
3
The Quality Process

Architecture

c h a p t e r

The change from craftsmanship to industrialization does not come with the change to a
new technique. The change must come on a more fundamental level which also includes

the organization of the complete development process.
—Jacobson [1992]

Putting This Chapter in Perspective

The previous chapter focused on creating the right environment, and
eliciting management support for necessary quality-assurance activ-

ities and tasks. A crucial aspect of that quality environment is a quality
process. In this chapter we discuss what constitutes such a process, and
how it helps to enhance quality in a UML-based project. This chapter
does not propose a new process, but discusses the most commonly used
activities and tasks that should be present in all processes. These activi-
ties and tasks and their related roles and deliverables are described with
the aim of improving the discipline in a process, resulting in the en-
hanced quality of UML-based deliverables and, eventually, the software
product.

This chapter starts by mapping the three dimensions of a process (the
what, how, and who as mentioned in Chapter 1) to the corresponding
examples in UML-based projects. Unlike the UML metamodel, though,
we do not yet have an officially standardized process metamodel. There-
fore, to simplify our process discussion, we develop the mapping of the
three dimensions of a process into an unofficial metamodel for processes.

151

Various process-components are then derived from this metamodel. In
identifying and describing the process-components, we consider the most
basic or core elements of a process. Furthermore, we consider in greater
detail the methodological or “how to” aspect of the process-components
(their activities and tasks). Relevant deliverables (“what”) and roles
(“who”) are also mentioned in the process-components. This is followed
by descriptions of the necessity and sufficiency aspects of quality of the
process-components. Malleability is part of process enactment and there-
fore not discussed separately for each process-component. Thus, this
chapter deals with the construction of a process. Once a quality-conscious
process is created, it is ready for deployment and enactment—topics dealt
with in Chapter 4.

The Prime Reader: Process Engineer, Quality Manager

3.1 The Process Backbone
In Sections 1.4.2 and 1.4.3, we considered the three dimensions of a
process and discussed a simple baking example to demonstrate them.
Here, we begin the discussion of a process by extending that example fur-
ther, in order to put it in a process metamodel. This will help us
immensely as we construct the quality software process-components later
in the chapter. We will also use that understanding to facilitate the creation
of a process metamodel.

3.1.1 The Three Dimensions of a Process
The first dimension of a process develops an understanding of the materi-
als on which the actions are performed, as well as the tools that help to
perform those actions. This forms the technological dimension of a
process. In the example of baking a cake, the activities related to this tech-
nological dimension are the evaluation of the dish, the ingredients, and
the equipment. This constitutes the “what” of a process.

The second dimension of a process is the step-by-step guide to “how”
a particular process is conducted. The discipline of conducting a process
comprises a sequence of well-defined activities and tasks that are orga-
nized in a specific order. This discipline, or method of working, constitutes
the methodological dimension of a process. Some activities corresponding

THE QUALITY PROCESS ARCHITECTURE152

to this dimension in the baking example are recipe, cookbook, and timing.
This constitutes the “how” of a process.

The third dimension of a process deals with the people who are going
to take responsibility for the actions, and carry them out by following the
prescribed methodology. An understanding of the dimension of a process
that deals with the people who carry out the tasks, and the environment or
the organizational context in which those tasks are carried out, results in
the sociology of a process—the sociological dimension. In the baking
example, the sociological aspect is comprised of the cook, the kitchen
environment, and the “soft” issue of cake presentation.

Quality assurance, although a part of the overall process, has a sepa-
rate set of deliverables, activities, tasks, and roles. Therefore, these ele-
ments of the process are separately defined—focusing on the quality
management, quality assurance, and quality control suite of activities.
These quality-related activities continue to influence the rest of the
process. They are also self-influencing in the sense that each quality activ-
ity can be used to perform quality assurance on itself. For example, an
activity of workshopping in a quality-assurance part of the process can be
used to verify the process of conducting workshops in a process. Under-
standing these three dimensions is crucial to understanding the logic
behind the metamodel for a process.

3.1.2 “What” of a Process
The “what” of a process is the technological dimension of the process that
answers everything related to the physical things in the process. This pri-
marily includes the raw material with which the process is executed, as
well as the deliverables. It is concerned with the technology of the process.
Many factors from the technological dimension influence the overall out-
put of a process. These factors include the quality of material that is used,
the availability of the material, and the appropriateness of the tools that
are used in the process. Thus, everything that deals with the “what” in a
process plays a part in influencing its deliverable. Examples of some of
these technological factors in a UML-based project are summarized in
Table 3.1.

THE PROCESS BACKBONE 153

3.1.3 “How” of a Process
The “how” or the methodological aspect of the process deals with the
steps you follow to produce the deliverable. It is essentially a glossary of
the distilled experiences of numerous project managers. The “how” of a
process is instrumental in conserving effort when the process is enacted.
Taking the cooking example further, the “how” of the process is the recipe
book for the baking process. A description of the activities and tasks using
suitable notations and language is essential to expressing the “how” of a
process. In the case of UML-based projects, examples of the methodologi-
cal dimension of the process are as follows:

THE QUALITY PROCESS ARCHITECTURE154

Table 3.1 Influence of technology factors (what) in a UML-based project

Model (components, Tool (TogetherSoft or
other deliverables) ROSE, for example)

Availability Problem statements, Is TogetherSoft available,
existing applications, or is ROSE better?
MOPS, MOSS, and MOBS Consider other options

Standards UML as a standard for Compliance of
modeling; documentation TogetherSoft to UML
of project standards standards

Appropriateness Is MOPS the right thing to Is TogetherSoft the right
create a model in problem tool for modeling? (for
space? example, it can’t be used

for a process)

Table 3.2 Influence of methodological factors (how) in a UML-based project

Requirements Modeling Process-component
(and others, as described later in this chapter)

Notations UML notations for models; process notations, as
described later in this chapter.

Language (description) The actual description of the methodological aspect
(the how)—by using the building blocks of a
process. These are the process-components
described later in this chapter.

Documentation This is the accompanying standard for process,
models, the description of how to use them, and
their acceptance criteria.

3.1.4 “Who” of a Process
Simply following a method, as described in a recipe book, does not pro-
duce the desired deliverable. Application of the methodology is the
purview of the person who is applying it. Success depends on the skills
and experience of the person, as well as the environment in which she is
working. Thus skills, experience, and environment form the sociological
factors, or the “who” of a project. These are also called soft factors, as they
deal with the softer or human-relations issues of a process. Refer to Chap-
ter 2 for further discussion of soft (not easily quantifiable) factors.

Skills, one of the factors influencing the final outcome of a process,
require regular training—especially when new ways of doing things and
new equipment become available on a daily basis. Experience comes from
practicing developed skills in a real environment. In addition to the skills
and experience, it is also important to consider the motivational factors and
their influence on the process. These are some of the sociological factors that
continue to influence the final outcome of the project. For a UML-based proj-
ect, some of these sociological factors are summarized in Table 3.3.

THE PROCESS BACKBONE 155

Table 3.3 Influence of sociological factors (who) in a UML-based project

Business Analyst (and so on with other roles)

Skills (role description) The title and description of the role is described here.
Also, the relevant skill set needed for this role is
described here. A business analyst must have good
business domain knowledge, familiarity with UML
notations, comfort with use case and activity dia-
grams, and good interviewing and workshopping
techniques.

Experience A minimum of two years of business analysis
experience might be considered essential for a person
to be able to “get up to speed” in week one of a proj-
ect. However, business analysts with less experience
can also provide significant input into the project,
provided they have had additional training in both
UML techniques and the process.

Environment The sociological factor or e-factor, as described in
Chapter 2, should be handled here. Proper working
environments (desks, phones, email facilities, decent
meeting areas, and so on) are physical considerations
that should be addressed in a UML-based project.

3.2 The Process Metamodel
3.2.1 Describing the Process Metamodel
In order to better understand the three dimensions of the process
described above, and to further describe the various elements of a process
as applicable to UML-based software development, we created the meta-
model shown in Figure 3.1. It is not a formal metamodel, but one created
to explain the process-components described later in this chapter. A meta-
model is a succinct and helpful way of understanding things. For example,
the UML has a metamodel that encapsulates the rules that govern the cre-
ation of UML diagrams. A look at the UML metamodel can tell us how a
class relates to the attributes and operations inside of it.

