
5

XML Software Infrastructure

Executive Summary

The previous chapters examined the theory behind the XML para-

digm. But realizing practical benefits requires successfully deploying

XML-based systems. As with any software technology, the ability to

leverage off-the-shelf infrastructure greatly improves your chances

of successful deployment. Luckily, the XML paradigm’s high degree

of standardization and openness has resulted in rich layers of soft-

ware infrastructure for both data-oriented and content-oriented

applications.

This chapter focuses on the basic infrastructure used in many XML

projects. This core functionality supports the rest of the application.

Of course, not every application needs every piece of infrastructure,

and there are often choices within an infrastructure category. Under-

standing when different components are necessary and the issues

in choosing a particular component will help you ensure that your

projects have a strong foundation for success. Figure 5-1 presents a

conceptual model of the basic infrastructure.

As you can see, fundamental components provide the basic services

for the rest of the categories. Fundamental components, such as XML

processors that implement the XML specification and XSLT processors

that implement the XSLT specification, are already widely available

from open source projects and software vendors. They have had plenty

of time to mature and provide a robust infrastructure foundation.

Because XML is about data and content, these fundamental com-

ponents implicitly assume they have a means of persistent storage.

A simple application may use the local filesystem, but one that is

more sophisticated requires mechanisms with greater reliability,

The XML paradigm

naturally supports

robust components

139

You must assemble a

strong foundation of

core infrastructure

Fundamental

components perform

basic XML

operations

Choosing a storage

solution depends

on the type of

application

scalability, and flexibility. There is no single optimal storage solu-

tion. The appropriate choice of database management system, con-

tent management system, or native XML store depends on the

intended purpose and access pattern of your information.

Enterprise and Web architectures depend on various types of

servers to manage data, execute behavior, and distribute content.

For developers and authors to move XML documents around in this

environment, servers must be at least XML-aware and may need

XML-specific functions. Data servers must provide interfaces for

Moving and

processing XML

requires server

infrastructure

140

Chapter 5 XML Software Infrastructure

Figure 5-1:

Conceptual Model of

XML Software

Infrastructure

accessing data in an XML format. Application servers must deliver

scaleable execution of fundamental components. Content servers

must facilitate the delivery, distribution, and cataloging of XML-

packaged content.

Above the server layer, infrastructure clearly diverges along two

paths: the data path and the content path. The data path includes

XML components related to the generation, processing, and move-

ment of machine-readable XML data. Development tools enable

programmers to rapidly create software that moves data between

internal data structures and XML documents. Transformation tools

enable programmers to convert data between XML formats or

between XML formats and other data sources. Web services com-

ponents help programmers package, process, and interpret XML-

encoded messages.

The content path includes components releated to the authoring,

presentation, and distribution of human-readable XML content.

Authoring tools facilitate the creation and editing of XML docu-

ments. Layout tools facilitate the presentation of XML documents

in a variety of media. Content management components facilitate

collaboration, packaging, and delivery of XML documents.

The two paths of XML infrastructure merge again with design

tools. The process of information design is what sets XML apart

from other software technologies. This process provides the pro-

grammer or author the means to design formats for XML, whether

as data or content. In fact, it is the information design process that

determines whether your XML documents are data or as content.

While this process should actually occur very early in application

development, the results drive the choice of other components,

which is why design tools appear as the top layer in Figure 5-1.

One set of

components

helps process

XML as data

141

Executive Summary

Another set of

components helps

process XML as

content

Design tools drive

the interpretation of

XML by the other

components

Fundamental Components

XML defines a standard for encoding documents to facilitate seam-

less information exchange. Obviously, for such exchanges to actu-

ally take place, all parties must be able to process XML documents.

If they use related feature standards, such as XSLT or Schema, they

must be able to handle those formats. Applications need these basic

processing capabilities to realize the benefits of the XML paradigm.

The software engines that perform this essential work are the fun-

damental components.

The biggest workhorse in the XML paradigm is, of course, the

XML processor. This piece of software can read an XML-formatted

file and provide the encoded data to other software components.

Most XML processors also understand DTDs, Schema, and Name-

spaces. Many can process XPath statements. Other fundamental

components, such as those for processing XSLT and XLink, rely

on the XML processor because the standards they implement use

XML syntax. Therefore, a basic understanding of XML processors

is essential to understanding the architecture of XML-based

applications.

An XML processor is typically embedded in an application. It reads

the physical files associated with a document and converts the doc-

ument text into programming constructs accessible to the applica-

tion logic. There are two basic types of processors: tree-based and

event-based.

Figure 5-2 shows the operation of a tree-based processor. It accepts

an XML document as input and then parses the document to create

a hierarchical data structure that is an in-memory representation of

the data contained in the document. Optionally, it may also accept

an XML DTD or Schema, in which case it verifies that the document

follows the specified rules.

All XML

applications rely

on fundamental

components

142

Chapter 5 XML Software Infrastructure

XML processors are

the most important

fundamental

component

There are tree-based

and event-based

XML processors

Tree-based processors

create a hierarchical

data structure

Application logic accesses the hierarchical data structure through

an application programming interface (API) provided by the

processor. The Document Object Model (DOM) is another W3C

Recommendation that defines the characteristics of the document

tree and the API for manipulating it. A tree-based processor does

not have to support DOM to support XML; it may have a propri-

etary type of data tree and API. However, DOM support is a good

idea because it ensures that developers can learn this one API and

use any compliant processor. DOM and proprietary APIs allow

developers to write application logic that moves through the doc-

ument’s tree of data, extracting and evaluating the information

required to execute application functions. In addition to DOM or

other tree API, many tree-based processors also support the use of

143

Fundamental Components

Figure 5-2:

Tree-based

XML Processor

XML
Document

XML DTD
or Schema

Valid

Document
Tree

Application
Logic

Tree-Based
Parser

Developers access the

document tree

through an API

XPath expression to access nodes within the data hierarchy as

described in Chapter 3.

