
246 Style Case Studies

34. Index Tables
 Index tables are a genuinely useful idiom and a technique that’s worth being aware of. But

how can we implement the technique effectively… nay, even better than that, exceptionally?

JG Question
1. Who benefits from clear, understandable code?

Guru Question
2. The following code presents an interesting and genuinely useful idiom for creat-

ing index tables into existing containers. For a more detailed explanation, see the
original article [Hicks00].

 Critique this code and identify:

a) Mechanical errors, such as invalid syntax or nonportable conventions.

b) Stylistic improvements that would improve code clarity, reusability, and
maintainability.

// program sort_idxtbl(…) to make a permuted array of indices
#include <vector>
#include <algorith>

template <class RAIter>
struct sort_idxtbl_pair
{
 RAIter it;
 int i;

 bool operator<(const sort_idxtbl_pair& s)
 { return (*it) < (*(s.it)); }

 void set(const RAIter& _it, int _i) { it=_it; i=_i; }

 sort_idxtbl_pair() {}
};

template <class RAIter>
void sort_idxtbl(RAIter first, RAIter last, int* pidxtbl)
{
 int iDst = last-first;
 typedef std::vector< sort_idxtbl_pair<RAIter> > V;
 V v(iDst);

Difficulty: 5

 Item 34: Index Tables 247

 int i=0;
 RAIter it = first;
 V::iterator vit = v.begin();
 for(i=0; it<last; it++, vit++, i++)
 (*vit).set(it,i);

 std::sort(v.begin(), v.end());

 int *pi = pidxtbl;
 vit = v.begin();
 for(; vit<v.end(); pi++, vit++)
 *pi = (*vit).i;
}

main()
{
 int ai[10] = { 15,12,13,14,18,11,10,17,16,19 };

 cout << “#################” << endl;
 std::vector<int> vecai(ai, ai+10);
 int aidxtbl[10];
 sort_idxtbl(vecai.begin(), vecai.end(), aidxtbl);

 for (int i=0; i<10; i++)
 cout << “i=“ << i
 << “, aidxtbl[i]=“ << aidxtbl[i]
 << “, ai[aidxtbl[i]]=“ << ai[aidxtbl[i]]
 << endl;
 cout << “#################” << endl;
}

 Solution

Clarity: A Short Sermon
1. Who benefits from clear, understandable code?

In short, just about everyone benefits.

First, clear code is easier to follow while debugging and, for that matter, is less likely
to have as many bugs in the first place, so writing clean code makes your own life
easier even in the very short term. (For a case in point, see the discussion surround-
ing Example 27-2 in Item 27.) Further, when you return to the code a month or a
year later—as you surely will if the code is any good and is actually being used—it’s

248 Style Case Studies

much easier to pick it up again and understand what’s going on. Most programmers
find keeping full details of code in their heads difficult for even a few weeks, espe-
cially after having moved on to other work; after a few months or even a few years,
it’s too easy to go back to your own code and imagine it was written by a stranger—
albeit a stranger who curiously happened to follow your personal coding style.

But enough about selfishness. Let’s turn to altruism: Those who have to maintain
your code also benefit from clarity and readability. After all, to maintain code well
one must first grok the code. “To grok,” as coined by Robert Heinlein, means to com-
prehend deeply and fully; in this case, that includes understanding the internal
workings of the code itself, as well as its side effects and interactions with other sub-
systems. It is altogether too easy to introduce new errors when changing code one
does not fully understand. Code that is clear and understandable is easier to grok,
and therefore, fixes to such code become less fragile, less risky, less likely to have un-
intended side effects.

Most important, however, your end users benefit from clear and understandable
code for all these reasons: Such code is likely to have had fewer initial bugs in the
first place, and it’s likely to have been maintained more correctly without as many
new bugs being introduced.

 Guideline: By default, prefer to write for clarity and correctness first.

Dissecting Index Tables
2. The following code presents an interesting and genuinely useful idiom for creat-

ing index tables into existing containers. For a more detailed explanation, see the
original article [Hicks00].

 Critique this code and identify:

a) Mechanical errors, such as invalid syntax or nonportable conventions.

b) Stylistic improvements that would improve code clarity, reusability, and
maintainability.

Again, let me repeat that which bears repeating: This code presents an interesting
and genuinely useful idiom. I’ve frequently found it necessary to access the same
container in different ways, such as using different sort orders. For this reason it can
be useful indeed to have one principal container that holds the data (for example, a
vector<Employee>) and secondary containers of iterators into the main container
that support variant access methods (for example, a set<vector<Employee>::itera-
tor, Funct> where Funct is a functor that compares Employee objects indirectly,

 Item 34: Index Tables 249

yielding a different ordering than the order in which the objects are physically
stored in the vector).

Having said that, style matters too. The original author has kindly allowed me to
use his code as a case in point, and I’m not trying to pick on him here; I’m just
adopting the technique, pioneered long ago by such luminaries as P. J. Plauger, of
expounding coding style guidelines via the dissection and critique of published
code. I’ve critiqued other published material before and have had other people cri-
tique my own, and I’m positive that further dissections will no doubt follow.

Having said all that, let’s see what we might be able to improve in this particular
piece of code.

Correcting Mechanical Errors
a) Mechanical errors, such as invalid syntax or nonportable conventions.

The first area for constructive criticism is mechanical errors in the code, which on
most platforms won’t compile as shown.

#include <algorith>

1. Spell standard headers correctly. Here the header <algorithm> is misspelled as <al-
gorith>. My first guess was that this is probably an artifact of an 8-character file sys-
tem used to test the original code, but even my old version of VC++ on an old ver-
sion of Windows (based on the 8.3 filename system) rejected this code. Anyway, it’s
not standard, and even on hobbled file systems the compiler itself is required to
support any standard long header names, even if it silently maps it onto a shorter
filename (or onto no file at all).

Next, consider:

main()

2. Define main correctly. This unadorned signature for main has never been standard
C++ [C++98], although it is a conforming extension as long as the compiler warns
about it. It used to be valid in pre-1999 C, which had an implicit int rule, but it’s
nonstandard in both C++ (which never had implicit int) and C99 [C99] (which as far
as I can tell didn’t merely deprecate implicit int, but actually removed it outright). In
the C++ standard, see:

• §3.6.1/2: portable code must define main as either int main() or int main(int,
char*[])

• §7/7 footnote 78, and §7.1.5/2 footnote 80: implicit int banned

• Annex C (Compatibility), comment on 7.1.5/4: explicitly notes that bare
main() is invalid C++, and must be written int main()

250 Style Case Studies

 Guideline: Don’t rely on implicit int; it’s not standard-conforming portable
C++. In particular “void main()” or just “main()” has never been
standard C++, although many compilers still support them as con-
forming extensions.

 cout << “#################” << endl;

3. Always #include the headers for the types whose definitions you need. The program
uses cout and endl but fails to #include <iostream>. Why did this probably work
on the original developer’s system? Because C++ standard headers can #include
each other, but unlike C, C++ does not specify which standard headers #include
which other standard headers.

In this case, the program does #include <vector> and <algorithm>, and on the
original system it probably just so happened that one of those headers also hap-
pened to indirectly #include <iostream> too. That might work on the library im-
plementation used to develop the original code, and it happens to work on mine too,
but it’s not portable and not good style.

4. Follow the guidelines in Item 36 in More Exceptional C++ [Sutter02] about using
namespaces. Speaking of cout and endl, the program must also qualify them with
std:: or write using std::cout; using std::endl;. Unfortunately it’s still common for au-
thors to forget namespace scope qualifiers—I hasten to point out that this author did
correctly scope vector and sort, which is good.

Improving Style
b) Stylistic improvements that would improve code clarity, reusability, and

maintainability.

Beyond the mechanical errors, there were several things I personally would have
done differently in the code example. First, a couple of comments about the helper
struct:

template <class RAIter>
struct sort_idxtbl_pair
{
 RAIter it;
 int i;

 bool operator<(const sort_idxtbl_pair& s)
 { return (*it) < (*(s.it)); }

 void set(const RAIter& _it, int _i) { it=_it; i=_i; }

 sort_idxtbl_pair() {}
};

 Item 34: Index Tables 251

5. Be const correct. In particular, sort_idxtbl_pair::operator< doesn’t modify *this, so
it ought to be declared as a const member function.