The purpose of the process metamodel, as shown in Figure 3.1, is to
provide the underlying rules for how the process elements connect to
and relate with each other. Discussions on formalizing a process meta-
model are underway at the OMG. In the meantime, this simplistic process

THE QUALITY PROCESS ARCHITECTURE156

Process-
component SEP

Deliverable
{templates}

Activity Iteration
{1, 2, 3...}

Role

Task

Increment
{first, second, third…}

Lifecycle
{waterfall spiral,

fountain}

<<Instantiates>> <<based on>>

Note 1: This is an informal process metamodel
created by me. It is not an OMG standard!

Note 2: The process-components provide the
building block. They are put together in a SEP.
Eventually, they have to be enacted (enactment is
not shown here).

Figure 3.1 A Quality Software Process Metamodel (using UML notations)

metamodel serves our purpose of discussing and creating a Quality Soft-
ware Process (QSP). The metamodel shown in Figure 3.1 uses the UML’s
class diagram notations, which readers should know. It can be interpreted
as follows:

The process-component is shown as the building block for the process.
This process-component is made up of activities, deliverables, and roles.
Activities associate with tasks. The lifecycle provides the philosophical
background for construction of a process. Examples of software lifecycles
are shown as waterfall, spiral, and fountain models. A Software Engineer-
ing Process (SEP) is based on this lifecycle. In order to create a SEP, the
process-components are instantiated. The SEP is made up of iterations,
which can be 1, 2, 3, and so on. Similarly, a SEP is also made up of incre-
ments, which are first, second, and third (and can be many more). Incre-
ments are made up of iterations.

Each of these elements, appearing in the process metamodel, is fur-
ther described with their corresponding notations.

3.2.2 Process Ingredients
Figure 3.2 shows the notations that are used to describe a process. These
notations represent the elements that constitute the “what,” “how,” and
“who” of the process. Some of these notations are UML-like, such as the
role. Others, like deliverables, are needed to express the process aspect.
These notations are also simple. They can be easily written on white-
boards, facilitating process-based discussion and leaving the opportunity
open for other uses of these process elements, such as describing processes
in a typical business exercise. These process elements can also be inserted
in a process-based CASE tool that in medium to large projects will greatly
ease their enactment. Each of the process elements shown in Figure 3.2 is
described in the subsequent sections.

3.2.3 The Role Element in a Process
The role provides a descriptive profile of the person who is involved in
executing the process. In a quality-conscious process, this role is properly
defined and documented. A person will fulfill the description of the role
provided here. The person playing the given role is responsible for carry-
ing out the process. He or she can also be the recipient of the process. If use
case proponents wish to use the term actor, they may—despite the fine

THE PROCESS METAMODEL 157

difference between actor and role. Some of the characteristics of a good
quality role are:

• The role is well defined and is understood by the person who is
responsible for the role.

• The person playing the role should be able to understand the
activities that he is responsible for.

• The role must be assigned the suite of activities and tasks that the role
player is capable of performing.

• Depending on the scope of the process, the actor element can have
multiple instances. For example, a large development process may
have 20 programmers but a small-scoped process may have only two.

• Examples of roles defined for a UML-based project include Project
Manager, Business Analyst, System Designer and Tester, and
Developer/Programmer.

THE QUALITY PROCESS ARCHITECTURE158

START of
PROCESS-COMPONENT

FLOW OF THE ACTIVITY

ROLE

ACTIVITY

DELIVERABLE
(INTERIM/INPUT)

PROCESS-COMPONENT

ITERATION

END of
PROCESS-COMPONENT

DELIVERABLE

TASK

Figure 3.2 Notations used to describe various process ingredients

3.2.4 The Activity Element in a Process
The activity is the description of the responsibility of the role in the process.
The activity element is shown with an elliptical rectangle, and it describes in
general what the role encompasses. Activities have a sequence or depen-
dencies. Some activities can also be performed in parallel by more than one
role. The activity element in a process is the controlling element for a set of
tasks within the process. Therefore, the activity element on its own doesn’t
have the same concrete existence as the tasks. Actors playing the roles
described above carry out the activities by performing a sequence of tasks
within the activities. Some of the characteristics of an activity element are:

• Activity is the overall controlling element for a set of tasks.

• It is helpful in understanding the flow of events.

• Some activities may begin before others end. Thus, activities may be
carried out in parallel.

• Activities are accomplished by completing the set of tasks which they
encompass.

• It is not essential for all tasks within an activity to be accomplished in
a single iteration.

• Example activities within UML-based projects include storyboarding,
business class modeling, use case modeling, operational analysis,
advanced interface design, quality resourcing, and test execution.

3.2.5 The Task Element in a Process
The task element in a process discipline is the atomic element in the work-
ing of a process. As shown in Figure 3.2, tasks are rectangles with rounded
edges. Tasks are carried out under the umbrella of the encompassing activ-
ity. Thus, the purpose of the well-defined tasks is to complete the activity
under which they fall. Some characteristics of the task element include the
following:

• They are the performing elements in a process; that is, they don’t
need to be further subdivided before they are performed.

• A set of tasks belongs to an activity.

• In the overall process, these tasks are usually carried out in a specific
sequence. The designer of the process usually specifies the sequence.

• However, since activities may sometimes be performed in parallel, so
can tasks.

THE PROCESS METAMODEL 159

• The result of the execution of tasks in a sequence is the completion of
an activity.

• Tasks have a concrete existence of their own. This implies that when a
task is completed, it is effectively an incremental completion of the
activity under which the task is performed.

• Tasks are what the project manager puts in a project plan. Thus, they
can be assigned a time for completion and resources to complete them.

• Examples of tasks in a UML-based project are draw a business class dia-
gram, conduct research, apply equality review, and execute a prototype.

• Techniques for carrying out a task may be described.

3.2.6 The Deliverable Element in a Process
A deliverable is the final output or result of the process. The roles (actors)
are involved in performing various activities, which are carried out by
executing a set of well-defined tasks. These tasks result in creating and
upgrading what are called deliverables. Since deliverables are the result of
work carried out by the roles, they are also called “work products.” Deliv-
erables can be concrete, as in a set of documents, or they can be abstract, as
in a motivated work force (which results from work performed by a proj-
ect manager). In our cooking example, the final deliverable is a baked
cake. Deliverables in a UML-based project are usually produced itera-
tively. That means, even if a deliverable is shown as being produced as a
result of activities, only some of the tasks within the activities will result in
a partial completion of the deliverables. Eventually, more activities and
tasks within the activities will be performed to complete the deliverable.
This deliverable and its corresponding notation are shown in Figure 3.2.

3.2.7 A Process-Component
A process-component is a collection of a subset of the activities, tasks, roles,
and deliverables in a process. Thus, a process-component indicates a logi-
cal collection of process elements that combine to accomplish a sizeable
chunk of the process. The term process-component signifies that a suite of
process elements is treated as a component, having a common set of
roles working on a logically cohesive set of activities and tasks, resulting
in a significant deliverable within that area of the process. Examples of
process-components in a UML-based project are Business Evaluation,
Requirements Modeling, System Architecture, and Quality Control.

THE QUALITY PROCESS ARCHITECTURE160

3.2.8 Iterations
An iteration signifies an execution of a sequence of process-components,
but with varying intensity. For example, some process-components related
to evaluating the business proposal for a project are performed with high
intensity in the first iteration, but the process-components dealing with
requirements modeling are performed with high intensity in the second
iteration. An iteration in a medium-sized project may last for about three
months, at the end of which reviewable deliverables should be produced.
Larger projects will need more time to complete iteration.

3.2.9 Putting Together a Process-Component:
A Baking Process

Once the notations are described and understood by the process partici-
pants, the representation of the process by means of a diagram plays a sig-
nificant part in conveying the activities, their sequence, the final deliverable
being produced, and the roles responsible for producing those deliverables.
Figure 3.3 shows graphically, by using the notations described in detail in
the previous section, the simple baking process that we have been using as
an example.

• There are three formal roles that are involved in this process-
component. They are the chef, the food inspector (quality manager),
and the consumer.