This process can also work in reverse. An application can use the

processor’s API to create a new tree, add nodes to the tree, and fill

them with data. The processor uses this newly created tree of data

to create a corresponding XML document. In this case, the applica-

tion logic and processor work together as a document generator.

Optionally, it can check to make sure that the generated document

conforms to a specified DTD or Schema.

Tree-based processors are highly effective for applications that need

random access to document elements. The application can use the

API to navigate the path to any piece of data. However, building a

complete tree for every document can consume a substantial amount

of memory. Event-based processors avoid this cost because they do

not create an in-memory data structure for the entire document.

Instead of creating a data structure and letting the application logic

access it, event-based processors send just event descriptions to the

application logic. These events include the beginning and end of

each element but not its attributes or text content. If the application

logic is interested in that particular element, it requests additional

data from the processor. This approach is highly effective when an

application accesses each element sequentially or only needs access

to a known subset of elements. Figure 5-3 shows how this process

works. As with tree-based processors, event-based processors can

also take an optional XML DTD or Schema against which it vali-

dates the input document.

The Simple API for XML (SAX) is a commonly used event API

for XML processors. Example 5-1 illustrates the types of events a

SAX-based processor would generate when processing the order

An application can

use a tree-based

processor to create

documents

144

Chapter 5 XML Software Infrastructure

Event-based

processors require

less memory

Applications must

explicitly request

information about

elements

SAX events include

only the start and

end of elements

document in Example 2-6. As you can see, the processor does not

include any element content or attribute information. When the

application logic receives an event signifying the beginning of an

element whose content it wants to access, it must specifically

request information about that element.

Example 5-1

Start document

Start element: Addresses

Start element: Address

Start element: FirstName

End element: FirstName

Start element: LastName

End element: LastName

145

Fundamental Components

Figure 5-3:

Event-based

XML Processor

XML
Document

XML DTD
or Schema

Valid Application
Logic

Event-Based
Parser

Parsing Event

Data Request

...

End element: Address

Start element: Address

...

End element: Address

End element: Addresses

Start element: LineItems

Start element: LineItem

Start element: Product

End element: Product

Start element: Quantity

End element: Quantity

...

End element: LineItem

Start element: LineItem

...

End element: LineItem

End element: LineItems

...

End Document

In practice, many XML processors support both tree-based and

event-based APIs. This support stems from the fact that it’s easy to

build a tree-based processor on top of an event-based processor. To

build the in-memory data tree, the tree-based processor acts like

any other application from the perspective of the event-based

processor. The only difference is that it always requests all the

information about an element. It then takes this information and

puts it in the data tree. Figure 5-4 shows how this process works.

Developers that want a tree-based API enable the tree assembly

functions of the processor, while developers that want an event-

based API suppress them. The advantage of this dual architecture

is that both types of developers can use the same component.

146

Chapter 5 XML Software Infrastructure

Many processors

support both tree-

and event-based

modes

Figures 5-2, 5-3, and 5-4 show processors accepting a DTD or

Schema as input along with the XML document. In such cases, the

processor validates the document against the rules specified in the

DTD or Schema. Such processors are called validating processors.

Most of the major validating processors now support Schema as

well as DTDs. However, applications do not have to use the validat-

ing features of such processors. There are also nonvalidating proces-

sors designed for applications that require only well-formed

documents.

Both open source projects and software vendors provide XML

processors. The Apache Software Foundation provides the popular

Xerces open source processor for both Java and C++, although the

Java version is usually somewhat ahead of the C++ version in terms

of features. Microsoft provides an XML processor as part of its oper-

ating systems and makes this component easily accessible from its

development tools. Oracle has C, C++, and PL/SQL processors for

use with its database and middleware products. There are open

147

Fundamental Components

Figure 5-4:

Dual Mode

XMl Parser

XML
Document

XML DTD
or Schema

Valid Event-Based
Parser

Parsing Event

Data Request

Document
Tree

Application
Logic

Tree
Assembler

Most procedssors can

handle well-formed

and valid documents

Open source

and commercial

processors are

widely available

source processors for many other languages, including JavaScript,

Perl, and Python.

After XML processors, the next most important fundamental

component is the XSLT processor. XSLT has rapidly achieved wide-

spread acceptance and is an important technology for many data-

and content-oriented applications. The Apache Software Founda-

tion provides an XSLT processor called Xalan in both Java and C++

flavors. Microsoft and Oracle also provide XSLT companions to their

XML processors. There are other less known open source and com-

mercial XSLT processors, but the complexity of XSLT has limited

their proliferation.

The availability of XSLFO formatters and XLink processors is not

as great. These feature standards are just beginning to see substantial

use, and their areas of application lend themselves less well to distrib-

ution as components. XSLFO is relevant primarily as part of publish-

ing systems, while XLink is primarily relevant as part of hypertext

systems. This is not to say that corresponding fundamental compo-

nents are not available, only that their number and quality are less

than for XML and XSLT. At the time of this writing, there were a few

open source XSLFO formatters, notably FOP from the Apache Soft-

ware Foundation and PassiveTeX from the Text Encoding Initiative.

Commercially, Antenna House’s XSL Formatter and RenderX’s XEP

Rendering Engine were available. All tend to focus on PDF output.

For XLink, empolis’ X2X and Fujitsu XLink Processor (XLiP) both

handle extended links but require fees for commercial use.

Storage Systems

Once you have acquired the necessary fundamental components,

you can create, access, and manipulate data in XML documents.

But as with all data, you usually want some form of persistent

There are also a

wide variety of

XSLT processors

148

Chapter 5 XML Software Infrastructure

XSLFO and XLink

processors are only

now becoming

available

There are three

different choices for

storing XML

storage that’s more robust than the local filesystem. It is not

uncommon for projects using XML to stall while figuring out

how to address the storage issue. The confusion stems from the

fact that there are three vastly different choices: a database man-

agement system (DBMS), a content management system (CMS),

or a native XML store. The appropriate choice depends on the

characteristics of your XML data.

