available on the Point class, including the
methods in both interfaces, are available through a reference of type
Point—in this case, p. This relationship is demonstrated by invoking the
methods X and Y in the WriteLine method calls. The interface types can
call only the methods in their own interface, even though the object has
more functionality.

Programming in the .NET Environment52

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 52

Listing 2.8 produces the following output:

I got called!

I got called!

X: 42 Y: 42

Example: Use of Interfaces on Value Types

When considering the use of interfaces on a value type, often the first ques-
tion asked is, “Can value types support interfaces?” The simple answer is
yes; you can call the methods defined in the interface directly on the value
type without incurring any overhead. The situation is different, however,
if you call the methods through an interface reference. An interface refer-
ences objects allocated on the garbage collected heap, and value types are
normally allocated on the stack—so how does this work? The answer is a
familiar one: boxing.

Listing 2.9 demonstrates the use of events and properties in a user-
defined interface, IPoint. This interface is implemented by a value type,
Point, and an object type, EntryPoint, provides the entry point method.
Similar to Listing 2.8, this program creates a value of the value type and
then accesses its properties.

Listing 2.9 Using events and properties in a user-defined interface

using System;

namespace InterfaceSample

{

public delegate void Changed();

interface IPoint

{

int X

{ get; set;}

int Y

{ get; set;}

}

struct Point: IPoint

{

continues

Example: Use of Interfaces on Value Types 53

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 53

private int xValue, yValue;

public int X

{

get { return xValue; }

set { xValue = value; }

}

public int Y

{

get { return yValue; }

set { yValue = value; }

}

}

public class EntryPoint

{

public static int Main()

{

Point p = new Point();

p.X = p.Y = 42;

IPoint ip = p;

Console.WriteLine("X: {0}, Y: {1}",

ip.X, ip.Y);

return 0;

}

}

}

Listing 2.9 produces the following output:

X: 42, Y: 42

The interesting point regarding this program is the use of the interface
ip to access the properties of p when calling the WriteLine method. As
Listing 2.9 is written, the interface ip can only refer to reference types and
p is a value type, so p is silently boxed and ip references the boxed object,
which contains a copy of p.

Assignment Compatibility

As the concepts of object types and interface types have now been
explained, albeit very simply, the question of assignment compatibility can
be addressed. A simple definition of assignment compatibility for reference

Programming in the .NET Environment54

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 54

types is that a location of type T, where T may be either an object type or
an interface type, can refer to any object:

• With an exact type of T, or
• That is a subtype of T, or
• That supports the interface T.

Listing 2.10 demonstrates aspects of assignment compatibility. The pro-
gram starts by creating values of two different types and two interface ref-
erences:

• A value of type System.Int32 called i
• An Object reference called o
• A String reference called s
• An IComparable reference called ic

Listing 2.10 Assignment compatibility

using System;

namespace AssignmentCompatibility

{

class Sample

{

static void Main(string[] args)

{

System.Int32 i = 42;

Object o;

String s = "Brad";

IComparable ic;

// OK

o = s;

ic = s;

// OK - box and assign

o = i;

ic = i;

// compiler error

i = s;

continues

Assignment Compatibility 55

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 55

// runtime error

s = (String) o;

}

}

}

The assignments of s to o and of s to ic are all compatible, so they com-
pile and execute without any errors. The next two assignments are also
compatible, so they, too, compile and execute without any errors. The sur-
prise may come with the fact that boxing of i is needed, which the C# com-
piler performs silently in both cases. Other languages might require explicit
code to handle this boxing.

The assignment of s to i is not compatible, so it generates a compile-
time error. Unfortunately, downcasting (narrowing) is inherently problem-
atic, making the last assignment difficult to test for compatibility until
runtime. The JIT compiler will insert code to check the type of the object ref-
erenced by o before performing the assignment. In this case, o refers to a
boxed integer type at the time of assignment, so the cast fails and an excep-
tion is thrown. Of course, if o did refer to a string, then the cast would exe-
cute without throwing an exception.

Assignment compatibility is a crucial mechanism that helps ensure type
safety in the CLR. The execution system can validate assignment to a ref-
erence to verify that the assignment ensures that the type and the reference
are compatible.