• The process is made up of a series of activities: environment creation,
baking, quality checking, and consuming. Each of these activities has
a set of tasks to go with it. For example, environment creation will
have the tasks of procuring the raw materials, like sugar and butter,
and preparing the kitchen. The activity of baking includes tasks like
mixing the batter, preheating the oven, putting the pan in the oven,
and taking the cake out of the oven at the right time. For a large cake
(for example, a wedding cake) the activity of quality checking will
come into play, followed by consumption. Consumption activity is
shown as iterative, and it may be performed numerous times. The
consumers of the cake will be multiple people filling the role.

• The final deliverable is shown as a baked caked. If necessary, the raw
materials going into the process-component can also be shown (they
are not shown here).

THE PROCESS METAMODEL 161

3.3 Quality Software Process
3.3.1 The Software Process
A software process has process-components that provide help and guid-
ance to produce the models of problem, solution, and background space
and the corresponding software. The quality process is made up of
process-components that follow the actual software process-components
like background shadows—providing the role descriptions, activities,
tasks, and deliverables that are the end result of the activities carried out
within the quality process.

Thus, an overall Quality Software Process includes process-
components not only for development but also for quality assurance. A
quality process is not necessarily a totally independent process but can be
comprised of a set of process-components that are configured depending
on the needs of the project to ensure the quality of the actual software

THE QUALITY PROCESS ARCHITECTURE162

Consumption

Environment
Creation

Baking

Food Quality
Checking

Consumer

Deliverables

Quality
Comments

Chef

Food
Inspector

Baking a
Cake Baked

Cake

The thought of
a cake is prior

to this process-
component.

The role of Quality
Manager could be played
by anyone interested in

how the cake tastes.

Figure 3.3 Putting together an example baking process-component

development process. Each process-component within the software
process is subject to the criteria of necessity and sufficiency—with the third
criterion of malleability being applied in the configuration of the process-
component itself. A necessary checklist can be applied to the process-
components, followed by the sufficiency checks, to ensure that the basic
steps or tasks within a process not only have been followed but they have
also been followed in the best possible way and with sufficient depth.
Finally, the malleability of the process is provided by the process feedback
loop and the ability of the process to change itself, not only for the next
project but also during the project’s execution.

3.3.2 The Quality Process
While the software process described above is a generic term that deals with
the process of development (or integration or data warehousing, and so
on), the term quality process describes the subprocess that accompanies the
software process. This quality process is made up of the quality manage-
ment, quality assurance, and quality control process-components dis-
cussed later in this chapter.

3.3.3 Rigorous Process
The extent to which a process is enforced depends on a number of factors.
For example, a large project will have sufficient resources and process
management skills to follow the iterative and incremental aspect of the
process in great detail. In situations where the budgets are tight, or the
skills are lacking, projects can still try to follow the process but the rigor-
ousness with which they follow the process (sufficiency or depth) will be
much reduced. Understanding the necessary and sufficient aspect of a
process is extremely beneficial in balancing the rigor of the process.

3.3.4 Process Maturity
Judging the quality of process requires measuring its maturity. The Capa-
bility Maturity Model is the most popular and most accepted form of mea-
surement of process maturity and subsequent quality. The CMM levels
and their applicability in measuring processes, as discussed in the previ-
ous chapter, are crucial when measuring the maturity of the QSP. The
process discussion in this chapter is aimed at helping organizations climb
up the CMM maturity scale.

QUALITY SOFTWARE PROCESS 163

Furthermore, it is also worth considering CMMi as an integrated mea-
sure of the process. For example, in describing the six different project
types for UML-based projects, we consider Internet-based development
or e-development as a default. For each of the UML project types, the
process-components are still described in a common format here, as
process-components for development. This is because these process-
components are relevant to new development as well as to most other proj-
ect types. Variations to these process-components are permitted before the
project starts, especially if we have a vastly different project type. Some
changes to the way the process-components are executed should also be
allowed. This is the malleability aspect of a process, as discussed next.

3.3.5 Malleable Process
We can judge the quality or the value of a process by its ability to configure
these process-components. This is what I have called malleability of the
process (see Section 1.8.3). Consider the differences of various UML-based
projects in terms of their process requirements. For example, a straight
development project uses certain process-components that directly pro-
vide development support. In that project we configure a set of process-
components together and create a Software Engineering Process. That SEP
is an instantiation of a process for new development. Once that SEP is cre-
ated, we will still need to change it, particularly during the initial iteration
of the process. This is malleability. It is an aspect of process not yet fully
discussed within CMM.

3.3.6 Process Timing
Furthermore, note that a quality process or process-components that deal
with quality first deal with the goals of an organization, followed by the
goals of the project. Therefore, many times quality process-components in
both instantiation and their enactment may start before a project starts.
There are also some management-related process-components, which are
included in most software processes. This management-related work usu-
ally starts before the project begins. These can be process-components that
deal with the investigation, comparison, and analysis of the problem sce-
nario to make the “Go/No Go” decision. They include numerous aspects
related to cost, budget, marketing, and sales. The chance of identifying
newer opportunities also comes into the picture given these process steps.
Note once again these steps have to be taken before the project begins.

THE QUALITY PROCESS ARCHITECTURE164

3.4 The Software Process
In this area we discuss the process-components that are responsible for soft-
ware development. The other area containing three process-components
is the quality process. (Please refer to the accompanying CD for a tabular
list of the following process-components and a starting project plan based
on them.)

3.4.1 Business Evaluation Process-Component
Figure 3.4 describes the process-component of business evaluation that
describes the part of the process that deals with the prime reason why the
project exists. This process-component also presents the very early approach

THE SOFTWARE PROCESS 165

1

4

3

Steering
Committee

Business
Evaluation

Project
Brief

Project
Sponsor

Project
Manager

2 1

5

6
4

2

3

Deliverables

Quality
Comments

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Business
Opportunity

Analysis

Steering
Committee
Approval

Business
Proposal

Formation

Project
Formation

Business
Case

Small internal iterations in
producing the deliverables will
benefit their quality products

This business analysis
creates firm understanding of
the objectives of the project

Figure 3.4 Process-component for business evaluation

to organizing the project. This is undertaken by the project sponsor, who
starts with the activity of a business opportunity analysis. This is followed
by a business proposal formulation. The steering committee performs the
activity of project approval in an iterative fashion; the project manager
handles the responsibilities of the project once the project is formed.

This process-component is important when undertaking a formal eval-
uation of the business reasons why a software project should proceed. Not
only does this argument help those who are going to manage the project,
but it also helps to confirm, in the minds of the project sponsor and the
eventual end users, the goals and objectives of the project. Because this
process-component deals with the initial understanding of the business
problem, the deliverables produced here form part of the Model Of the
Problem Space (MOPS). They are the business case and the project brief.

3.4.2 Roles in Business Evaluation
The roles in business evaluation are as follows:

• The steering committee deals with the highest-level management
of the project. It brings together expertise from various domains
including technology, business, human resources, accounting,
finance, and legal, to name a few.

• The project sponsor initiates the project, benefits from it, and pays for
it. The project sponsor is the chief person who must be satisfied with
the quality of the end product. Therefore, the project sponsor (also
known as the business sponsor) is the one who should be involved in
documenting the project objectives, identifying the risks, and
establishing the priorities.

• The project manager is responsible for the project once it has been
evaluated and approved by the business. Therefore, in a way, the
project manager’s goal is more operational in nature than strategic.

3.4.3 Activities and Tasks in Business Evaluation
Figure 3.5 describes the activity-task mapping within the process-
component of business evaluation. This activity-task mapping is also
available on the accompanying CD for creating a project plan based on
this mapping. The activities and tasks of this process-component play an
important role in evaluating the business case and ensuring the project
objectives within the business context.

THE QUALITY PROCESS ARCHITECTURE166

3.4.4 Deliverables in Business Evaluation
• Business case. The business case deliverable contains the arguments

for why the project should go ahead. It also documents the cost-
benefit analysis for the project. The scope of the project, its risks, and
the related project estimates are all documented in the business case.
This is the document presented to the steering committee.

• Project brief. Typically, the project brief is a two-page document
describing the project; it outlines the objectives of the project, the
relevant project numbers, and the project schedule. The project
manager and the quality manager are named in the project brief.

3.4.5 Quality Comments on Business Evaluation
Necessity

1. The business case should be carefully prepared to justify the need
for a project. This document ensures that the purpose of the
project is clear to all parties involved.