 Guideline: Practice const correctness.

6. Remove redundant code. The program explicitly writes class sort_idxtbl_pair’s de-
fault constructor even though it’s no different from the implicitly generated version.
There doesn’t seem to be much point to this. Also, as long as sort_idxbl_pair is a
struct with public data, having a distinct set operation adds a little syntactic sugar
but because it’s called in only one place the minor extra complexity doesn’t gain
much.

 Guideline: Avoid code duplication and redundancy.

Next, we come to the core function, sort_idxtbl:

template <class RAIter>
void sort_idxtbl(RAIter first, RAIter last, int* pidxtbl)
{
 int iDst = last-first;
 typedef std::vector< sort_idxtbl_pair<RAIter> > V;
 V v(iDst);

 int i=0;
 RAIter it = first;
 V::iterator vit = v.begin();
 for(i=0; it<last; it++, vit++, i++)
 (*vit).set(it,i);

 std::sort(v.begin(), v.end());

 int *pi = pidxtbl;
 vit = v.begin();
 for(; vit<v.end(); pi++, vit++)
 *pi = (*vit).i;
}

7. Choose meaningful and appropriate names. In this case, sort_idxtbl is a misleading
name because the function doesn’t sort an index table… it creates one! On the other
hand, the code gets good marks for using the template parameter name RAIter to
indicate a random-access iterator; that’s what’s required in this version of the code,
so naming the parameter to indicate this is a good reminder.

 Guideline: Choose clear and meaningful names.

252 Style Case Studies

8. Be consistent. In sort_idxtbl, sometimes variables are initialized (or set) in for loop
initialization statements, and sometimes they aren’t. This just makes things harder to
read, at least for me. Your mileage may vary on this one.

9. Remove gratuitous complexity. This function adores gratuitous local variables! It
contains three examples. First, the variable iDst is initialized to last-first and then
used only once; why not just write last-first where it’s used and get rid of clutter?
Second, the vector iterator vit is created where a subscript was already available and
could have been used just as well, and the code would have been clearer. Third, the
local variable it gets initialized to the value of a function parameter, after which the
function parameter is never used; my personal preference in that case is just to use
the function parameter (even if you change its value—that’s okay!) instead of intro-
ducing another name.

10. Reuse Part 1: Reuse more of the standard library. Now, the original program gets
good marks for reusing std::sort—that’s good. But why handcraft that final loop to
perform a copy when std::copy does the same thing? Why reinvent a special-
purpose sort_idxtbl_pair class when the only thing it has that std::pair doesn’t is a
comparison function? Besides being easier, reuse also makes our own code more
readable. Humble thyself and reuse!

 Guideline: Know about and (re)use the standard library’s facilities wherever
appropriate instead of hand-rolling your own.

11. Reuse Part 2: Kill two birds with one stone by making the implementation itself more re-
usable. Of the original implementation, nothing is directly reusable other than the
function itself. The helper sort_idxtbl_pair class is hardwired for its purpose and is
not independently reusable.

12. Reuse Part 3: Improve the signature. The original signature

template <class RAIter>
void sort_idxtbl(RAIter first, RAIter last, int* pidxtbl)

takes a bald int* pointer to the output area, which I generally try to avoid in favor of
managed storage (say, a vector). But at the end of the day the user ought to be able
to call sort_idxtbl and put the output into a plain array or a vector or anything else.
Well, the requirement “be able to put the output into any container” simply cries out
for an iterator, doesn’t it? (See also Items 5 and 6.)

template< class RAIn, class Out >
void sort_idxtbl(RAIn first, RAIn last, Out result)

 Item 34: Index Tables 253

 Guideline: Widen the reusability of your generic components by not hard-
coding types that don’t need to be hardcoded.

13. Reuse Part 4, or Prefer comparing iterators using !=: When comparing iterators, al-
ways use != (which works for all kinds of iterators) instead of < (which works only
for random-access iterators), unless of course you really need to use < and only in-
tend to support random-access iterators. The original program uses < to compare
the iterators it’s given to work on, which is fine for random-access iterators, which
was the program’s initial intent: to create indexes into vectors and arrays, both of
which support random-access iteration. But there’s no reason we might not want to
do exactly the same thing for other kinds of containers, like lists and sets, that don’t
support random-access iteration, and the only reason the original code won’t work
for such containers is that it uses < instead of != to compare iterators.

As Scott Meyers puts it eloquently in Item 32 of [Meyers96], “Program in the future
tense.” He elaborates:

Good software adapts well to change. It accommodates new features, it ports to
new platforms, it adjusts to new demands, it handles new inputs. Software this
flexible, this robust, and this reliable does not come about by accident. It is de-
signed and implemented by programmers who conform to the constraints of today
while keeping in mind the probable needs of tomorrow. This kind of software—
software that accepts change gracefully—is written by people who program in the
future tense.

 Guideline: Prefer to compare iterators using !=, not <.

14. Prefer preincrement unless you really need the old value. Here, for the iterators, writ-
ing preincrement (++i) should habitually be preferred over writing postincrement
(i++); see [Sutter00, Item 39]. True, that might not make a material difference in the
original code because vector<T>::iterator might be a cheap-to-copy T* (although it
might not be, particularly on checked STL implementations), but if we implement
point 13 we may no longer be limited to just vector<T>::iterators, and most other it-
erators are of class type—perhaps often still not too expensive to copy, but why in-
troduce this possible inefficiency needlessly?

 Guideline: Prefer to write preincrement rather than postincrement, unless
you really need to use the previous value.

That covers most of the important issues. There are other things we could critique
but that I didn’t consider important enough to call attention to here; for example,

254 Style Case Studies

production code should have comments that document each class’s and function’s
purpose and semantics, but that doesn’t apply to code accompanying magazine arti-
cles where the explanation is typically written in better English and in greater detail
than code comments have any right to expect.

I’m deliberately not critiquing the mainline for style (as opposed to the mechanical
errors already noted that would cause the mainline to fail to compile), because, after
all, this particular mainline is only meant to be a demonstration harness to help
readers of the magazine article see how the index table apparatus is meant to work,
and it’s the index table apparatus that’s the intended focus.

Summary
Let’s preserve the original code’s basic interface choice instead of straying far afield
and proposing alternate design choices.40 Limiting our critique just to correcting the
code for mechanical errors and basic style, then, consider the three alternative im-
proved versions below. Each has its own benefits, drawbacks, and style preferences
as explained in the accompanying comments. What all three versions have in com-
mon is that they are clearer, more understandable, and more portable code—and
that ought to count for something, in your company and in mine.

// An improved version of the code originally published in [Hicks00].
//
#include <vector>
#include <map>
#include <algorithm>

// Solution 1 does some basic cleanup but still preserves the general structure
// of the original’s approach. We’re down to 17 lines (even if you count “public:”
// and “private:” as lines), where the original had 23.
//
namespace Solution1 {
 template<class Iter>
 class sort_idxtbl_pair {
 public:
 void set(const Iter& it, int i) { it_ = it; i_ = i; }

 bool operator<(const sort_idxtbl_pair& other) const
 { return *it_ < *other.it_; }

 operator int() const { return i_; }

40 The original author also reports separate feedback from another reader demonstrating another
elegant, but substantially different, approach: He creates a containerlike object that wraps the origi-
nal container, including its iterators, and allows iteration using the alternative ordering.