What if you use XML as a data interchange format? In this case, a

source application encodes data from its own native format as XML

and a target application decodes the XML data into its own native

format. XML is an intermediate data representation. Both the source

and target applications already have persistent storage mechanisms,

almost certainly DBMSs of one sort or another. There is really no

need to persistently store the XML documents themselves, except

perhaps for logging purposes.

In fact, the entire purpose of the interchange format is to combine

data from an external source with the rest of the data in the DBMS.

If you want to access or search data from these interchange docu-

ments along with data already in the DBMS, you need to convert it

from XML to the DBMS’s native format. You may take this approach

even further by making XML the lingua franca among different data

sources. The discussion of Data Servers in the Server Infrastructure

section below addresses this option. But even in this sophisticated

case, XML remains an intermediate data format. The data is ulti-

mately translated and stored in an existing DBMS.

What if you use XML as a content format? In this case, authoring

tools generate content as XML, and layout tools generate stylesheets

for displaying this content. But content production usually requires

higher-level features beyond storage, such as collaborative author-

ing, rendering to different media, and indexing documents. The

In data interchange,

XML is an

intermediate

representation

149

Storage Systems

The point of data

interchange is to put

data in a DBMS

In content

production, XML

storage is only part

of the problem

following discussion of Content Provisioning Components in the

Content Components section below examines the need for these

higher-level features in more detail. Moreover, you may also have

content in other formats that you must manage alongside the XML

documents.

In this case, you probably want to use a CMS that addresses

persistent storage in conjunction with these other needs. Because

most commercial CMSs evolved with the use of SGML, vendors

have found it fairly easy to add excellent XML support. So if XML

is a content and layout representation, use a CMS. CMS products

with XML capabilities include BroadVision Publishing Center,

Chrystal’s Astoria, Documentum4i, Interwoven TeamSite, Omni-

Mark Technologies’ OmniMark, Red Bridge Interactive’s DynaBase,

SiberLogic’s SiberSafe, and Vignette’s Content Suite. The discus-

sion of Content Management Components in the Content-Related

Components section that follows covers the features of CMSs in

more depth.

What if you use XML as an operational data format? Operational

data is data that directly drives an application or process. Usually,

DBMSs maintain operational data, but there are two cases where

XML is likely to be the format. In the first case, XML is the format

for an important work product of some kind. As discussed in Chap-

ter 4, the business document architecture uses XML in precisely

this manner. Each document represents a completed work product

exchanged between organizations. Certainly, organizations will

break down this document and map certain portions to correspond-

ing DBMSs. However, the XML document is the starting point for

driving this downstream processing and the ultimate point of ref-

erence for auditing. In the second case, XML is the format for

instructions used in executing a process. Chapter 4 also discussed

the emerging class of orchestration applications that use an XML

Content

management

systems (CMSs)

provide a complete

solution

150

Chapter 5 XML Software Infrastructure

Business document

and orchestration

applications use

XML operationally

format to describe the assembly of software components or the

workflow for business processes.

In either of these situations, neither a traditional DBMS or a CMS

is appropriate. You need to use the XML document as a single unit

but still index its internal contents. Traditional DBMSs do this poorly

because they either have to disassemble the document into their

internal formats or create special functions for treating documents

as Large Objects (LOBs). Traditional CMSs do this poorly because

they are not optimized for subsecond response under high request

loads. So if XML is an operational data representation, use a native

XML store. Such products include Ipedo XML Database, IXIASOFT’s

TEXTML Server, NeoCore XMS, Software AG’s Tamino, and XYZFind

Server. The products mentioned in the Data Server discussion of the

Server Infrastructure section below can also store native XML data

and are particularly useful when your application has a combina-

tion of native XML and traditional DBMS data.

Server Infrastructure

With an appropriate place to persistently store XML data, the next

concern is distributing and manipulating this data. In modern Web

application architectures, servers play critical roles in assembling,

processing, and distributing information. Adding XML support to

your server infrastructure mostly involves making sure that exist-

ing servers are XML-enabled, with perhaps the installation of a few

XML-specific components. Most importantly, you must verify that

XML capabilities meet the scalability and reliability demands of all

server functions.

In general, there are three types of server components: data servers,

application servers, and content servers. Data servers access, aggre-

gate, and format data. Application servers execute business logic

Native XML

stores work best

for operational

XML data

151

Server Infrastructure

XML server support

is important in Web

architectures

There are data,

application, and

content servers

components and mediate distributed business processing. Content

servers facilitate the acquisition of content, enhance its accessibility

to users, and apply formatting. Figure 5-5 shows these different types

of servers working together in a typical web application environ-

ment. This type of server web provides the conduit for propagating

XML documents within an enterprise and throughout the Internet.

While Figure 5-5 shows each server component as a distinct node,

this arrangement isn’t necessary. Server software may combine

these components in different ways, and in fact, different combina-

Products may com-

bine server types in

different ways

152

Chapter 5 XML Software Infrastructure

Figure 5-5:

Types of Server

Components

Content
Server

Browser Browser Browser Browser Browser

Content
Server

Content
Server

Content
Server

Application
Server

Application
Server

Data
Server

Data
Server

Application
Server

tions lead to distinct product segments. Integration servers combine

data server functions to aggregate information from multiple sources

with application server functions to control the flow of business

processes. Portal servers combine data server functions to access

information from multiple sources with content server functions to

filter this information based on user requirements. Personalization

servers combine application server functions to calculate user needs

with content server functions to dynamically customize their expe-

riences. By understanding the roles of the three types of server

functionality, you can evaluate whether such a combination suits

your needs.

Data Servers

DBMSs inherently constrain the use of data. They have to choose a

particular paradigm, such as relational or object. Relational DBMSs

with normalized tables optimize the combination data in different

ways. Object DBMSs with associated instances optimize the traver-

sal of information webs. Within a given paradigm, each individual

database has a particular structure limiting the types of information

it can store and the access patterns it supports. DBMSs do a won-

derful job of managing data when a given database must support

only a few types of applications and when each application relies

on only a few databases. However, when a given database must

support a wide variety of application types or a given application

must rely on many different databases, satisfying these demands

often tax DBMSs to their limits. In such cases, an XML-enabled

data server can improve flexibility and performance.