2. The project brief is the second mandatory part of this process-
component, ensuring that the details of the project are succinctly
summarized and available for reference throughout the project.

THE SOFTWARE PROCESS 167

Project
Formation

Steering
Committee
Approval

Business
Proposal

Formation

Make Estimates
Appoint Project

Manager
Appoint Quality

Manager
Appoint User

Identify Costs,
Benefits

Identify Business
Opportunity

Understand the
Problem

Define Scope
and Constraints

Business
Opportunity

Analysis

Identify Risks

Study Business
Case

Make Go/No Go
Decision

Approve Project
Estimates

Monitor Project
Progress

Document
Objectives

Document Risks,
Costs, Benefits

Propose to
Steering

Committee

Suggest Project
Management

Document
Estimates

Figure 3.5 Activities and tasks in business evaluation

The project brief also describes the type and size of the UML-
based project.

3. The project sponsor is the main role in this process-component,
ensuring that the business opportunities are properly analyzed
and documented, and that the business proposal has considered
all options.

4. The project formation is the starting point of the project manager’s
project responsibilities.

5. The activity of formulating the business proposal is crucial to the
process-component of business evaluation. Results from this
activity formally complete the deliverable of the business case.

6. The activity of project formation, through the tasks of the
appointments of project manager and quality manager, literally
forms the project.

Sufficiency
1. The project brief may not be produced in just one iteration. It will,

perhaps, need to be updated based on the discussions during the
steering committee approval. However, having the project brief
deliverable provides the sufficiency, in terms of quality, in this
process-component.

2. The steering committee also provides the criteria of sufficiency for
this process-component. In small projects, the steering committee
may play a notional role, but for medium and large projects, the
committee brings in expertise from varying domains within the
organization. The steering committee can also help to categorize
the project into its respective type (for example, data warehousing,
integration, or outsourcing). Having a steering committee for the
project satisfies the sufficiency criteria of quality.

3. Business opportunity analysis provides the sufficiency in
rigorously analyzing and questioning the need for the project.

4. Steering committee approval will easily iterate twice, if not more,
before it provides sufficient rigor in deciding about the project.
The steering committee members may ask the project sponsor to
further investigate, collect, and collate the information—and only
then will they approve the project.

THE QUALITY PROCESS ARCHITECTURE168

3.4.6 Project Management Process-Component
The project management process-component deals with all activities and
tasks that are carried out (primarily by the project manager) in managing
the project. Project management is an extremely important process-
component that includes understanding the technology, methodology,
and sociology of the project. Therefore, this process-component interacts
with the process-component of process configuration. The primary pur-
pose of project management is to organize and track the project. Tracking
involves risk management; therefore, project management also deals with

THE SOFTWARE PROCESS 169

User

 Project
Management

Project
Plan

(Task)

Project
Manager

Quality
Manager

1 21

3 5 6 7

4

2

3

4 5

6

7 8

Deliverables

Quality
Comments

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Project
Planning

Project
Scoping

Project
 Launching

Team
Formation

Environment
 Creation

Project
Plan

(Organization)

Risk Minimization
and Project

Tracking

Risk Minimization
and Project

Tracking

Risk Minimization
and Project

Tracking

The Quality Manager does management, but
from a quality angle. Also, creation of a good

quality environment is their responsibility.

Figure 3.6 Process-component for project management

risks and their prioritization. Project management provides feedback on
the status of the project to various stakeholders including the user, the
steering committee, and the project sponsor.

3.4.7 Roles in Project Management

• The project manager is the primary role in this process-component
of project management. This role is responsible for dealing with the
activities of planning for the project, forming teams, launching the
project, and continuously monitoring the risks.

• The quality manager accompanies the project manager when per-
forming her responsibilities but, at the same time, provides the inde-
pendent crosscheck on the activities and tasks performed by the
project manager.

• The user continues to help the project manager by scoping the
project, prioritizing the risks, and helping to minimize them.

3.4.8 Activities and Tasks in Project Management
Figure 3.7 shows the mapping of activities to tasks in the process-
component of project management, which helps to create a good quality
project plan and the management of the overall project.

3.4.9 Deliverables in Project Management

• Project plan (organizational). The organizational project plan pro-
vides the detailed description of the category and type of project, its
resources, and its approach to quality.

• Project task plan. The project task plan is a task list with correspond-
ing resources assigned to it.

3.4.10 Quality Comments on Project Management
Necessity

1. The organizational project plan descriptively documents the
planning process for the project. It is necessary to cross check its
accuracy with the users, the project sponsors, and the steering
committee.

THE QUALITY PROCESS ARCHITECTURE170

2. The project task plan lists the tasks to be performed in the project
and maps them to the corresponding resources. This is a neces-
sary part of the process and requires an inspection to verify its
quality.

3. The project manager, as the primary role in this process-component,
should be checked for the correctness of the role description and the
ability of the person playing this role to fulfill it.

4. The quality manager is necessary for the quality of the overall
project. Creating a good quality environment is the responsibility
of this role.

5. Project planning is a necessary part of the process-component,
resulting in an organizational plan.

6. The activity of team formation should be checked to ensure that it
provides all necessary guidelines in identifying team members
and their formation into the right team. This is followed by
ongoing management of the team.

THE SOFTWARE PROCESS 171

Project
Planning

Team
Formation

Organize Team Manage Team

Identify Gap

 Monitor RisksLaunch Project Set Expectations

Understand and
Categorize Project

Create Project
Organizational Plan

Assign
Resources

Create Project
Task Plan

Perform Quality
Checks

Identify and
Obtain

Resources

Record In-Scope
Objectives

Record Out-of-
Scope Objective

Prioritize
Features and

Functionalities

Project Tracking
and Risk

Monitor
Expectations

Monitor
Resources

Monitor
Iterations

Project
Launching

Install DatabaseNetwork, System,
and Compiler

Environmental
Creation

Install CASE
Tools

Organize
Hardware

Create Working
Environment

Project
Scoping

Figure 3.7 Activities and tasks in project management

7. Risk minimization and project tracking is an ongoing activity that
is performed, in parallel, by all three major roles in this process-
component. The project task plan is updated and fine-tuned with
this activity.

Sufficiency
1. The organizational project plan should be updated with the soft

issues related to team formation, to satisfy the criteria for
sufficiency.

2. The user, another sufficiency criterion, is preferably onboard, as a
part of the project team, to ensure the quality of project scope and
risk minimization.

3. The quality manager not only performs the activities of environ-
ment creation and risk minimization as necessary, but also orga-
nizes and performs the quality tasks of inspection, walkthroughs,
and reviews (described in the quality process-components), to
ensure sufficient checking.

4. Project scoping is performed more than once to satisfy the suf-
ficiency criteria.

5. Risk minimization, a responsibility of the user, will have to be
performed to provide sufficient quality for the project.

6. Project launching is a formal activity in a large project, but may
not be necessary in small projects.

3.4.11 Process Configuration Process-Component
Figure 3.8 shows the process-component of process configuration, which
deals with understanding the process-related needs of the project, putting
the process together, and later, enacting it in practice. If an organization is
already process based, and the project is provided with a configured
process to follow, then there is no need to undertake an extensive process
survey. Initiating a process, customizing it, deploying it, and transitioning
the people and the current style of working to the process style are critical
for quality. Not only does this help to jump-start a situation where people
working on the project do not spend or waste a lot of time deciding what to
do, it also puts rules, standards, and templates in place that ensure the nec-
essary steps within the process to produce the models in the various mod-
eling spaces. Process configuration is also important in an iterative and

THE QUALITY PROCESS ARCHITECTURE172

implemental process because the need to identify the extent of iterations
and the things that should be included in the increments are all important
to the success of the quality of the project deliverables.