 Item 34: Index Tables 255

 private:
 Iter it_;
 int i_;
 };

 // This function is where most of the clarity savings came from; it has 5 lines,
 // where the original had 13. After each code line, I’ll show the corresponding
 // original code for comparison. Prefer to write code that is clear and concise,
 // not unnecessarily complex or obscure!
 //
 template<class IterIn, class IterOut>
 void sort_idxtbl(IterIn first, IterIn last, IterOut out) {
 std::vector<sort_idxtbl_pair<IterIn> > v(last-first);
 // int iDst = last-first;
 // typedef std::vector< sort_idxtbl_pair<RAIter> > V;
 // V v(iDst);

 for(int i=0; i < last-first; ++i)
 v[i].set(first+i, i);
 // int i=0;
 // RAIter it = first;
 // V::iterator vit = v.begin();
 // for (i=0; it<last; it++, vit++, i++)
 // (*vit).set(it,i);

 std::sort(v.begin(), v.end());
 // std::sort(v.begin(), v.end());

 std::copy(v.begin(), v.end(), out);
 // int *pi = pidxtbl;
 // vit = v.begin();
 // for (; vit<v.end(); pi++, vit++)
 // *pi = (*vit).i;
 }
}

// Solution 2 uses a pair instead of reinventing a pair-like helper class. Now we’re
// down to 13 lines, from the original 23. Of the 14 lines, 9 are purpose-specific,
// and 5 are directly reusable in other contexts.
//
namespace Solution2 {
 template<class T, class U>
 struct ComparePair1stDeref {
 bool operator()(const std::pair<T,U>& a, const std::pair<T,U>& b) const
 { return *a.first < *b.first; }
 };

256 Style Case Studies

 template<class IterIn, class IterOut>
 void sort_idxtbl(IterIn first, IterIn last, IterOut out) {
 std::vector< std::pair<IterIn,int> > s(last-first);
 for(int i=0; i < s.size(); ++i)
 s[i] = std::make_pair(first+i, i);

 std::sort(s.begin(), s.end(), ComparePair1stDeref<IterIn,int>());

 for(int i=0; i < s.size(); ++i, ++out)
 *out = s[i].second;
 }
}

// Solution 3 just shows a couple of alternative details—it uses a map to avoid a
// separate sorting step, and it uses std::transform() instead of a handcrafted loop.
// Here we still have 15 lines, but more are reusable. This version uses more space
// overhead and probably more time overhead too, so I prefer Solution 2, but this
// is an example of finding alternative approaches to a problem.
//
namespace Solution3 {
 template<class T>
 struct CompareDeref {
 bool operator()(const T& a, const T& b) const
 { return *a < *b; }
 };

 template<class T, class U>
 struct Pair2nd {
 const U& operator()(const std::pair<T,U>& a) const { return a.second; }
 };

 template<class IterIn, class IterOut>
 void sort_idxtbl(IterIn first, IterIn last, IterOut out) {
 std::multimap<IterIn, int, CompareDeref<IterIn> > v;
 for(int i=0; first != last; ++i, ++first)
 v.insert(std::make_pair(first, i));

 std::transform(v.begin(), v.end(), out, Pair2nd<IterIn const,int>());
 }
}

// I left the test harness essentially unchanged, except to demonstrate putting
// the output in an output iterator (instead of necessarily an int*) and using the
// source array directly as a container.
//
#include <iostream>

int main() {

 Item 34: Index Tables 257

 int ai[10] = { 15,12,13,14,18,11,10,17,16,19 };

 std::cout << “#################” << std::endl;
 std::vector<int> aidxtbl(10);

 // use another namespace name to test a different solution
 Solution3::sort_idxtbl(ai, ai+10, aidxtbl.begin());

 for(int i=0; i<10; ++i)
 std::cout << “i=“ << i
 << “, aidxtbl[i]=“ << aidxtbl[i]
 << “, ai[aidxtbl[i]]=“ << ai[aidxtbl[i]]
 << std::endl;
 std::cout << “#################” << std::endl;
}

258 Style Case Studies

35. Generic Callbacks
 Part of the allure of generic code is its usability and reusability in as many kinds of situa-

tions as reasonably possible. How can the simple facility presented in the cited article be sty-
listically improved, and how can it be made more useful than it is and really qualify as
generic and widely usable code?

JG Question
1. What qualities are desirable in designing and writing generic facilities? Explain.

Guru Question

2. The following code presents an interesting and genuinely useful idiom for wrap-
ping callback functions. For a more detailed explanation, see the original article.
[Kalev01]

 Critique this code and identify:

a) Stylistic choices that could be improved to make the design better for more
idiomatic C++ usage.

b) Mechanical limitations that restrict the usefulness of the facility.

template < class T, void (T::*F)() >
class callback
{
public:
 callback(T& t) : object(t) {} // assign actual object to T
 void execute() {(object.*F)();} // launch callback function

private:
 T& object;
};

Difficulty: 5

 Item 35: Generic Callbacks 259

 Solution

Generic Quality
1. What qualities are desirable in designing and writing generic facilities? Explain.

Generic code should above all be usable. That doesn’t mean it has to include all op-
tions up to and including the kitchen sink. What it does mean is that generic code
ought to make a reasonable and balanced effort to avoid at least three things:

1. Avoid undue type restrictions. For example, are you writing a generic container?
Then it’s perfectly reasonable to require that the contained type have, say, a copy
constructor and a nonthrowing destructor. But what about a default constructor or
an assignment operator? Many useful types that users might want to put into our
container don’t have a default constructor, and if our container uses it, then we’ve
eliminated such a type from being used with our container. That’s not very generic.
(For a complete example, see Item 11 of Exceptional C++ [Sutter00].)

2. Avoid undue functional restrictions. If you’re writing a facility that does X and Y,
what if some user wants to do Z, and Z isn’t so much different from Y? Sometimes
you’ll want to make your facility flexible enough to support Z; sometimes you
won’t. Part of good generic design is choosing the ways and means by which your
facility can be customized or extended. That this is important in generic design
should hardly be a surprise, though, because the same principle applies to object-
oriented class design.

Policy-based design is one of several important techniques that allow “pluggable”
behavior with generic code. For examples of policy-based design, see any of several
chapters in [Alexandrescu01]; the SmartPtr and Singleton chapters are a good place
to start.

This leads to a related issue:

3. Avoid unduly monolithic designs. This important issue doesn’t arise as directly in
our style example under consideration below, and it deserves some dedicated con-
sideration in its own right, hence it gets not only its own Item, but its own conclud-
ing miniseries of Items: see Items 37 through 40.

In these three points, you’ll note the recurring word “undue.” That means just what
it says: Good judgment is needed when deciding where to draw the line between
failing to be sufficiently generic (the “I’m sure nobody would want to use it with
anything but char” syndrome) on the one hand and overengineering (the “what if
someday someone wants to use this toaster-oven LED display routine to control the
booster cutoff on an interplanetary spacecraft?” misguided fantasy) on the other.

260 Style Case Studies

Dissecting Generic Callbacks
2. The following code presents an interesting and genuinely useful idiom for wrap-

ping callback functions. For a more detailed explanation, see the original article.
[Kalev01]

Here again is the code:

template < class T, void (T::*F)() >
class callback
{
public:
 callback(T& t) : object(t) {} // assign actual object to T
 void execute() { (object.*F)(); } // launch callback function

private:
 T& object;
};

Now, really, how many ways are there to go wrong in a simple class with just two
one-liner member functions? Well, as it turns out, its extreme simplicity is part of the
problem. This class template doesn’t need to be heavyweight, not at all, but it could
stand to be a little less lightweight.

Improving Style
 Critique this code and identify:

a) Stylistic choices that could be improved to make the design better for more
idiomatic C++ usage.

How many did you spot? Here’s what I came up with:

4. The constructor should be explicit. The author probably didn’t mean to provide an
implicit conversion from T to callback<T>. Well-behaved classes avoid creating the
potential for such problems for their users. So what we really want is more like this:

 explicit callback(T& t) : object(t) {} // assign actual object to T

While we’re already looking at this particular line, there’s another stylistic issue
that’s not about the design per se but about the description:

 Guideline: Prefer making constructors explicit unless you really intend to
enable type conversions.