XML broadens the use of data. The ability to quickly design special

purpose data formats encourages the combination of information

managed in different databases. So while data servers have existed

for some time, XML’s emergence as a solution to information ex-

change problems has elevated their role. Data servers perform three

Sophisticated

architectures may

strain DBMSs

153

Server Infrastructure

Data servers

facilitate a web of

many DBMSs and

many applications

major functions: (1) they unify the data access interface to sim-

plify application development, (2) they aggregate data from dif-

ferent sources to deliver customized packages of information, and

(3) they consolidate requests to DBMSs to improve performance.

XML requires special support only in the first two functions. Because

optimizing performance through consolidation strategies like data

caching and connection pooling occurs internally to the data server,

the use of XML as the format does not affect this function.

An XML-enabled data server supports XML as the unified data

access format. When an application submits a request to the data

server, the data server fulfills it with an XML document. Given the

rise of XML messaging discussed in Chapter 4, the data server should

probably support this interaction over SOAP, using an interface speci-

fied in WSDL. Merely retrieving ad hoc bits of data as XML docu-

ments that the application then has to translate into programming

data structures doesn’t add much benefit. Programmatic solutions

such as ODBC and JDBC already satisfy this need. The more sub-

stantial benefit comes from defining synthetic XML documents that

form customized packages of data suited to a particular purpose.

To deliver a synthetic XML document, the data server must have a

mapping between the document type and the structures managed

by backend DBMSs. A developer defines an XML DTD or Schema

for the document type and then maps fields in the various database

schemas to element and attribute types. The developer also defines

the keys used to select the correct records for populating a document

instance. At runtime, an application submits a request for a synthetic

document type and the appropriate keys. The data server then looks

up the mapping, constructs queries based on the mapping and the

keys, and puts the results into an XML document. This results doc-

ument is valid with respect to the specified DTD or Schema.

Data servers can

leverage XML

messaging protocols

and XML data

formats

154

Chapter 5 XML Software Infrastructure

They should

support mapping

from DBMS to

XML Schema

In some cases, a DBMS vendor may include some data server

capabilities with its DBMS product. For instance, Oracle9i

includes XML mapping capabilities. In cases where the need for

a data sever stems from a small set of homogenous databases

attempting to serve many different applications, this solution is

sufficient. But when the need for a data server stems from a set

of applications attempting to aggregate data across heteroge-

neous databases, you probably need a separate data server

product.

Such products include eXcelon’s eXtensible Information Server

and Versant enJin, both of which are based on object persistence

engines. Data servers require many of the capabilities of backend

databases to provide high availability and transactional integrity.

They use their own persistence engine as a staging area between

applications and backend DBMSs. Therefore, most of the native

XML store products discussed previously can also operate as XML

data servers by adding features for synchronizing with backend

databases. In fact, many vendors of these products are finding that

this approach drives a substantial percentage of their sales. Con-

versely, data server products like eXcelon and enJin can operate

as native XML stores, so distinctions between the two markets are

blurring. When evaluating either type of product’s suitability as

a data server, focus on the facilities for mapping backend data to

XML documents and the efficiency of performance optimization

strategies like caching and pooling.

Application Servers

Application servers operate in the middle tier, applying business

logic to data, then handing off the results for presentation. In this

capacity, they have three primary reasons for working with XML

documents.

Some DBMSs

include basic data

server features

155

Server Infrastructure

Native XML store

and data server

markets are merging

Application servers

are hubs of XML

document flow

1. They may need to accept data as XML documents from data

servers.

2. They may need to provide business results as XML documents

to content servers.

3. They may have to exchange XML-formatted business mes-

sages with other application servers.

To support these operations, the application server can supply basic

and advanced services.

Basic services include the execution of XML and XSLT processors,

as well as a SOAP implementation. Whether it extracts data from

XML documents, exchanges XML business documents, or produces

XML business results, the application server needs the access and

creation capabilities of an XML processor. Because many developers

use XSLT for pre- and postdocument processing, support for this

standard should be part of the basic package. Interaction with

XML-enabled data, application, and content servers almost cer-

tainly includes SOAP communication, so an implementation of

the protocol is essential.

Theoretically, because an application server can execute any code

in a language it supports, providing basic services is simply a matter

of downloading XML and XLST processors plus a SOAP implemen-

tation, then installing them. Practically, assuring the performance

and quality of execution requires the vendor to at the very least

certify components for use with the application server and probably

include the recommended packages in the product distribution. You

want to make sure that the vendor has tested the particular compo-

nents, can provide estimates of how much throughput these com-

ponents can handle, and knows how to support their use with its

application server. For J2EE application servers, most vendors rec-

ommend the Xerces XML processor, the Xalan XSLT processor, and

Basic services include

XML, XSLT, and

SOAP support

156

Chapter 5 XML Software Infrastructure

Basic services must

be tested, optimized,

and supported

have chosen either their own or a particular third-party SOAP

implementation. Microsoft has its own XML processor, XSLT

processor, and SOAP implementation for its application server

products.

Advanced services tend to vary significantly across application

servers and evolve rapidly over time. Therefore, it’s more appropri-

ate to focus on the categories of advanced services rather than par-

ticular instances. Most advanced services are delivered in the form

of frameworks. There are abstraction frameworks and task frame-

works. Abstraction frameworks give developers more flexibility to

make future changes by performing operations at a higher level.

Two excellent examples are Sun’s Java API for XML Processing

(JAXP) and Java API for XML Messaging (JAXM). Both of these

frameworks provide high-level APIs for performing specific XML-

related operations. By programming to these abstract APIs rather

than the concrete APIs of specific components, developers make it

possible to easily switch their XML processor or XML messaging

protocol.