3.4.12 Roles in Process Configuration

• The process engineer is the primary role in this process-component,
responsible for the important activities of surveying the needs of a
process within the project and creating a suitable SEP to satisfy it. It is

THE SOFTWARE PROCESS 173

Project
Manager

Process
Configuration

Process
Engineer

Project
Team

1

2

1

3

54

2

3 4

5

6

7

Deliverables

Quality
Comments

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Surveying
 Process Needs

Surveying
Process
 Needs

Process
Deployment

Process
Deployment

Process
 Creation

Process
Training

(From Training)

Process
Enactment

(Later)

Process
Enactment

(Later)

Quality
Manager

Quality
Software Process

(Fully Defined)

Process
Enactment (Later)

Enactment of a process
does not take place during
its configuration, but later,

when the actual project
commences

The QSP is also
subject to

inspections and
reviews

Process Engineer
brings process

knowledge, whereas
Project Manager

applies it to the project

Figure 3.8 Process-component for process configuration

not necessary for this role to be a permanent role in the project,
because once the SEP is created by this role, the project manager is
able to enact it. However, large process-conscious projects that need
to handle the malleability of the process benefit by having this role on
a long-term basis.

• The project manager and the quality manager facilitate the work of
the process engineer by providing the necessary needs of the process,
and later deploying and enacting the process.

• The project team has to understand and follow the process. They also
have to provide feedback for the process, to enable its change and
fine-tuning.

3.4.13 Activities and Tasks in Process Configuration
Figure 3.9 describes the activities and tasks of the process-component of
process configuration.

THE QUALITY PROCESS ARCHITECTURE174

Surveying
Process Needs

Process
Creation

Publish Process

Process
Enactment

(Later)

Process
Deployment

Survey
Process Scene

Understand
Project Category

Identify Process
Needs

Notation Needs Walkthrough and
Review of QSP

Configure
Quality Software

Process

Determine
Iterations and

Increments

Ascertain Process
Transition Needs

Conduct Process
Training

Figure 3.9 Activities and tasks in process configuration

3.4.14 Deliverables in Process Configuration
• The Quality Software Process is the repository of all process-

components in the process. The QSP is configured to create an
instance, which is the SEP to be followed in the project.

3.4.15 Quality Comments on Process Configuration
Necessity

1. The Quality Software Process with definitions of all process-
components is the basic necessity of this process-component. The
QSP itself is subject to quality checks, ensuring that it covers all
areas of development.

2. The process engineer, also called the process consultant (due to
the temporary nature of this role), is necessary for the process.

3. The quality manager focuses on the quality aspect of the process
and the process aspect of quality—both of which are necessary for
a good quality product.

4. Process creation is the activity of putting together a process, based
on the process-components defined here.

5. Process deployment is sending the fully configured process out in
the project, for use.

Sufficiency

1. The QSP is checked, rechecked, and brought to a level where it is
acceptable to all stakeholders in the project, especially the project
team.

2. The project manager provides the supporting role to the quality
manager in organizing the process and ensuring it is the correct
process for the project on hand.

3. Surveying the needs of a process is significant in a large, high-
ceremony project.

4. The responsibilities of the process deployment, as handled by the
project manager and quality manager, provide the sufficiency
criteria to send the process out in the project.

5. Surveying the process needs by the process engineer is also part
of a large, high-ceremony project. It is not necessary, in small
projects, to undergo the detailed rigors of process surveys.

THE SOFTWARE PROCESS 175

6. The project team must undergo sufficient training and should
have the necessary buy-in, to derive the advantage of process
deployment.

7. Process training is sufficient criteria, from the training process-
component, to configure and deploy a process.

3.4.16 Requirements Modeling Process-Component
Figure 3.10 shows the requirement modeling process-component that
deals with the actual capture, engineering, and analysis of the require-
ments of the business in the project. This process-component uses the pri-
mary mechanisms of use case modeling and activity diagramming to

THE QUALITY PROCESS ARCHITECTURE176

Domain
Expert

Requirements
Modeling

Functional
Specifications

(MOPS)

The Project
Manager
facilitates

and tracks
throughout

Business Analyst/
Requirements

Modeling

Project Manager/
 Quality Manager

1 2 1

5

6 7

8

4

9 10

2

3

4

5

7 8

Deliverables

Quality
Comments

Operational
analysis needs

System
Architect’s input

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

11

Domain
Analysis

Context
Modeling

Operational
Analysis

Use Case
Modeling

Project
Tracking

Quality
Assuring

MOPS

Metrics

Instance
Modeling

Operational
Specifications

(MOPS)

Glossary of
Business

Terms (MOPS)

Each activity
subject to quality
inspections and

reviews

Functional
Prototype
(MOPS)

User

Requirements
Analysis

Storyboarding

3

12

6

Business
Modeling

Class

Figure 3.10 Process-component for requirements modeling

capture and document the problem that the business is trying to solve.
Because quality is such a subjective phenomenon, it is absolutely crucial
that those who will ascertain the quality (users and project sponsors) are
involved as extensively as possible in this process-component.

The quality techniques of interviews and workshops are very helpful in
executing this process-component. In addition to documenting the func-
tional requirements in the problem space, this process component also
encourages the user to provide the operational needs of the system. The
user of the system or the businessperson who is involved in the project is
ideally placed to provide the information on the expected volume, perfor-
mance, and security needs of the system from an operational or nonfunc-
tional viewpoint. This is all documented as a result of requirements
modeling. Prototyping is also used in order to extract further requirements
and refine the requirements already captured.

3.4.17 Roles in Requirements Modeling
• The business analyst (also called the requirements modeler for most

of this process-component) is the primary role here, and is respon-
sible for understanding and documenting the requirements.

• The domain expert and the user provide the information that the
business analyst is trying to document.

• The project manager, together with the quality manager, facilitates
the process of requirements modeling. They also monitor and track
the progress of the requirements-modeling exercise and report to the
steering committee on this crucial process-component.

3.4.18 Activities and Tasks in Requirements Modeling
Figure 3.11 describes the activities and tasks of the process-component of
requirements modeling. Refer to the accompanying CD for a tabular form
of these activities and tasks to enable you to create your own customized
project plan.

3.4.19 Deliverables in Requirements Modeling
Functional specifications containing the use cases and activity diagrams
that make up the model of the problem space are the main deliverables
coming out of this process-component. Additional UML-based diagrams,
namely the class diagrams, sequence diagrams, and state chart diagrams,

THE SOFTWARE PROCESS 177

also form part of the functional specifications. While a part of the model
will usually be put in a CASE tool, some specifications (such as the use
case documentation or the class responsibilities arrived at using the CRC
techniques) may be outside the CASE tool.

Operational specifications document the requirements of the system
when it goes out in operation. Therefore, these requirements are stored
mostly in a document that describes the stress, volume, and performance
requirements. Additionally, these requirements are provided using the
deployment diagrams of the UML.

A glossary of business terms helps to record confusing or important
terms. For example, terms like cover, policy, and insurance may mean the
same thing for most people, but may have interpretation variations for the
insurance domain modelers.

Functional prototype, as mentioned in the discussions on prototype,
enables the extraction of complete and correct requirements.

THE QUALITY PROCESS ARCHITECTURE178

Class Details

Domain
Analysis

Project Scope

Storyboarding

Use Case
Workshop

Use Cases

Activity
Diagram

 Package
Diagram

Security Needs

Activity
Diagram

Conduct
Research

Early Class
Model

Performance
Area

User
Stories

Interface
Descriptions

Operational
Description

Use Case
Modeling

Identify Actors,
Use Cases

Refactor Use
Cases

Document All
Use Cases

Additional Use
Case Diagrams

Document
Use Cases

Draw Use
Case Diagrams

Business Class
Modeling

Apply
Multiplicities

Business Class
Diagram

Operational
Analysis

Operating
System Needs

Performance
Needs

Bandwidth
Needs

Technical
Prototype

Instance
Modeling

Sequence
Diagrams

Quality Checks of
Sequence Diagrams

State Chart
Diagrams

Quality Checks of
State Chart Diagrams

Requirements
Analysis

Functional
Prototype

Document
Business Entity

Performance
Areas

Use Case
Diagram

Context
Modeling

Figure 3.11 Activities and tasks in requirements modeling

3.4.20 Quality Comments on Requirements Modeling
Necessity

1. Functional specifications are a necessary deliverable of the
process-component and should be produced iteratively with
quality checks being applied to the diagrams inside them.

2. Operational specifications are an equally important and necessary
part of this process-component. Without good quality operational
specifications, the system may not succeed when it is deployed.

3. The business analyst is a necessary part of this process-component
and must be checked for the accurateness of its role description
and understanding of that description by the person performing
the role. A business analyst is similar to the requirements modeler,
except that the latter focuses only on creating the model (as
opposed to the BA, who looks at the broader picture).