(Nit) The comment is wrong. The word “assign” in the comment is incorrect and so
somewhat misleading. More correctly, in the constructor, we’re “binding” a T object

 Item 35: Generic Callbacks 261

to the reference and by extension to the callback object. Also, after many rereadings
I’m still not sure what the “to T” part means. So better still would be “bind actual
object.”

 explicit callback(T& t) : object(t) {} // bind actual object

But then, all that comment is saying is what the code already says, which is faintly
ridiculous and a stellar example of a useless comment, so best of all would be:

 explicit callback(T& t) : object(t) {}

5. The execute function should be const. The execute function isn’t doing anything to
the callback<T> object’s state, after all! This is a “back to basics” issue: Const cor-
rectness might be an oldie, but it’s a goodie. The value of const correctness has been
known in C and C++ since at least the early 1980s, and that value didn’t just evapo-
rate when we clicked over to the new millennium and started writing lots of tem-
plates.

 void execute() const { (object.*F)(); } // launch callback function

 Guideline: Be const correct.

While we’re already beating on the poor execute function, there’s an arguably more
serious idiomatic problem:

6. (Idiom) And the execute function should be spelled operator(). In C++, it’s idiomatic
to use the function-call operator for executing a function-style operation. Indeed,
then the comment, already somewhat redundant, becomes completely so and can be
removed without harm because now our code is already idiomatically commenting
itself. To wit:

 void operator()() const { (object.*F)(); } // launch callback function

“But,” you might be wondering, “if we provide the function-call operator, isn’t this
some kind of function object?” That’s an excellent point, which leads us to observe
that, as a function object, maybe callback instances ought to be adaptable too.

 Guideline: Provide operator() for idiomatic function objects rather than pro-
viding a named execute function.

Pitfall: (Idiom) Should this callback be derived from std::unary_function? See Item 36 in
[Meyers01] for a more detailed discussion about adaptability and why it’s a Good
Thing in general. Alas, here, there are two excellent reasons why callback should not
be derived from std::unary_function, at least not yet:

262 Style Case Studies

• It’s not a unary function. It takes no parameter, and unary functions take a pa-
rameter. (No, void doesn’t count.)

• Deriving from std::unary_function isn’t going to be extensible anyway. Later
on, we’re going to see that callback perhaps ought to work with other kinds of
function signatures too, and depending on the number of parameters in-
volved, there might well be no standard base class to derive from. For exam-
ple, if we supported callback functions with three parameters, we have no
std::ternary_function to derive from.

Deriving from std::unary_function or std::binary_function is a convenient way to
give callback a handful of important typedefs that binders and similar facilities of-
ten rely upon, but it matters only if you’re going to use the function objects with
those facilities. Because of the nature of these callbacks and how they’re intended to
be used, it’s unlikely that this will be needed. (If in the future it turns out that they
ought to be usable this way for the common one- and two-parameter cases, then the
one- and two-parameter versions we’ll mention later can be derived from
std::unary_function and std::binary_function, respectively.)

Correcting Mechanical Errors and Limitations
b) Mechanical limitations that restrict the usefulness of the facility.

7. Consider making the callback function a normal parameter, not a template parameter.
Non-type template parameters are rare in part because there’s rarely much benefit in
so strictly fixing a type at compile time. That is, we could instead have:

template < class T >
class callback {
public:
 typedef void (T::*Func)();

 callback(T& t, Func func) : object(t), f(func) {} // bind actual object
 void operator()() const { (object.*f)(); } // launch callback function

private:
 T& object;
 Func f;
};

Now the function to be used can vary at run-time, and it would be simple to add a
member function that allowed the user to change the function that an existing call-
back object was bound to, something not possible in previous versions of the code.

 Item 35: Generic Callbacks 263

 Guideline: It’s usually a good idea to prefer making non-type parameters into
normal function parameters, unless they really need to be tem-
plate parameters.

8. Enable containerization. If a program wants to keep one callback object for later use,
it’s likely to want to keep more of them. What if it wants to put the callback objects
into a container, such as a vector or a list? Currently that’s not possible, because call-
back objects aren’t assignable—they don’t support operator=. Why not? Because
they contain a reference, and once that reference is bound during construction, it can
never be rebound to something else.

Pointers, however, have no such compunction and are quite happy to point at what-
ever you’d ask them to. In this case it’s perfectly safe for callback instead to store a
pointer, not a reference, to the object it’s to be called on and then to use the default
compiler-generated copy constructor and copy assignment operator:

template < class T >
class callback {
public:
 typedef void (T::*Func)();

 callback(T& t, Func func) : object(&t), f(func) {} // bind actual object
 void operator()() const { (object->*f)(); } // launch callback function

private:
 T* object;
 Func f;
};

Now it’s possible to have, for example, a list< callback< Widget, &Widget::Some-
Func > >.

 Guideline: Prefer to make your objects compatible with containers. In par-
ticular, to be put into a standard container, an object must be as-
signable.

“But wait,” you might wonder at this point, “if I could have that kind of a list, why
couldn’t I have a list of arbitrary kinds of callbacks of various types, so that I can
remember them all and go execute them all when I want to?” Indeed, you can, if you
add a base class:

9. Enable polymorphism: Provide a common base class for callback types. If we want to let
users have a list<callbackbase*> (or, better, a list< shared_ptr<callbackbase> >) we

264 Style Case Studies

can do it by providing just such a base class, which by default happens to do noth-
ing in its operator():

class callbackbase {
public:
 virtual void operator()() const { };
 virtual ~callbackbase() = 0;
};

callbackbase::~callbackbase() { }

template < class T >
class callback : public callbackbase {
public:
 typedef void (T::*Func)();

 callback(T& t, Func func) : object(&t), f(func) {} // bind actual object
 void operator()() const { (object->*f)(); } // launch callback function

private:
 T* object;
 Func f;
};

Now anyone who wants to can keep a list<callbackbase*> and polymorphically in-
voke operator() on its elements. Of course, a list< shared_ptr<callback> > would be
even better; see [Sutter02b].

Note that adding a base class is a tradeoff, but only a small one: We’ve added the
overhead of a second indirection, namely a virtual function call, when the callback is
triggered through the base interface. But that overhead actually manifests only when
you use the base interface. Code that doesn’t need the base interface doesn’t pay for
it.

 Guideline: Consider enabling polymorphism so that different instantiations
of your class template can be used interchangeably, if that makes
sense for your class template. If it does, do it by providing a
common base class shared by all instantiations of the class tem-
plate.

10. (Idiom, Tradeoff) There could be a helper make_callback function to aid in type deduc-
tion. After a while, users may get tired of explicitly specifying template parameters
for temporary objects:

 Item 35: Generic Callbacks 265

list< callback< Widget > > l;
l.push_back(callback<Widget>(w, &Widget::SomeFunc));

Why write Widget twice? Doesn’t the compiler know? Well, no, it doesn’t, but we
can help it to know in contexts where only a temporary object like this is needed. In-
stead, we could provide a helper so that they need only type:

list< callback< Widget > > l;
l.push_back(make_callback(w, &Widget::SomeFunc));

This make_callback works just like the standard std::make_pair. The missing
make_callback helper should be a function template, because that’s the only kind of
template for which a compiler can deduce types. Here’s what the helper looks like:

template<typename T >
callback<T> make_callback(T& t, void (T::*f) ()) {
 return callback<T>(t, f);
}

11. (Tradeoff) Add support for other callback signatures. I’ve left the biggest job for last.
As the Bard might have put it, “There are more function signatures in heaven and
earth, Horatio, than are dreamt of in your void (T::*F) ()!”

 Guideline: Avoid limiting your template; avoid hardcoding for specific types
or for less general types.

If enforcing that signature for callback functions is sufficient, then by all means stop
right there. There’s no sense in complicating a design if we don’t need to—for com-
plicate it we will, if we want to allow for more function signatures!

I won’t write out all the code, because it’s significantly tedious. (If you really want to
see code this repetitive, or you’re having trouble with insomnia, see books and arti-
cles like [Alexandrescu01] for similar examples.) What I will do is briefly sketch the
main things you’d have to support and how you’d have to support them:

First, what about const member functions? The easiest way to deal with this one is to
provide a parallel callback that uses the const signature type, and in that version,
remember to take and hold the T by reference or pointer to const.

Second, what about non-void return types? The simplest way to allow the return
type to vary is by adding another template parameter.

Third, what about callback functions that take parameters? Again, add template pa-
rameters, remember to add parallel function parameters to operator(), and stir well.

266 Style Case Studies

Remember to add a new template to handle each potential number of callback ar-
guments.