Nested Types

You can define types inside of other types, known as nested types. Nested
types have access to the members of their enclosing types as well as to the
members of their enclosing type’s base class (subject to the normal acces-
sibility conditions, as will be discussed shortly). Listing 2.11 demonstrates
their use. This program defines three different object types: Outer, Middle,
and Inner. Inner contains the entry point and accesses the enumerations
defined in its enclosing types.

Programming in the .NET Environment56

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 56

Listing 2.11 Nested types

using System;

namespace NestedTypes

{

class Outer

{

private enum Day {Sunday, Monday, Tuesday,

Wednesday, Thursday, Friday, Saturday};

class Middle

{

private enum Month {January = 1, February,

March, April, May, June, July, August,

September, October, November, December};

class Inner

{

static void Main(string[] args)

{

Day d = Day.Sunday;

Month m = Month.September;

Console.WriteLine(

"Father’s day is the first "

+ d + " in " + m);

}

}

}

}

}

Running this program generates the following output:8

Father’s day is the first Sunday in September

Visibility

Visibility refers to whether a type is available outside its assembly. If a type
is exported from its assembly, then it is visible to types in other assemblies.
Object and String are examples of two types that are exported from their

Visibility 57

8 Father’s Day is the first Sunday in September in Australia.

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 57

assemblies. Visibility does not affect members of types, whereas accessibil-
ity (discussed next) can be used to limit access to members.

Accessibility

Members of a type can have different accessibility levels. Accessibility lev-
els define which other types can access the members of a type. In many sit-
uations, it is desirable to limit the accessibility of a member. If one member
implements some functionality for a type, such as data validation of field
values, then it may be useful to all other members of that type but may be
considered an implementation detail of the type. Developers can limit the
accessibility of the member so as to prevent clients from using it. This prac-
tice helps to localize the effects of change. For example, if the signature of
such a privately scoped member changes, then the change will not affect
any of the clients of this type. Thus the effect of the change remains limited
to this type’s definition. Conversely, accessibility may be restricted to a
higher level than private but less than public. This choice could, for exam-
ple, widen the effect of a change, possibly to the type’s assembly, but keep
it a much smaller effect than changing a publicly available member.

The CLR supports a number of accessibility levels:

• Public: available to all types
• Assembly: available to all types within this assembly
• Family: available in the type’s definition and all of its subtypes
• Family or Assembly: available to types that qualify as either Family or

Assembly
• Family and Assembly: available to types that qualify as both Family

and Assembly
• Compiler-controlled: available to types within a single translation unit
• Private: available only in the type’s definition

All members in an interface are public. Types are permitted to widen
accessibility. That is, a subtype may make a member more visible, as some-
times occurs with inherited virtual methods, for example. This approach
ensures that the method is at least equally visible in the subtype. Use of this

Programming in the .NET Environment58

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 58

widening facility, although legal, is considered problematic at best and
should be avoided.

Summary

This chapter provided a detailed view of the type system of the Common
Language Runtime. The CLR supports an object-oriented programming
style, which is reflected in its type system. The CTS contains two basic
types: value types and reference types. Value types are similar to primitive
types in many programming languages. Reference types are analogous to
classes in many object-oriented languages; they are further divided into
object, interface, and pointer types.

All object types inherit from Object. Object types may introduce new
methods, these methods can be either static or instance; instance methods
can also be virtually dispatched. Methods may, of course, follow the rules
for properties or events, thereby gaining additional support from the CLR
or other tools.

Methods may be overloaded. In other words, a class can have many
methods with the same name as long as the types of the methods’ param-
eters are different. When a program calls a method with multiple names,
the choice of which method is called depends on the argument list and its
correspondence with the available methods’ signatures.

Virtual methods may also be overridden. In such a case, subtypes sup-
ply methods with exactly the same signatures as the base classes. The com-
piler may issue instructions to do runtime dispatching of the method call.
The method selection is then left until runtime, when the exact type of the
object on which the method acts is known.

Summary 59

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 59

5298 ch02_019-060.qxd 10/10/2002 6:12 PM Page 60