4. The domain expert and, more importantly, the user, are absolutely
necessary in order to create a good requirements model. By partic-
ipating in the MOPS creation process, they also firm up their own
objectives and purposes for the project. This has a valuable quality
connotation, as the user is eventually going to judge whether the
product has quality or not.

5. The project manager, supported by the quality manager, provides
the background organizational support for the process of require-
ments modeling.

6. Storyboarding is increasingly considered an important technique
in discovering the correct and complete requirements with sub-
stantial participation from the user.

7. Domain analysis, particularly with the help of the domain ex-
pert, provides a much broader view of the requirements—not
limiting them to a single project. This is very valuable in a reuse
program.

8. Use case modeling, by far the most revolutionary approach to
requirements modeling, is primarily performed by the business
analyst—with considerable input provided by the user/domain
expert. This is a necessary activity and should be performed
iteratively to produce a good suite of use cases and use case
diagrams, together with the activity diagrams.

THE SOFTWARE PROCESS 179

9. Requirements analysis is necessary to understand whatever has
been documented in the use cases, and to extract correct business
entities from that documentation in order to produce business
class diagrams.

10. Business class modeling, also occasionally known as business
domain modeling or business object modeling, is the creation of
class diagrams at the business level, and should be checked as a
necessary step in this process-component.

11. Instance modeling is necessary to correctly identify the way in
which instances like objects on sequence diagrams or state charts
behave. Documenting this behavioral aspect of this process-
component is vital for quality MOPS.

12. Quality assurance of the entire MOPS, by conducting extensive
inspections and reviews, is a necessary quality check, and should
be performed following the quality techniques described in
Chapter 6.

Sufficiency
1. The glossary of business terms is very helpful, if produced in a

project where the team members are new to the domain.

2. A functional prototype, although not necessary for every project,
is sufficient for a good quality requirements modeling exercise.

3. The roles of business analyst and requirements modeler should
also undergo process sufficiency checks to ensure that they are
properly defined, are staffed in the right numbers, and have
sufficient understanding of the uncertainties around this
process-component.

4. Context modeling, through the use of case diagrams at an abstract
level with a boundary and activity diagrams at an abstract level,
can provide the context of the system. Performing this activity
satisfies the sufficiency criteria of quality.

5. Operational analysis should be performed with sufficient depth—
otherwise, the operational specifications will end up getting
produced through the other activities of domain analysis and use
case modeling—not an ideal situation.

6. The business class modeling should be iterated sufficiently before
a good class model at business level emerges.

THE QUALITY PROCESS ARCHITECTURE180

7. Project tracking, an ongoing activity, satisfies the sufficiency
criteria of a quality process.

8. Measurements and metrics provide the additional benefits of
process maturity to a project, if desired.

3.4.21 Interface Modeling and Design Process-Component
The process-component of interface modeling provides guidance for
modeling and designing the important interface aspect in a system—the
GUI, printing interface, and interfaces to other devices. The GUI and

THE SOFTWARE PROCESS 181

User

Interface
Modeling

and Design

Interface
Design (MOSS)

User Interface Modeler/
Business Analyst

Quality
Manager

1 21

3 54

2

3

4

5

6

7

Deliverables

Quality
Comments

Make versus
buy GUI

components

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Interface
Designing

Usability
Inspections

Functional
Prototype
(Interface)

Interface
Specifications

(MOPS)

Other interfaces
like devices and
reports will be
more technical,

need System
Designer

Interface
Requirements

Analysis

Interface
Specifications

Figure 3.12 Process-component for interface modeling and design

printer interfaces are essential, not only for the performance of the system,
but also for the way it is perceived by the users. In all e-business applica-
tions, this particular process-component takes an even more crucial role. It
is not enough to provide just a good-looking interface; it should be designed
as a system on its own—with sufficient discussion and modeling on the
navigational aspects of the interface. Availability of the interfaces across
geographical and time boundaries is vital. Issues of language and notation
(as in Chinese, Hindi, or French and corresponding cultural notations) relat-
ing to widely dispersed user groups are important in Web interfaces. Fur-
thermore, providing feedback to the user through legible messages, sound,
and related mechanisms is vital for a good user interface. Thus, the interface
modeling process-component should encompass prototyping, navigation
diagrams, site maps, sketching, play acting, and other appropriate tech-
niques to create a quality-conscious interface.

3.4.22 Roles in Interface Modeling

• The user interface (UI) modeler and the business analyst play the
primary roles in this process-component; the BA specifies the
requirements of the interface and the UI modeler designs it.

• The involvement of the user in interface modeling and design is of
interest both to the user and the UI modelers. Quality perception is
positively affected by the involvement of the user in this process-
component.

• The role of quality manager facilitates the activities and tasks within
the process-component.

3.4.23 Activities and Tasks in Interface Modeling
Figure 3.13 describes the activities and tasks of the process-component of
interface modeling. Refer to the accompanying CD for a tabular form of
these activities and tasks to enable you to create your own customized
project plan.

3.4.24 Deliverables in Interface Modeling

• Interface specifications document the requirements of the interface
and are mainly driven by the needs and desires of the user.

THE QUALITY PROCESS ARCHITECTURE182

• Interface design is a deliverable containing details of the design that
implement the GUI. It contains solution-level class diagrams that also
include reusable user interface libraries and so forth.

• Functional prototype (interface) optionally adds value to the interface
specifications and designs in this process-component.

3.4.25 Quality Comments on Interface Modeling
Necessity

1. Interface specifications are a necessary part of this process-
component. The quality of the final interface depends on
specifying, in detail, what users want and how they want it.
Therefore, this specification document relates to the use case
specifications, associated use case diagrams, and activity
diagrams.

2. Interface design is a deliverable produced in the solution space. It
is the design of the interface and a system on its own. Therefore,
it contains all the necessary checks for a good design, including

THE SOFTWARE PROCESS 183

User Stories User Interface Site Map

Printer Interface

Usability
Inspection

Interface
Designing

Interface
Requirements

Analysis

Use Cases/Class
Diagrams

Functional
Prototype

Interface
Specifications

Devices
Interface

Conduct Usability
Inspection

Check Interface
Standards

Interface
Standards

System
Architecture

Interface
Specifications

Remaining
Interfaces

Class Diagrams

Figure 3.13 Activities and tasks in interface modeling and design

checking the class diagrams that mainly have their stereotypes as
interface or boundary.

3. The user interface modeler and the business analyst are necessary
parts of this process-component and should be checked for their
understanding of the requirements from the user’s viewpoint.
Therefore, a good BA and a good UI modeler work iteratively, by
showing the interface progressively to the user and getting their
feedback before proceeding with more designs.

4. Interface specifications are necessary before a good design can be
produced. They are also checked for their ability to satisfy the
requirements described in the use cases.

5. Interface designing is the activity that ensures that the results of
the interface specification activity are taken down close to low-
level design, wherein they can be easily implemented.

Sufficiency
1. The functional prototype provides additional criteria for quality,

as it enables better documentation of the interface.

2. The interface design is also sufficiency criteria. It is possible to
jump directly from interface specifications straight to implemen-
tation, but it’s not advisable. Therefore, the interface design is
provided as sufficiency criteria, as well.

3. The user should be sufficiently involved in the interface specifi-
cations by analyzing the interface requirements.

4. The business analyst, in particular, provides the quality criteria for
sufficiency by providing the link between the modeling done by
the UI modeler and relating it to the user.

5. The quality manager is involved in this process-component by
providing sufficient support and coordination—especially when
usability inspections are formally conducted.

6. Interface requirements analysis provides the background to
perform the user stories, the use cases, and the functional
prototypes, in order to understand the interface requirements
fully before designing them.

7. Usability inspections are along the lines of Constantine’s Collab-
orative Usability Inspections (CUIs) and provide a formal review
of interface quality, in the presence of the user and the developers.

THE QUALITY PROCESS ARCHITECTURE184

3.4.26 System Design Process-Component
The process-component for system design produces the system design
deliverable. The system design deliverable has the low-level designs that
contain classes and class definitions that deal with the language of imple-
mentation and the databases. Solution-level design includes solution-
level class modeling and instance modeling.