Alas, the code explodes, and you have to do things like set artificial limits on the
number of function parameters that callback supports. Perhaps in a future C++0x
language we’ll have features like template “varargs” that will help to deal with this,
but not today.

Summary
Putting it all together, and making some purely stylistic adjustments like using
typename consistently and naming conventions and whitespace conventions that I
happen to like better, here’s what we get:

class CallbackBase {
public:
 virtual void operator()() const { };
 virtual ~CallbackBase() = 0;
};

CallbackBase::~CallbackBase() { }

template<typename T>
class Callback : public CallbackBase {
public:
 typedef void (T::*F)();

 Callback(T& t, F f) : t_(&t), f_(f) { }
 void operator()() const { (t_->*f_)(); }

private:
 T* t_;
 F f_;
};

template<typename T>
Callback<T> make_callback(T& t, void (T::*f) ()) {
 return Callback<T>(t, f);
}

 Item 36: Construction Unions 267

36. Construction Unions
 No, this Item isn’t about organizing carpenters and bricklayers. Rather, it’s about deciding

between what’s cool and what’s uncool, good motivations gone astray, and the consequences
of subversive activities carried on under the covers. It’s about getting around the C++ rule of
using constructed objects as members of unions.

JG Questions
1. What are unions, and what purpose do they serve?

2. What kinds of types cannot be used as members of unions? Why do these limita-
tions exist? Explain.

Guru Questions
3. The article [Manley02] cites the motivating case of writing a scripting language:

Say that you want your language to support a single type for variables that at
various times can hold an integer, a string, or a list. Creating a union { int i;
list<int> l; string s; }; doesn’t work for the reasons covered in Questions 1 and 2.
The following code presents a workaround that attempts to support allowing any
type to participate in a union. (For a more detailed explanation, see the original
article.)

 Critique this code and identify:

a) Mechanical errors, such as invalid syntax or nonportable conventions.

b) Stylistic improvements that would improve code clarity, reusability, and
maintainability.

#include <list>
#include <string>
#include <iostream>
using namespace std;

#define max(a,b) (a)>(b)?(a):(b)

typedef list<int> LIST;
typedef string STRING;

struct MYUNION {
 MYUNION() : currtype(NONE) {}
 ~MYUNION() {cleanup();}

 enum uniontype {NONE,_INT,_LIST,_STRING};
 uniontype currtype;

Difficulty: 4

268 Style Case Studies

 inline int& getint();
 inline LIST& getlist();
 inline STRING& getstring();

protected:
 union {
 int i;
 unsigned char buff[max(sizeof(LIST),sizeof(STRING))];
 } U;

 void cleanup();
};

inline int& MYUNION::getint()
{
 if(currtype==_INT) {
 return U.i;
 } else {
 cleanup();
 currtype=_INT;
 return U.i;
 } // else
}

inline LIST& MYUNION::getlist()
{
 if(currtype==_LIST) {
 return *(reinterpret_cast<LIST*>(U.buff));
 } else {
 cleanup();
 LIST* ptype = new(U.buff) LIST();
 currtype=_LIST;
 return *ptype;
 } // else
}

inline STRING& MYUNION::getstring()
{
 if(currtype==_STRING) {
 return *(reinterpret_cast<STRING*>(U.buff));
 } else {
 cleanup();
 STRING* ptype = new(U.buff) STRING();
 currtype=_STRING;
 return *ptype;
 } // else
}

 Item 36: Construction Unions 269

void MYUNION::cleanup()
{
 switch(currtype) {
 case _LIST: {
 LIST& ptype = getlist();
 ptype.~LIST();
 break;
 } // case
 case _STRING: {
 STRING& ptype = getstring();
 ptype.~STRING();
 break;
 } // case
 default: break;
 } // switch
 currtype=NONE;
}

4. Show a better way to achieve a generalized variant type, and comment on any
tradeoffs you encounter.

 Solution

Unions Redux
1. What are unions, and what purpose do they serve?

Unions allow more than one object, of either class or built-in type, to occupy the
same space in memory. For example:

// Example 36-1
//
union U {
 int i;
 float f;
};

U u;

u.i = 42; // ok, now i is active
std::cout << u.i << std::endl;

u.f = 3.14f; // ok, now f is active
std::cout << 2 * u.f << std::endl;

270 Style Case Studies

But only one of the types can be “active” at a time—after all, the storage can hold
only one value at a time. Also, unions support only some kinds of types, which leads
us into the next question:

2. What kinds of types cannot be used as members of unions? Why do these limita-
tions exist? Explain.

From the C++ standard:

An object of a class with a non-trivial constructor, a non-trivial copy constructor,
a non-trivial destructor, or a non-trivial copy assignment operator cannot be a
member of a union, nor can an array of such objects.

In brief, for a class type to be usable in a union, it must meet all the following crite-
ria:

• The only constructors, destructors, and copy assignment operators are the
compiler-generated ones.

• There are no virtual functions or virtual base classes.
• Ditto for all of its base classes and nonstatic members (or arrays thereof).

That’s all, but that sure eliminates a lot of types.

Unions were inherited from C. The C language has a strong tradition of efficiency
and support for low-level close-to-the-metal programming, which has been com-
patibly preserved in C++; that’s why C++ also has unions. On the other hand, the C
language does not have any tradition of language support for an object model sup-
porting class types with constructors and destructors and user-defined copying,
which C++ definitely does; that’s why C++ also has to define what, if any, uses of
such newfangled types make sense with the “oldfangled” unions and do not violate
the C++ object model including its object lifetime guarantees.

If C++’s restrictions on unions did not exist, Bad Things could happen. For example,
consider what could happen if the following code were allowed:

// Example 36-2: Not standard C++ code, but what if it were allowed?
//
void f() {
 union IllegalImmoralAndFattening {
 std::string s;
 std::auto_ptr<int> p;
 };

 IllegalImmoralAndFattening iiaf;

 iiaf.s = “Hello, world”; // has s’s constructor run?
 iiaf.p = new int(4); // has p’s constructor run?
} // will s get destroyed? should it be? will p get destroyed? should it be?

 Item 36: Construction Unions 271

As the comments indicate, serious problems would exist if this were allowed. To
avoid further complicating the language by trying to craft rules that at best might
only partly patch up a few of the problems, the problematic operations were simply
banished.

But don’t think that unions are only a holdover from earlier times. Unions are per-
haps most useful for saving space by allowing data to overlap, and this is still desir-
able in C++ and in today’s modern world. For example, some of the most advanced
C++ standard library implementations in the world now use just this technique for
implementing the “small string optimization,” a great optimization alternative that
reuses the storage inside a string object itself. Here’s the idea: For large strings, space
inside the string object stores the usual pointer to the dynamically allocated buffer
and housekeeping information like the size of the buffer; for small strings, however,
the same space is instead reused to store the string contents directly and completely
avoid any dynamic memory allocation. For more about the small string optimiza-
tion (and other string optimizations and pessimizations in considerable depth), see
Items 13 through 16 in More Exceptional C++ [Sutter02]; see also the discussion of
current commercial std::string implementations in [Meyers01].

Dissecting Construction Unions
3. The article [Manley02] cites the motivating case of writing a scripting language:

Say that you want your language to support a single type for variables that at
various times can hold an integer, a string, or a list. Creating a union { int i;
list<int> l; string s; }; doesn’t work for the reasons covered in Questions 1 and 2.
The following code presents a workaround that attempts to support allowing
any type to participate in a union. (For a more detailed explanation, see the
original article.)

On the plus side, the cited article addresses a real problem, and clearly much effort
has been put into coming up with a good solution. Unfortunately, from well-
intentioned beginnings, more than one programmer has gone badly astray.

The problems with the design and the code fall into three major categories: legality,
safety, and morality.

 Critique this code and identify:

a) Mechanical errors, such as invalid syntax or nonportable conventions.

b) Stylistic improvements that would improve code clarity, reusability, and
maintainability.