Task frameworks provide additional functionality for building

specific types of applications. Personalization is a good example

of a task framework used to produce XML documents for content

servers. These types of applications use metadata about user prefer-

ences and metadata about content topics to generate customized

content. Because XML is a convenient format for both types of

metadata, there is the opportunity to deliver a package that greatly

simplifies the development of such applications. But perhaps the

best XML-related example of such an application is B2B messaging.

This type of application touches on a host of issues, from specifying

the allowable flows of messages, to generating views of executing

processes, to integrating with back-end systems. Providing all this

functionality would be difficult for a single application development

Abstraction

frameworks

improve

flexibility

157

Server Infrastructure

Task frameworks

improve productivity

team. By using XML, vendors can deliver a widely applicable

framework that puts such applications within the reach of more

organizations. All the major application server vendors—including

BEA, IBM, Microsoft, Oracle, and Sun—provide their own flavors

of both personalization and B2B messaging frameworks.

Content Servers

Content servers combine data from DBMSs, results from business

operations, and authored content into presentation formats suitable

for different users. XML-based technologies improve every stage of

the fulfillment pipeline. At the very end of the pipeline, they enable

dynamic layouts that better fit each user’s needs. In the middle of

the pipeline, they make it easier to connect a user to the exact infor-

mation he wants. At the beginning of the pipeline, they make it

easier to acquire the library of content necessary to satisfy the user

base. Most content servers focus on one or two aspects of this pipe-

line, so implementing a complete XML content strategy may

require several types of content servers.

The most common use for XML in content servers is applying

dynamic presentation to XML content. This process occurs as

described in Chapter 3’s discussion of using XSLT to generate pages

in XML-based presentation languages such as HTML, VoiceXML,

and WML. Based on variables, including the type of client device,

the type of content, and the localization settings for the user, the

content server selects an XSLT transform and applies it to the XML

document. Because most Web servers have programming exten-

sions that support XSLT, you won’t need any additional server

infrastructure if all you want is dynamic presentation.

Customizing layouts for users is only part of the content delivery

equation. Users also need help finding the content that addresses

their immediate needs. Traditional search engines suffer from the

Content servers

enhance the Web

user experience

158

Chapter 5 XML Software Infrastructure

They can

dynamically

generate

presentation

layout

XML provides

metadata cues for

searching

problem (raised in Chapter 1) of distinguishing between different

contexts for the same word. With XML content, a search engine

can use the element structure and attribute values to improve

search precision. Using an XML-aware search engine helps maxi-

mize the benefits of an XML-based content strategy. Usually,

employing such a product involves assigning a dedicated server or

cluster of servers to perform searches that then refer users to the

appropriate content. Such standalone solutions include DocSoft’s

extend XML and XML Global’s GoXML Search. Of course, most of

the CMS and native XML store products discussed previously can

perform searches on XML document collections, but this approach

works only if you store all the content you plan to search in one

of these products.

XML-aware search engines leverage metadata at the element and

attribute levels. However, metadata can also apply to entire collec-

tions of content. The foundation of the Semantic Web is the use of

metadata to provide a conceptual map of an entire site or group

of sites. Another W3C Recommendation, Resource Definition

Framework (RDF), provides a standardized XML vocabulary for

describing the types of content offered, the relationships among

content, and the conditions under which content might be rele-

vant. Most site creators use an implicit information model in select-

ing and organizing content. RDF makes it possible to explicitly state

this model. The availability of machine-readable models facilitates

automated information retrieval, filtering, and visualization capa-

bilities far beyond those of traditional search engines. The Semantic

Web is in its early development and much of the work is in the

form of research and open source projects. However, in the near

future, RDF may migrate into mainstream content infrastructure.

Web servers will offer RDF descriptions. Search engines will use

these descriptions as part of the search criteria. Authoring tools

will generate these descriptions.

The Semantic Web

uses metadata at the

site level

159

Server Infrastructure

In addition to making it easier to find content, XML also makes

it easier to acquire content. Content can come from two sources:

You can create it, or you can borrow it. When creating content, the

ability of multiple authors to effectively collaborate greatly enhances

productivity. Web Distributed Authoring and Versioning (Web-

DAV), a set of XML-based extensions to HTTP from the IETF, makes

it possible for authors to work together to create, enhance, and

maintain content. A WebDAV server manages contributions, tracks

changes, and enforces permissions. A number of portal servers,

including Microsoft’s SharePoint Portal Server and Oracle9iAS

Portal, use WebDAV to enable the collaborative editing of portal

content. Common Web servers such as Apache and IIS also sup-

port WebDAV. Any client that speaks the WebDAV protocol can

use these servers to collaborate on documents. Such clients

include popular content authoring tools such as Adobe Acrobat

and Microsoft Office. Taken to an extreme, WebDAV enables the

replacement of traditional document management systems with a

set of distributed WebDAV-capable servers. Oracle iFS and Xythos’s

Web File Server use this approach.

It is often more cost effective to borrow content from someone

else than generate it yourself. However, this type of syndication

faces two problems. First, it is often difficult to fit third party con-

tent into an application because of differences in layout. XML

solves this problem by giving both parties a format for exchanging

information separate from presentation. The subscriber knows the

structure of each publisher’s content, so it can use XSLT to integrate

content from different sources and apply its preferred layout. There

is also the problem of how to automatically negotiate subscriptions,

track usage, and update information. Information and Content

Exchange (ICE) addresses these issues by providing a standard

XML protocol for such interactions between subscribers and pub-

lishers. ICE support is available in a wide variety of products that

Structured content

facilitates distributed

collaboration

160

Chapter 5 XML Software Infrastructure

Syndication benefits

from both structured

content and

standard protocols

generate and manage content, including Interwoven’s OpenSyndi-

cate, Oracle9i, and Vignette’s Content Syndication Server.