THE SOFTWARE PROCESS 185

System
Design

System
Design

Programmer
is trying out

early
designs

System
 Designer

Project
Manager

1

3

5 64

2 4

5

6

7

Deliverables

Quality
Comments

System
designs
will be

based on
patterns

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

8

Coding

Project
 Tracking

Reuse
Plan

Prototype
(Technical)

Quality
Manager

Pattern
Libraries

Legacy
Interfaces

Project tracking
and quality

assuring are
ongoing activities

1

9

2

7

Quality
Assuring MOSS

Advanced
Instance Design

Advanced
Class Design

Business
Class Analysis

Programmer

Figure 3.14 Process-component for system design

3.4.27 Roles in System Design

• The system designer is the main role in this process-component. The
system designer must have enough information about the implemen-
tation language and the environment for implementation to perform
this role successfully. Quality in this process-component comes not
only from the experience of the designer but also from his/her tech-
nological knowledge.

• The programmer continues to assist the system designer, checking on
the feasibility of the designs by trying them out in code.

• Project manager/quality manager

3.4.28 Activities and Tasks in System Design
Figure 3.15 describes the activities and tasks of the process-component of
system design. Refer to the accompanying CD for a tabular form of these
activities and tasks to enable you to create your own customized project
plan.

THE QUALITY PROCESS ARCHITECTURE186

Reusable
Components

Advanced
Instance
Design

Object Diagrams

Coding

Create Prototype General Code

Project
Tracking

Measure Progress Refine EstimatesReport

Advanced
Class Design

Business Class
Analysis

Business Class
Diagrams

Instance Models
in MOPS

Implementation
Details to Classes

Interfaces and
Databases

New
Implementation

Classes

Create Advance
Sequence
Diagrams

Create Advance
State Chart
Diagrams

Include Reusable
Libraries

Figure 3.15 Activities and tasks in system design

3.4.29 Deliverables in System Design

• The system design contains the details of the technical design that
form part of MOSS.

• The prototype (technical) is a code-level prototype that helps when
trying out a few code examples.

• The pattern libraries may be directly inserted in the system designs
or may be newly created for local project or organizational-level
patterns.

• The legacy interfaces (especially in integration projects) are consid-
ered at the design level. We think of all the necessary issues of imple-
mentation, including legacy interfaces, before a system can be fully
implemented.

• The reuse plan (input), if produced, provides the background support
for reuse in the designs.

3.4.30 Quality Comments on System Design
Necessity

1. System design is a necessary part of the system design process-
component and should undergo the quality checks using the
techniques of interviews and reviews in workshop format.

2. Using the pattern library, or at least giving patterns serious
consideration, is necessary for good quality.

3. The system designer is the primary owner of this process-
component. The role should be well-defined and understood by
the person performing it.

4. Business class analysis requires understanding the class dia-
grams drawn by the BA in the requirements modeling process-
component. Therefore, this is a necessary starting point for any
work that takes place in the design.

5. Advanced class design, as shown in Chapter 4, is necessary for
this process-component. It deals with creating classes that are
very close to implementation.

6. Advanced instance design is a necessary step in system design
because the sequence and state chart diagrams ensure that the

THE SOFTWARE PROCESS 187

classes drawn in the class diagrams are complete and correct. This
is done by cross checking the sequence and state chart diagrams
with the classes in the class diagrams.

7. The coding activity provides the necessary support for creating
the prototype and verifying the designs. It may be undertaken
quickly by the system designer herself.

Sufficiency

1. Check the availability of a reuse plan and incorporate the
suggestions and standards from the plan into the design.

2. Check to determine if the technical prototype is necessary—it
should be created to test out the validity of the designs and will
satisfy the sufficiency criteria.

3. Pattern libraries should also be sufficiently considered in the
system designs.

4. Legacy interfaces, for a legacy integration project, are created to
satisfy the sufficiency criteria.

5. The programmer, if available, is sufficient for the quality system
designs. If not, the cursory programming work is carried out by a
system designer.

6. The project manager/quality manager provides the background
support and coordination activities.

7. Coding may be attempted a few times, in creating prototypes,
reusing libraries, or simply creating earlier cuts of the code.

8. Project tracking is an ongoing activity, which may be undertaken
at the completion of major activities in this process-component.

9. Quality assurance of MOSS will have to be performed a few times,
iteratively, to satisfy the sufficiency requirements of the project.

3.4.31 Persistence Design Process-Component
Persistence design, another term to describe database design, is treated as
a separate process-component because of its importance—not only in stor-
ing standard relational data, but also in storing a variety of content in
today’s Web applications. The need to interface with existing legacy sys-
tems, store and massage audio and video contents, convert data, and pro-

THE QUALITY PROCESS ARCHITECTURE188

vide reuse and multidimensional drilling into the data are some of the rea-
sons database design is important and is treated as a separate process-
component.

While using the capabilities of the UML to represent the databases in
class diagrams, it is also important to use sequence diagramming tech-
niques in order to document the access to the databases, the security to
the databases, and the consistency requirements. Prototyping from an
operational viewpoint can also provide valuable information during the
database-design phase.

THE SOFTWARE PROCESS 189

Quality
Manager

Persistence
Design

Database
Design
(MOSS)

Presume
database
selected

System
Architect

2
3

5

64

3

4

5 6

7

8

Deliverables

Quality
Comments

Persistence
design proceeds

along with
system design

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Normalization
Populate
Content

Conversion
Plan

Test Plan
(Cross Ref
for Data)

Prototype
Technological

Conversion
will vary

these
activities

System
Architecture

Appraisal

Class
 Mapping

Database Interface
Mapping

1 1 2

Database
Designer/
Manager

Design
Verification

Data
Verification

Figure 3.16 Process-component for persistence design

3.4.32 Roles in Persistence Design
• The database designer/manager creates database schemas, strategies

for conversions, and population of data.

• The quality manager facilitates the environment for the creation of
the databases and ensures the quality of the schemas created.
Thoughts are also given to the population of the databases, especially
if data is to be converted from an existing system.

• The system architect provides operational input.

3.4.33 Activities and Tasks in Persistence Design
Figure 3.17 describes the activities and tasks of the process-component of
persistence design. Refer to the accompanying CD for a tabular form of
these activities and tasks to enable you to create your own customized
project plan.

3.4.34 Deliverables in Persistence Design

• Database design

• Conversion plan

• Prototype (technical)

THE QUALITY PROCESS ARCHITECTURE190

Class
Mapping

Relationships
to Tables

Multiplicities

Normalization
Populate
Content

Appraisal Verify Database
Diagrams

System Architecture
Design

Verification
Database Interface

Mapping

Data Verification

Verify
Standards

Persistent
Classes

Corresponding
Tables

XML Interfaces
Legacy

Interfaces
Architectural

Prototype

Extend Checks
to Entire Data

Select Sample
Data

Verify Sample
Data

Normalize
Relational Tables

Denormalize
Relevant Tables

Upload
Contents Convert Data

Facilitate
Ongoing

Content Upload

Figure 3.17 Activities and tasks in persistence design

3.4.35 Quality Comments on Persistence Design
Necessity

1. Create the database design based on the persistent classes from
the MOSS class diagrams.

2. Ensure that the person playing the role of the database designer
understands both the UML modeling techniques and the
capabilities of the database in implementation. Conversion
requires additional skills in understanding the structure of the
existing database.

3. Class mappings require mapping the class diagrams in the solu-
tion space to the database tables. Relationships between classes
in the class diagrams are translated to relationships between data-
base tables using the primary and foreign keys of relational data-
base designs. Multiplicities also provide additional and valuable
information.

4. Database interfaces include interfaces to front-end Web inter-
faces (using, say, the XML), or back-end legacy interfaces. Proto-
types are created to investigate these interfaces and produce
designs.

5. Design verification is a formal activity, following the review
techniques, to ensure the consistency of the new database schema.

Sufficiency

1. A conversion plan is required only when data has to be converted
into the new system. Alternatively, for a Web application, contents
might be required.

2. Prototypes provide sufficient details in creating a good database
design—not only from the structural viewpoint, but also from the
population and performance viewpoints.

3. The quality manager provides the organizational support and
applies the quality techniques of inspections, reviews, and
workshops to the designs.

4. The system architect ensures that the database design is in
accordance with the overall system architecture.

5. Class mapping has to be double-checked for sufficient compat-
ibility of the classes and the corresponding relational tables.