The first overall comment that needs to be made is that the fundamental idea behind
this code is not legal in standard C++. The original article summarizes the key idea:

272 Style Case Studies

The idea is that instead of declaring object members, you instead declare a raw
buffer [non-dynamically, as a char array member inside the object pretending to
act like a union] and instantiate the needed objects on the fly [by in-place construc-
tion].—[Manley02]

The idea is common, but unfortunately it is also unsound.

Allocating a buffer of one type and then using casts to poke objects of another type
in and out, is nonconforming and nonportable because buffers that are not dy-
namically allocated (i.e., that are not allocated via malloc or new) are not guaranteed
to be correctly aligned for any other type than the one with which they were origi-
nally declared. Even if this technique happens to accidentally work for some types
on someone’s current compiler, there’s no guarantee it will continue to work for
other types or for the same types in the next version of the same compiler. For more
details and some directly related discussion, see Item 30 in Exceptional C++ [Sut-
ter00], notably the sidebar titled “Reckless Fixes and Optimizations, and Why
They’re Evil.” See also the alignment discussion in [Alexandrescu02].

For C++0x, the standards committee is considering adding alignment aids to the
language specifically to enable techniques that rely on alignment like this, but that’s
all still in the future. For now, to make this work reasonably reliably even some of
the time, you’d have to do one of the following:

• Rely on the max_align hack (see [Manley02] which footnotes the max_align
hack, or do a Google search for max_align).

• Rely on nonstandard extensions like Gnu’s __alignof__ to make this work re-
liably on a particular compiler that supports such an extension. (Even though
Gnu provides an ALIGNOF macro intended to work more reliably on other
compilers, it too is admitted hackery that relies on the compiler’s laying out
objects in certain ways and making guesses based on offsetof inquiries, which
might often be a good guess but is not guaranteed by the standard.)

You could work around this by dynamically allocating the array using malloc or
new, which would guarantee that the char buffer is suitably aligned for an object of
any type, but that would still be a bad idea (it’s still not type-safe) and it would de-
feat the potential efficiency gains that the original article was aiming for as part of its
original motivation. An alternative and correct solution would be to use boost::any
(see below), which incurs a similar allocation/indirection overhead but is at least
both safe and correct; more about that later on.

Attempts to work against the language, or to make the language work the way we
want it to work instead of the way it actually does work, are often questionable and
should be a big red flag. In the Exceptional C++ [Sutter00] sidebar cited earlier, while

 Item 36: Construction Unions 273

in an ornery mood, I also accused a similar technique of “just plain wrongheaded-
ness” followed by some pretty strong language. There can still be cases where it
could be reasonable to use constructs that are known to be nonportable but okay in a
particular environment (in this case, perhaps using the max_align hack), but even
then I would argue that that fact should be noted explicitly and, further, that it still
has no place in a general piece of code recommended for wide use.

Into the Code
Let’s now consider the code:

#include <list>
#include <string>
#include <iostream>
using namespace std;

Always include necessary headers. Because new is going to be used below, we need
to also #include <new>. (Note: The <iostream> header is okay; later in the original
code, not shown here, was a test harness that emitted output using iostreams.)

#define max(a,b) (a)>(b)?(a):(b)

typedef list<int> LIST;
typedef string STRING;

struct MYUNION {
 MYUNION() : currtype(NONE) {}
 ~MYUNION() {cleanup();}

The first classic mechanical error here is that MYUNION is unsafe to copy because
the programmer forgot to provide a suitable copy constructor and copy assignment
operator.

MYUNION is choosing to play games that require special work to be done in the
constructor and destructor, so these functions are provided explicitly as shown;
that’s fine as far as it goes. But it doesn’t go far enough, because the same games re-
quire special work in the copy constructor and copy assignment operator, which are
not provided explicitly. That’s bad because the default compiler-generated copying
operations do the wrong thing; namely, they copy the contents bitwise as a char ar-
ray, which is likely to have most unsatisfactory results, in most cases leading straight
to memory corruption. Consider the following code:

// Example 36-3: MYUNION is unsafe for copying
//
{
 MYUNION u1, u2;
 u1.getstring() = “Hello, world”;
 u2 = u1; // copies the bits of u1 to u2
} // oops, double delete of the string (assuming the bitwise copy even made sense)

274 Style Case Studies

 Guideline: Observe the Law of the Big Three [Cline99]: If a class needs a cus-
tom copy constructor, copy assignment operator, or destructor, it
probably needs all three.

Passing on from the classic mechanical error, we next encounter a duo of classic sty-
listic errors:

 enum uniontype {NONE,_INT,_LIST,_STRING};
 uniontype currtype;

 inline int& getint();
 inline LIST& getlist();
 inline STRING& getstring();

There are two stylistic errors here. First, this struct is not reusable because it is hard-
coded for specific types. Indeed, the original article recommended hand-coding such
a struct every time it was needed. Second, even given its limited intended useful-
ness, it is not very extensible or maintainable. We’ll return to this frailty again later,
once we’ve covered more of the context.

 Guideline: Avoid hard-wiring information that needlessly makes code more
brittle and limits flexibility.

There are also two mechanical problems. The first is that currtype is public for no
good reason; this violates good encapsulation and means any user can freely mess
with the type flag, even by accident. The second mechanical problem concerns the
names used in the enumeration; I’ll cover that in its own section, “Underhanded
Names,” later on.

protected:

Here we encounter another mechanical error: The internals ought to be private, not
protected. The only reason to make them protected would be to make the internals
available to derived classes, but there had better not be any derived classes because
MYUNION is unsafe to derive from for several reasons—not least because of the
murky and abstruse games it plays with its internals and because it lacks a virtual
destructor.

 Guideline: Always make all data members private. The only exception is the
case of a C-style struct which isn’t intended to encapsulate any-
thing and where all members are public.

 Item 36: Construction Unions 275

 union {
 int i;
 unsigned char buff[max(sizeof(LIST),sizeof(STRING))];
 } U;

 void cleanup();
};

That’s it for the main class definition. Moving on, consider the three parallel acces-
sor functions:

inline int& MYUNION::getint()
{
 if(currtype==_INT) {
 return U.i;
 } else {
 cleanup();
 currtype=_INT;
 return U.i;
 } // else
}

inline LIST& MYUNION::getlist()
{
 if(currtype==_LIST) {
 return *(reinterpret_cast<LIST*>(U.buff));
 } else {
 cleanup();
 LIST* ptype = new(U.buff) LIST();
 currtype=_LIST;
 return *ptype;
 } // else
}

inline STRING& MYUNION::getstring()
{
 if(currtype==_STRING) {
 return *(reinterpret_cast<STRING*>(U.buff));
 } else {
 cleanup();
 STRING* ptype = new(U.buff) STRING();
 currtype=_STRING;
 return *ptype;
 } // else
}

276 Style Case Studies

A minor nit: The // else comments add nothing. It’s unfortunate that the only com-
ments in the code are useless ones.

 Guideline: Write (only) useful comments. Never write comments that repeat
the code; instead, write comments that explain the code and the
reasons why you wrote it that way.

More seriously, there are three major problems here. The first is that the functions
are not written symmetrically, and whereas the first use of a list or a string yields a
default-constructed object, the first use of int yields an uninitialized object. If that is
intended, in order to mirror the ordinary semantics of uninitialized int variables,
then that should be documented; because it is not, the int ought to be initialized. For
example, if the caller accesses getint and tries to make a copy of the (uninitialized)
value, the result is undefined behavior—not all platforms support copying arbitrary
invalid int values, and some will reject the instruction at run-time.

The second major problem is that this code hinders const-correct use. If the code is
really going to be written this way, then at least it would be useful to also provide
const overloads for each of these functions; each would naturally return the same
thing as its non-const counterpart, but by a reference to const.

 Guideline: Practice const-correctness.

The third major problem is that this approach is fragile and brittle in the face of
change. It relies on type switching, and it’s easy to accidentally fail to keep all the
functions in sync when you add or remove new types.

Stop reading here and consider: What do you have to do in the published code if
you want to add a new type? Make as complete a list as you can.

• • • • • •

Are you back? All right, here’s the list I came up with. To add a new type, you have
to remember to:

• Add a new enum value;

• Add a new accessor member;

• Update the cleanup function to safely destroy the new type; and

• Add that type to the max calculation to ensure buff is sufficiently large to
hold the new type too.