Data-Oriented Components

Deploying XML-based systems requires that developers write software

that accesses, manipulates, and creates XML as if it were data. In some

cases, this software runs on top of the server infrastructure discussed

previously. In other cases, the software may operate as a standalone

program. In all cases, XML offers improved productivity through the

wide availability of components for generating, processing, and dis-

tributing machine-readable XML data, which developers require.

While there are numerous types of utilities that can assist them,

there are three categories crucial to most serious applications. Any

serious XML programming requires moving XML data in and out of

internal programming data structures. Development tools reduce

the amount of coding and improve the quality of code for this repe-

titious task. In practice, using XML as data also requires transform-

ing documents from one XML format to another, as well as between

XML and other formats. Transformation tools simplify the problem

of creating XSLT transforms and integrating external data into XML

architectures. Moreover, most data-oriented applications of XML

involve distributed communication. While application servers and

packaged solutions provide basic functionality, the Web services par-

adigm often requires either integrating a variety of server-provided

services or deploying standalone functionality to nonserver devices.

In these cases Web services components reduce time to market.

Development Tools

The most common task in developing XML application is ensur-

ing that a piece of code that manipulates an XML document works

as desired. Performing this task requires the developer to work

Developers need

XML-capable

components

161

Data-Oriented Components

Points of leverage

include development,

transformation, and

distribution

Most IDEs offer basic

document interaction

features

simultaneously with a document and the associated code. It helps

the developer to view the XML document in two different ways.

First, developers need a text view but with all the additional fea-

tures they’ve come to expect from a code editor—indenting, high-

lighting, and syntax checking. Second, they need a browsable tree

view, much like they have for class hierarchies. Together these two

views allow the developer to maintain a good mental model of the

document and thereby understand how the code running against

it should work. Many commercial IDEs, especially those for Java

and from Microsoft, provide this functionality. There are also open

source modules for adding the text viewing capabilities to popular

code editors like EMACS.

While IDEs supply features that help when working on code that

manipulates XML documents, there is the issue of writing this code

in the first place. Many XML applications work with a known set of

XML formats. For example, an application for the insurance indus-

try would work with documents conforming to insurance-related

XML DTDs or Schemas. Writing the code to move data back and

forth between documents using these formats and internal data

structure is time consuming and repetitive. Schema compilers can

take a DTD or Schema and generate much of this code, saving time

and improving quality. Such tools include Breeze Factor’s Breeze

XML Studio (Java), Bristol Technology’s eXactML (C++),

Microsoft’s Visual Studio .NET (C++ and Visual Basic), The Mind

Electric’s Electric XML+, OracleXML Class Generator (C++ and

Java), and Sun’s Java Architecture for XML Binding (JAXB).

Transformation Tools

Many applications concern the exchange of information about

coherent business entities. It is likely that different parties to these

exchanges will have different definitions of these entities. These

Schema compilers

generate XML

manipulation code

162

Chapter 5 XML Software Infrastructure

Mapping tools help

generate XSLT data

transforms

different definitions will probably take the form of different DTDs

or Schemas. As you saw in Chapter 3, XSLT can address this prob-

lem. However, for large applications that work with many different

formats, you may find it difficult and time consuming to create all

the necessary XSLT by hand. Creating a supply chain management

system may require writing transforms for hundreds of formats.

Moreover, these formats can change regularly. Developers need

tools to make this process more efficient. A number of vendors offer

visual mapping tools that let the developer indicate how to move

element and attribute values from the source format to element

and attribute values of the target format. The tools then generate

the XSLT code, and many provide debugging features for making

sure the generated code works properly. Products in this category

include ActiveState’s Visual XSLT (Visual .NET plug-in), B-Bop

Xfinity Designer, eXcelon’s Stylus Studio, IBM’s Visual XML Trans-

formation Tool, Induslogic’s XSL Stylesheet Editor, and TIBCO

XMLTransform.

Unfortunately, not all data exists in an XML format. Many applica-

tions must map data from non-XML sources to XML formats and vice

versa. Developers need components that can perform this mapping

both in bulk and upon request. These tools are similar to those for

mapping data from relational databases to object-oriented program-

ming structures and migrating data from operational stores to data

warehouses. They include features for browsing the structures of data

sources and then specifying how to translate from data fields to ele-

ments and attributes. These tools are quite sophisticated because pro-

cessing data from a non-XML source may require more than simply

pulling data from a column and putting in an element. There are also

datatype conversions and collapsing or exploding relationships

between fields. The two leading products for this purpose are Data

Junction’s Integration Engine and Mercator’s Integration Broker.

Integration tools

move data between

XML and other data

formats

163

Data-Oriented Components

Distributed Application Components

As previewed in the discussion of Application Servers in the

preceding Server Infrastructure section, many applications use

XML to facilitate distributed communication in custom applica-

tions. Usually, such applications use SOAP and the other Web

services protocols. Task frameworks can help improve produc-

tivity, but the issues can extend beyond the boundaries of appli-

cation servers. It often helps to have tight integration of distributed

application development across development tools, frameworks,

and servers. The development tools can then quickly lead develop-

ers in the use of the advanced framework and server features. This

breadth of integration usually comes under the umbrella of a large

vendor’s overarching distributed XML paradigm. Examples include

BEA WebLogic Workshop, IBM WebServices, Microsoft .NET, and

Sun ONE.

In many cases, you will already have a substantial commitment to

a vendor through existing server infrastructure and development

tools. Obviously, the least disruptive choice for Web services com-

ponents will be that vendor. However, if you plan to make a deci-

sion on your preferred supplier based on Web services support,

you can go either the integrated solution or best-of-breed route.

The integrated solution route offers the benefit of making a single

vendor responsible for the success of your applications. It has the

drawback of restricting you to that vendor. The best-of-breed route

has the advantage of enabling you to choose the best vendor for

other infrastructure such as platforms and tools. It has the dis-

advantage of making you responsible for integrating the entire

system. Major vendors offer integration along two dimensions:

platforms and tools. In this case, the platform is a composite of

hardware architecture, operating system, and mission critical

components like DBMSs.