 Item 36: Construction Unions 277

If you missed one or more of those, well, that just illustrates how difficult this code
really is to maintain and extend.

Pressing onward, we come to the final function:

void MYUNION::cleanup()
{
 switch(currtype) {
 case _LIST: {
 LIST& ptype = getlist();
 ptype.~LIST();
 break;
 } // case
 case _STRING: {
 STRING& ptype = getstring();
 ptype.~STRING();
 break;
 } // case
 default: break;
 } // switch
 currtype=NONE;
}

Let’s reprise that small commenting nit: The // case and // switch comments add
nothing; it’s unfortunate that the only comments in the code are useless ones. It is
better to have no comments at all than to have comments that are just distractions.

But there’s a larger issue here: Rather than having simply default: break;, it would
be good to make an exhaustive list (including the int type) and signal a logic error if
the type is unknown—perhaps via an assert or a throw std::logic_error(…); .

Again, type switching is purely evil. A Google search for switch C++ Dewhurst will
yield all sorts of interesting references on this topic, including [Dewhurst02]. See
those references for more details if you need more ammo to convince colleagues to
avoid the type-switching beast.

 Guideline: Avoid type switching; prefer type safety.

Underhanded Names
There’s one mechanical problem I haven’t yet covered. This problem first rears its
ugly, unshaven, and unshampooed head in the following line:

 enum uniontype {NONE,_INT,_LIST,_STRING};

278 Style Case Studies

Never, ever, ever create names that begin with an underscore or contain a double
underscore; they’re reserved for your compiler and standard library vendor’s exclu-
sive use so that they have names they can use without tromping on your code.
Tromp on their names, and their names might just tromp back on you!41

Don’t stop! Keep reading! You might have read that advice before. You might even
have read it from me. You might even be tired of it, and yawning, and ready to ig-
nore the rest of this section. If so, this one’s for you, because this advice is not at all
theoretical, and it bites and bites hard in this code.

The enum definition line happens to compile on most of the compilers I tried: Bor-
land 5.5, Comeau 4.3.0.1, gcc 2.95.3 / 3.1.1 / 3.4, Intel 7.0, and Microsoft Visual C++
6.0 through 8.0 (2005) beta. But under two of them—Metrowerks CodeWarrior 8.2
and EDG 3.0.1 used with the Dinkumware 4.0 standard library—the code breaks
horribly.

Under Metrowerks CodeWarrior 8, this one line breaks noisily with the first of 52 er-
rors (that’s not a typo). The 225 lines of error messages (again, that’s not a typo) be-
gin with the following diagnostics, which point straight at one of the commas:

mwcc Compiler:
File: 36.cpp

17: enum uniontype {NONE,_INT,_LIST,_STRING};
Error: ^
identifier expected
mwcc Compiler:
18: uniontype currtype;
Error: ^^^^^^^^^
declaration syntax error

followed by 52 further error messages and 215 more lines. What’s pretty obvious
from the second and later errors is that we should ignore them for now because
they’re just cascades from the first error—because uniontype was never successfully
defined, the rest of the code which uses uniontype extensively will of course break
too.

But what’s up with the definition of uniontype? The indicated comma sure looks
like it’s in a reasonable place, doesn’t it? There’s an identifier happily sitting in front
of it, isn’t there? All becomes clear when we ask the Metrowerks compiler to spit out

41 The more specific rule is that any name with a double underscore anywhere in it like__this or that
starts with an underscore and a capital letter _LikeThis is reserved. You can remember that rule if
you like, but it’s a bit easier to just avoid both leading underscores and double underscores entirely.

 Item 36: Construction Unions 279

the preprocessed output… omitting many many lines, here’s what the compiler fi-
nally sees:

enum uniontype {NONE,_INT, , };

Aha! That’s not valid C++, and the compiler rightly complains about the third
comma because there’s no identifier in front of it.

But what happened to _LIST and _STRING? You guessed it—tromped on and eaten
by the ravenously hungry Preprocessor Beast. It just so happens that Metrowerks’
implementation has macros that happily strip away the names _LIST and _STRING,
which is perfectly legal and legitimate because it (the implementation) is allowed to
own those _Names (as well as other__names).

So Metrowerks’ implementation happens to eat both _LIST and _STRING. That solves
that part of the mystery. But what about EDG’s/Dinkumware’s implementations?
Judge for yourself:

“1.cpp”, line 17: error: trailing comma is nonstandard
 enum uniontype {NONE,_INT,_LIST,_STRING};
 ^

“1.cpp”, line 58: error: expected an expression
 if(currtype==_STRING) {
 ^

“1.cpp”, line 63: error: expected an expression
 currtype=_STRING;
 ^

“1.cpp”, line 76: error: expected an expression
 case _STRING: {
 ^

4 errors detected in the compilation of “36.cpp”.

This time, even without generating and inspecting a preprocessed version of the file,
we can see what’s going on: The compiler is behaving as though the word _STRING
just wasn’t there. That’s because it was—you guessed it—tromped on, not to men-
tion thoroughly chewed up and spat out, by the still-peckish Preprocessor Beast.

I hope that this will convince you that when some of us boring writers natter on
about not using _Names like__these, the problem is far from theoretical, far more
than mere academic tedium. It’s a practical problem indeed, because the naming re-
striction directly affects your relationship with your compiler and standard library
writer. Trespass on their turf, and you might get lucky and remain unscathed; on the
other hand, you might not.

280 Style Case Studies

The C++ landscape is wide open and clear and lets you write all sorts of wonderful
and flexible code and wander in pretty much whatever direction your development
heart desires, including that it lets you choose pretty much whatever names you like
outside of namespace std. But when it comes to names, C++ also has one big fenced-
off grove, surrounded by gleaming barbed wire and signs that say things like “Em-
ployees__Only—Must Have Valid _Badge To Enter Here” and “Violators Might be
Tromped and Eaten.” This is a stellar example of the tromping one gets for disre-
garding the _Warnings.

 Guideline: Never use “underhanded names”—ones that begin with an un-
derscore or that contain a double underscore. They are reserved
for your compiler and standard library implementation.

Toward a Better Way: boost::any

4. Show a better way to achieve a generalized variant type, and comment on any
tradeoffs you encounter.

The original article says:

[Y]ou might want to implement a scripting language with a single variable type
that can either be an integer, a string, or a list.—[Manley02]

This is true, and there’s no disagreement so far. But the article then continues:

A union is the perfect candidate for implementing such a composite type.
—[Manley02]

Rather, the article has served to show in some considerable detail just why a union is
not suitable at all.

But if not a union, then what? One very good candidate for implementing such a
variant type is [Boost]’s any facility, along with its many and any_cast.42 Interestingly,
the complete implementation for the fully general any (covering any num-
ber/combination of types and even some platform-specific #ifdefs) is about the
same amount of code as the sample MYUNION solution hardwired for just the spe-
cial case of the three types int, list<int>, and string—and any is fully general, exten-
sible, and type-safe to boot, and part of a healthy low-cholesterol diet.

There is still a tradeoff, however, and it is this: dynamic allocation. The boost::any
facility does not attempt to achieve the potential efficiency gain of avoiding a dy-
namic memory allocation, which was part of the motivation in the original article.

42 For further discussion of this facility, see [Hyslop01].

 Item 36: Construction Unions 281

Note too that the boost::any dynamic allocation overhead is more than if the original
article’s code was just modified to use (and reuse) a single dynamically allocated
buffer that’s acquired once for the lifetime of MYUNION, because boost::any also
performs a dynamic allocation every time the contained type is changed.

Here’s how the article’s demo harness would look if it instead used boost::any. The
old code that uses the original article’s version of MYUNION is shown in comments
for comparison:

any u; // instead of: MYUNION u;

Instead of a handwritten struct, which has to be written again for each use, just use
any directly. Note that any is a plain class, not a template.