Large vendors offer

complete distributed

XML paradigms

164

Chapter 5 XML Software Infrastructure

You can choose

between integrated

and best-of-breed

approaches

Figure 5-6 presents a conceptual graph of where major vendor

offerings fall in the space formed by these two dimensions.

Microsoft has the highest platform specificity because it requires

that you use its operating system and other server infrastructure.

IBM and Sun both offer their solutions on multiple platforms but,

of course, they try to drive the sales of their specific platforms. BEA

is almost completely platform agnostic. All vendors try to take

advantage of a Web service’s potential productivity gains to some

extent with a certain degree of development tool integration. BEA

does this through a high-level framework but leaves core program-

ming tool choices. IBM and Sun offer their own IDEs based on stan-

dard programming and scripting languages. Microsoft offers its own

IDEs and languages.

Integration occurs

in both platforms

and tools

165

Data-Oriented Components

Figure 5-6:

Degree of

Integration

by Major XML

Component

Vendors

Tool Integration

P
la

tf
o

rm
 S

p
ec

if
ic

it
y

BEA

Sun

Microsoft

IBM

The large vendor initiatives have drawbacks. To achieve the

desired breadth of integration, they often sacrifice modularity

and performance. Obviously, they want developers to buy the

complete packages, so they often require all-or-nothing commit-

ments. Maintaining the synchronization between all the compo-

nents usually introduces a substantial amount of overhead. These

drawbacks are severe for applications not deployed in application

servers, especially if targeted at small devices. Smaller products

such as CapeClear’s CapeStudio, The Mind Electric’s GLUE, and

Polar Lake fill this gap with components that Web service enable

application-specific code in a tight, standalone footprint.

Content-Oriented Components

Delivering XML content to users requires off-the-shelf compo-

nents for authoring, presenting, and delivering human-readable

XML content. The principal benefit of XML as a content standard

is that content from all sources uses the same infrastructure. Differ-

ent groups of authors may contribute content, and it is easy to con-

vert data from applications into content for users. Unfortunately,

this capability raises the complexity of the authoring task because

authors need to seamlessly merge static content from numerous

contributors with dynamically generated content from applications.

Well-defined processes become critical to coordinating multiple

content production paths.

There are three things authors must do to take advantage of

XML’s benefits for content delivery: (1) format content as XML

documents, (2) create layouts for this content, and (3) follow a

rigorous production process to ensure uniform quality. Authoring

tools, layout tools, and content management components provide

the functionality necessary to quickly deliver high-quality, high-

appeal content.

Authors need XML-

capable components

166

Chapter 5 XML Software Infrastructure

Small vendors offer

modular small

footprint solutions

Points of leverage

include authoring,

layout, and

management

Authoring Tools

Much XML content includes static documents produced by human

authors. Creating them with a text editor is a slow and error-prone

process. Moreover, many documents have primarily static content

with select pieces of information extracted dynamically from an

application. Authors certainly do not want to have to manually

enter programming-related tags to drive this capture process. Docu-

ment authoring tools offer three primary features for improving

productivity.

First, they offer word-processing-like interfaces that enable authors

to create ad hoc documents. This feature separates the free text infor-

mation from the layout. Second, they offer a wizard- or form-based

interface that authors can use to populate documents conforming to a

more detailed DTD or Schema. This feature speeds data entry for con-

tent such as customer contact reports. Finally, they include features

for specify placeholders for application content that a content server

uses to insert dynamic values at delivery time. This feature requires

integration with a runtime content processing engine. While different

products offer different mixes of these three features and are evolving

quickly, some of the most popular products include Arbortext’s Epic

Editor, XMLSpy’s Document Editor, and SoftQuad’s XMetaL.

Layout Tools

XSL is a highly sophisticated layout description language. A large

proportion of layout designers with the necessary graphical design

background may not have the technical background necessary to

create stylesheets by hand. Therefore, they need stylesheet layout

tools for automatically configuring different page regions to display

different types of elements and specifying the text formatting based

on rules such as element type and attribute values. These tools

must also be aware of DTDs and Schema so that authors can

match detailed layouts with detailed formats.

Authoring tools

speed the input of

content as XML

167

Content-Oriented Components

They can offer

ad hoc as well as

structured input

modes

Layout tools merge

graphical layout

with XSL generation

Typically, layout tools allow designers to work in either concrete or

abstract modes. In a concrete mode, the designer has an example

XML content document and applies formatting to that document’s

information. The tool then abstracts this information to generate a

generic stylesheet. By using several example content documents,

the author can ensure complete coverage of different possible cases.

In an abstract mode, the designer applies formatting rules to a DTD

or Schema. This approach gives the author more flexibility in

dynamically determining how to present information based on its

value, but it is not as intuitive. Before selecting a layout tool, you

should work with your designers to decide which mode is more

important. The best tools allow designers to switch between modes,

but they still tend to emphasize one over the other. Leading prod-

ucts include Arbortext’s Epic Editor, eXcelon’s Stylus Studio, IBM’s

XSL Stylesheet Editor, Whitehill <xsl>Composer and XMLSpy’s

XSLT Designer.

Content Management Components

As an organization adopts XML, more and more people become

involved in authoring XML content. As with HTML and SGML,

managing this content poses a logistical challenge. Moreover,

because software will automatically generate many documents,

there is the possibility for new challenges and even greater content

volume. Figure 5-7 shows the generic architecture of a CMS that

can help address this problem. As Figure 5-7 shows, CMSs typically

have several major components.

❏ Repository. The repository provides a robust and fault-tolerant

location for storing XML documents, stylesheets, and DTDs

or Schema. It consists of an interface that enables the con-

tent management system to store and retrieve information,

a manager that controls storage mechanisms, and the storage

Managing the

content production

process is an issue

168

Chapter 5 XML Software Infrastructure

mechanisms themselves. These mechanisms may include

filesystems, relational databases, or object databases.