// access union as integer
u = 12345; // instead of: u.getint() = 12345;

The assignment shows any’s more natural syntax.

cout << “int=“ << any_cast<int>(u) << endl; // or just int(u)
 // instead of: cout << “int=“ << u.getint() << endl;

I like any’s cast form better because it’s more general (including that it is a non-
member) and more natural to C++ style; you could also use the less verbose int(u)
without an any_cast if you know the type already. On the other hand, MYUNION’s
get[type] is more fragile, harder to write and maintain, and so forth.

// access union as std::list
u = list<int>();
list<int>& l = *any_cast<list<int> >(&u); // instead of: LIST& list = u.getlist();
l.push_back(5); // same: list.push_back(5);
l.push_back(10); // same: list.push_back(10);
l.push_back(15); // same: list.push_back(15);

I think any_cast could be improved to make it easier to get references, but this isn’t
too bad. (Aside: I’d discourage using list as a variable name when it’s also the name
of a template in scope; too much room for expression ambiguity.)

So far we’ve achieved some typability and readability savings. The remaining differ-
ences are more minor:

list<int>::iterator it = l.begin(); // instead of: LIST::iterator it = list.begin();

while(it != l.end()) {
 cout << “list item=“ << *(it) << endl;
 it++;
} // while

282 Style Case Studies

Pretty much unchanged. I’ve let the original comment stand because it’s not ger-
mane to the side-by-side style comparison with any.

// access union as std::string
u = string(“Hello world!”); // instead of: STRING& str = u.getstring();
 // str = “Hello world!”;

Again, about a wash; I’d say the any version is slightly simpler than the original, but
only slightly.

cout << “string=‘“ << any_cast<string>(u) << “‘“ << endl; // or just “string(u)”
 // instead of: cout << “string=‘“ << str.c_str() << “‘“ << endl;

As before.

Alexandrescu’s Discriminated Unions
Is it possible to fully achieve both of the original goals—safety and avoiding dy-
namic memory—in a conforming standard C++ implementation? That sounds like a
problem that someone like Andrei Alexandrescu would love to sink his teeth into,
especially if it could somehow involve complicated templates. As evidenced in [Al-
exandrescu02], where he describes his discriminated unions (aka Variant) approach,
it turns out that:

• it is (something he would love to tackle), and

• it can (involve weird templates, and just one quote from [Alexandrescu02]
says it all: “Did you know that unions can be templates?”), so

• he does.

In short, by performing heroic efforts to push the boundaries of the language as far
as possible, Alexandrescu’s Variant comes very close to being a truly portable solu-
tion. It falls only slightly short and is probably portable enough in practice even
though it too goes beyond the pale of what the Standard guarantees. Its main prob-
lem is that, even ignoring alignment-related issues, the Variant code is so complex
and advanced that it actually works on very few compilers—in my testing, I only
managed to get it to work with one.

A key part of Alexandrescu’s Variant approach is an attempt to generalize the
max_align idea to make it a reusable library facility that can itself still be written in
conforming standard C++. The reason for wanting this is specifically to deal with
the alignment problems in the code we’ve been analyzing so that a non-dynamic
char buffer can continue to be used in relative safety. Alexandrescu makes heroic ef-
forts to use template metaprogramming to calculate a safe alignment. Will it work
portably? His discussion of this question follows:

 Item 36: Construction Unions 283

Even with the best Align, the implementation above is still not 100-percent port-
able for all types. In theory, someone could implement a compiler that respects the
Standard but still does not work properly with discriminated unions. This is be-
cause the Standard does not guarantee that all user-defined types ultimately have
the alignment of some POD type. Such a compiler, however, would be more of a
figment of a wicked language lawyer’s imagination, rather than a realistic lan-
guage implementation.

[…] Computing alignment portably is hard, but feasible. It never is 100-percent
portable. — [Alexandrescu02]

There are other key features in Alexandrescu’s approach, notably a union template
that takes a typelist template of the types to be contained, visitation support for ex-
tensibility, and an implementation technique that will “fake a vtable” for efficiency
to avoid an extra indirection when accessing a contained type. These parts are more
heavyweight than boost::any but are portable in theory. That “portable in theory”
part is important—as with Andrei’s great work in Modern C++ Design [Alexan-
drescu01], the implementation is so heavy on templates that the code itself contains
comments like, “Guaranteed to issue an internal compiler error on: [various popular
compilers, Metrowerks, Microsoft, Gnu gcc],” and the mainline test harness contains
a commented-out test helpfully labeled “The construct below didn’t work on any
compiler.”

That is Variant’s major weakness: Most real-world compilers don’t even come close
to being able to handle this implementation, and the code should be viewed as im-
portant but still experimental. I attempted to build Alexandrescu’s Variant code us-
ing a variety of compilers: Borland 5.5; Comeau 4.3.0.1; EDG 3.0.1; gcc 2.95, 3.1.1,
and 3.2; Intel 7.0; Metrowerks 8.2; and Microsoft VC++ 6.0, 7.0 (2002), and 7.1 (2003).
As some readers will know, some of the products in that list are very strong and
standards-conforming compilers. None of these compilers could successfully com-
pile Alexandrescu’s template-heavy source as it was provided.

I tried to massage the code by hand to get it through any of the compilers but was
successful only with Microsoft VC++ 7.1 (2003). Most of the compilers didn’t stand a
chance, because they did not have nearly strong enough template support to deal
with Alexandrescu’s code. (Some emitted a truly prodigious quantity of warnings
and errors—Intel 7.0’s response to compiling main.cpp was to spew back an impres-
sive 430K worth—really, nearly half a megabyte—of diagnostic messages.)

I had to make three changes to get the code to compile without errors (although still
with some narrowing-conversion warnings at the highest warning level) under Mi-
crosoft VC++ 7.1 (2003):

284 Style Case Studies

• Added a missing typename in class AlignedPOD.

• Added a missing this-> to make a name dependent in ConverterTo<>::-
Unit<>::DoVisit().

• Added a final newline character at the end of several headers, as required by
the C++ standard (some conforming compilers aren’t strict about this and al-
low the absence of a final newline as a conforming extension; VC++ is stricter
and requires the newline).43

As the author of [Manley02] commented further about tradeoffs in Alexandrescu’s
design:

It doesn’t use dynamic memory, and it avoids alignment issues and type switch-
ing. Unfortunately I don’t have access to a compiler that can compile the code, so I
can’t evaluate its performance vs. myunion and any. Alexandrescu’s approach re-
quires 9 supporting header files totaling ~80KB, which introduces its own set of
maintenance problems. — K. Manley, private communication

Those points are all valid.

I won’t try to summarize Andrei’s three articles further here, but I encourage readers
who are interested in this problem to look them up. They’re available online as indi-
cated in the bibliography.

 Guideline: If you want to represent variant types, for now prefer to use
boost::any (or something equally simple).

Once the compiler you are using catches up (in template support) and the Standard
catches up (in true alignment support) and Variant libraries catch up (in mature im-
plementations), it will be time to consider using Variant-like library tools as type-
safe replacements for unions.

Summary
Even if the design and implementation of MYUNION are lacking, the motivating
problem is both real and worth considering. I’d like to thank Mr. Manley for taking
the time to write his article and raise awareness of the need for variant type support
and Kevlin Henney and Andrei Alexandrescu for contributing their own solutions to
this area. It is a hard enough problem that Manley’s and Alexandrescu’s approaches
are not strictly portable, standards-conforming C++, although Alexandrescu’s Vari-

43 Thanks to colleague Jeff Peil for pointing out this requirement in [C++03] § 2.1/1, which states: “If
a source file that is not empty does not end in a new-line character, or ends in a new-line character
immediately preceded by a backslash character, the behavior is undefined.”

 Item 36: Construction Unions 285

ant makes heroic efforts to get there—Alexandrescu’s design is very close to port-
able in theory, although the implementation is still far from portable in practice be-
cause very few compilers can handle the advanced template code it uses.

For now, an approach like boost::any is the preferred way to go. If in certain places
your measurements tell you that you really need the efficiency or extra features pro-
vided by something like Alexandrescu’s Variant, and you have time on your hands
and some template know-how, you might experiment with writing your own
scaled-back version of the full-blown Variant by applying only the ideas in [Alexan-
drescu02] that are applicable to your situation.