❏ Version control. The version control subsystem performs two

functions. First, it prevents multiple authors from simultane-

ously making changes in the same content. Second, it main-

tains a version tree of all content. All requests to store or

retrieve content must go through the version control system

because it maintains the mapping of logical versions to phys-

ical data. CMSs that support WebDAV for version control offer

the advantage of easier interoperability with different types

of authoring clients.

❏ Authoring workflow. A content management system needs

a component to coordinate the contributions and revision

169

Content-Oriented Components

Figure 5-7:

Generic CMS

Architecture

Version Control

Syndication
Server

Web
Server

Authoring Workflow

Content Processing

Authoring
Client

Authoring
Client

Deployment

Repository

process. Typically, this coordination includes the maintenance

of an authoring schedule and assignments for each author. It

ensures the routing of documents from one author to another

based on content dependencies. As published content reflects

on the organization, this routing may also include approval

and revision workflow.

❏ Content processing. Once authors have submitted content, the

CMS may offer a number of processing functions. Foremost

among these functions is content indexing. If you commit to

managing all your content within a CMS, you rely on the

search functions it provides. To perform such searches effi-

ciently, authors need to specify how to index the content. In

cases where documents include dynamic information bound to

application data, another processing function includes access-

ing, formating, and distributing this data. Some CMSs offer

advanced filtering and transformation processing to automati-

cally create different views of content suitable for different audi-

ences. For example, a filter might specify how to automatically

generate a summary view for a particular type of document.

❏ Deployment management. When content becomes ready for

consumption, an administrator must release it for distribution.

Depending on the channel, managing this deployment may

take several forms. For static content intended for Web servers,

it might create the directory structure and install it in all the

Web server machines. For dynamic content intended for Web

servers, it may require a substantial amount of configuration

information governing network topology, access control, and

performance parameters. In cases where you intend to syndi-

cate your content, the CMS will need additional information

to manage this process.

There are a wide variety of CMSs, each with its own target use.

Content management is a complicated topic, and the choice of

170

Chapter 5 XML Software Infrastructure

These are many

factors to consider in

choosing a CMS

product requires considerable analysis. Factors to consider include

the primacy of Web over other channels, the use of non-XML for-

mats, and integration with dynamic data sources. Products to con-

sider include Arbortext’s Epic E-Content Engine (no repository),

BroadVision Publishing Center, Chrystal’s Astoria, Documentum4i,

Interwoven TeamSite, OmniMark Technologies’/OmniMark, Red

Bridge Interactive’s DynaBase, SiberLogic’s SiberSafe, and

Vignette’s Content Suite.

Design Tools

The previous two sections divided components into data and con-

tent manipulation categories. How do you know if XML is data or

content? It depends on the design of the XML formats used by your

system. When you plan to use formats that interact primarily with

application code or database servers, you design them to reflect the

rigid structures and datatype focus used by these systems. When

you plan to use formats that primarily drive the organization of

information delivered to users, you design them with flexible struc-

tures and semantic focus used by people. These decisions actually

occur early in the development process and determine how the

entire team uses XML.

In the case of data-oriented formats, the design process is similar

to that for programming data structures or database schemas. In

the case of content-oriented formats, the design process is similar

to information design or user requirements analysis. In either case,

the designer needs to focus on the structure of information rather

than the syntax for DTDs or Schema. Design tools facilitate the con-

ceptual design of documents and then generate the appropriate

syntax. A graphical designer works much like a data modeling tool.

Designers use a tree metaphor to create the basic element structure

and then use dialog boxes to configure the allowable element and

The design of

an XML format

determines the intent

of documents

171

Design Tools

Design tools let

you focus on

requirements

instead of syntax

attributes data. In practice, the generated syntax may need manual

tuning, especially for very complex formats, but tools can usually

cover most of the cases.

There are currently two primary choices for graphical design tools:

Altova’s XML Spy 4.2 Integrated Development Environment (IDE)

and TIBCO TurboXML. On paper, they provide much the same

feature set. Both provide tree, inspector, and syntax views of XML

formats. Both support both DTDs and Schema. In fact, many orga-

nizations use these tools to convert their existing DTDs to Schema.

Both do a pretty good job of generating the correct syntax. In prac-

tice, they provide interfaces that are different enough to yield dis-

tinct experiences. Many designers develop a strong preference for

one interface over another after using them, so you should thor-

oughly evaluate both before choosing one.

Infrastructure Selection Strategy

This chapter presented XML software infrastructure in the order

that you would bring pieces together during development. To

maintain maximum flexibility, you would actually make your

product selections in the same order. However, the practicalities

of the procurement process will probably force you to make deci-

sions early in the project, or perhaps even before starting a specific

project. Also, as you will see in Chapter 6, establishing your infra-

structure beforehand can also make it easier to acquire staff with

the appropriate skills.

If you do have to make an early decision on XML software infra-

structure, it’s important to know whether you plan to use XML for

data-oriented or content-oriented projects. For data-oriented proj-

ects, the choice of application server will usually drive the rest of

the decisions. Your existing environment, price, and the availability

Choosing a product

comes down to

personal preference

172

Chapter 5 XML Software Infrastructure

You may have

to decide on

infrastructure

early in the

process

Application server

choice will drive

data-oriented

infrastructure

of applicable features like Web services frameworks should factor

most prominently. This choice will probably make the selection of

fundamental components for you. It will also influence whether

you need other server infrastructure and data-oriented compo-

nents, as well as the most suitable products if you do.

For content-oriented projects, the choice of CMS will usually drive

the rest of the decisions. In nearly all cases, the CMS will include

fundamental and other content-oriented components. You may

have to choose a data server separately, depending on the degree

and volume of dynamic content generation. In cases where you

have a balance of data-oriented and content-oriented development,

you will have to simultaneously decide on an application server

and CMS, taking into account the success of other organizations

successfully using different combinations.

CMS choice will

drive content-

oriented

infrastructure

173

Infrastructure Selection Strategy