THE SOFTWARE PROCESS 191

6. Normalization may be attempted in practice and will be
influenced by the multiplicities in the class diagrams.

7. Data verification follows some of the testing techniques of
equivalence partitioning and boundary value (as discussed
in Chapter 6).

8. System architecture appraisal ensures that the database design
does not transgress the architecture of the system (for example,
the bandwidth limitations of the architecture will influence the
database design).

3.4.36 Implementation Process-Component
The process-component for implementation deals with coding. While all
other process-components deal with understanding the problem in
managing the project, this one deals extensively with implementation of
the models using the available technology. Thus, the designs created
during the system design, database design, and interface modeling are
implemented during enactment of this process-component. Implementa-
tion deals with understanding both the requirement models and the
designs.

Before creating the actual code it is necessary to incorporate the
reusable libraries (already done in the system design process-component).
This is followed by creating the implementation classes and compiling,
linking, building, and testing them. Testing includes the creation of test
harnesses within the code itself, as well as conducting unit tests and step-
ping through the created code. Occasionally, if processes like eXtreme Pro-
gramming are followed in the project, the results from the implementation
effort can be immediately showed to the users with a very short turn-
around time.

3.4.37 Roles in Implementation

• The programmer implements the designs iteratively. Many people
play this role in a project; they interact with each other in the roles of
programmer and, when the need arises, with other roles such as
system designer and business analyst.

• The system designer supports the programmer by explaining the
designs created in the MOSS.

THE QUALITY PROCESS ARCHITECTURE192

• The business analyst supports the programmer by ensuring that the
requirements are properly understood and met.

3.4.38 Activities and Tasks in Implementation
Figure 3.19 describes the activities and tasks of the process-component of
implementation. Refer to the accompanying CD for a tabular form of these
activities and tasks to enable you to create your own customized project
plan.

THE SOFTWARE PROCESS 193

System
Designer

Implementation

Project quality
management

remains vital, but
in the background

Business
Analyst

1

3

2

4 5

3

4 5

6

7

Deliverables

Quality
Comments

Programmer would “talk” to
system designer first,

followed by BA. In a good
process, they would hardly

ever talk with a user

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Environment
Creation

System
Architecture

Appraisal

Building

Requirements
Model

Appraisal

Packages

6 9

Testing

2 1

System Design
Appraisal

Coding

Programmer

Code
(.exe, .dll)

Figure 3.18 Process-component for implementation

3.4.39 Deliverables in Implementation
• The code (executable) is the final software deliverable resulting from

the modeling effort. This executable may not be a single file; it may
be comprised of a number of executables spread over the system
architecture.

• Reusable libraries (components and packages). In addition to the
final code produced, there should be a provision, in a good process,
to produce and store reusable components for future use. This
reusable library deliverable enables the creation and storage of
reusable code, typically made up of components and packages.

3.4.40 Quality Comments on Implementation
Necessity

1. Executable code, including dynamic libraries, is the primary
product of this process-component. While this is produced itera-
tively, eventually it is the product deployed. In outsourced

THE QUALITY PROCESS ARCHITECTURE194

Environment
Creation

Building

Link

Execute

TestingCoding

Modify Design
(Optional)

Prepare to
Code

Participate in
Subsystem

Reviews

Further Explain
Use Cases and

Activities

Provide WAS
Input

Requirements
Model Appraisal

System Architecture
Appraisal

Provide
Operations

Input

Fine-tune
 Architecture

System Design
Appraisal

Support
Coding

Language of
Choice

Integration Test
(Incremental)

System Test
(Incremental)

Component
TestBuild System

Incorporate Reusable
Component Libraries

Technical
Prototype

Code Classes
Update Reusable

Component Libraries

Write Test
Harness

Unit Test

Install
Language

Editor

Create Test
Data

Figure 3.19 Activities and tasks in implementation

projects, this deliverable is produced by an external (outsourcing)
organization.

2. The reusable library deliverable is almost an integral part of code
production because it can be termed an interim deliverable
before the final product is produced. This is because most object-
oriented/component-based systems are not built as systems but,
rather, as reusable components, which are then assembled to
create the product.

3. The programmer is at the core of this process-component. Her
profile, job description, skills, and experience should be well
coordinated and a match with the project technology. Further-
more, it is vital that the programmer is able to converse with the
system designer to determine that the designs are properly under-
stood. In a small project this role may merge with the design role.

4. Coding is the primary activity of this role. It is performed by the
programmer in an iterative and incremental manner. This activity
requires that the programmer writes classes, tests harnesses,
conducts unit tests, and updates the reusable class libraries with
the created components.

5. As required by most programming environments, the activity
of coding is followed by the detailed activity of building the
software. This requires the programmer to integrate the code
written with associated libraries in order to make it runnable.

6. Having written the code and built the executable, it is necessary
for the resultant module within the product to be tested in detail.
This testing ensures that the testing progresses incrementally from
component to system to integration tests. Incremental testing
implies creating a component and testing it first. This is followed
by creating another component (perhaps by another programmer)
and testing it. Once the second component is created, it may be
necessary to test them together. Once a significant number of
components are created, they will have to be integrated with other
systems (for example, legacy systems). Thus, the incremental
creation and addition of components to the system is what is
described in the testing activity.

THE SOFTWARE PROCESS 195

Sufficiency

1. Reusable class libraries need additional checks in terms of gener-
alization of code. When the classes and components are created,
they need to be generalized incrementally. This generalization
may happen in the second or third iteration of the current
development, or in subsequent projects.

2. The system designer provides the sufficiency of process by sup-
porting the programmer. The necessary aspect of the system de-
signer role is discussed in the system design process-component.
Here, he is supporting the programmer, thereby satisfying the
sufficiency criteria in the process.

3. The business analyst, similar to the system designer, provides the
sufficiency aspect of the process by supporting the programmer in
explaining the requirements on a “need to know” basis.

4. The activity of system design appraisal provides information to
the programmer on the languages and middleware recommended
by the system designer. Optionally, the activity of coding
influences the system design as well.

5. Similar to the influence of system design on coding and vice versa,
there is influence of the architecture on coding and vice versa. This
means the architectural decisions taken in the system architecture
process-component provide the boundaries for coding.

6. The requirement model’s appraisal may also be necessary, option-
ally, for the programmer who is trying to understand and keep in
mind the use cases at the highest level. Although the activity of
coding is driven by class diagrams in the MOSS, the influence of
requirements should be considered, wherever relevant.

7. Environment creation, if treated separately, ensures that the devel-
opment environment is given its due and separate importance.
For small projects, however, it may not be necessary to treat this
separately, and the activity may be performed by the programmer
as a part of coding.

3.4.41 Prototyping Process-Component
The process-component for prototyping combines skills of requirements
modeling, system designing, and programming in order to create proto-
types; it also benefits the creation of models in the problem, solution, and

THE QUALITY PROCESS ARCHITECTURE196

background spaces. Since this process-component for prototyping en-
hances the quality of all other deliverables, prototyping does not stand on
its own. I have treated prototyping as a separate process-component
because of the need to understand it on its own before using it to improve
the quality of deliverables in the other process-components.

While prototypes enhance the overall quality of the system, they them-
selves should adhere to some quality requirements. For example, proto-
types should not give the wrong impression of what can be achieved. This
happens most commonly when a highly sophisticated prototype is pro-
duced in order to gain project approval; the implementation may not be
able to sustain the promises of the prototypes.

In most practical software projects, the process-component for proto-
typing potentially produces three prototypes:

THE SOFTWARE PROCESS 197

Prototyping

Prototype
Functional

Prototypes may not be
created in this

sequence. They can
also be subject to

minor quality checks

5 6 7 8
2

3

4

5

6

7

Deliverables

Quality
Comments

The User/Business Sponsor will
benefit by looking at all

prototypes to enhance their
understanding and refine their

scope of the project

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Prototype
Interface

Prototype
Technical

Prototype
Architectural

11 2 3 4

Architectural
Prototype
Creation

Set
Expectations

Project Manager/
Quality Manager

Prototyper
(Programmer, Business

Analyst, System Architect)

Purpose
Identification

Functional
Prototype
Creation

User/Project
Sponsor

Technical
Prototype
Creation

Providing
Feedback

Prototypes will influence
requirements models, in task
Model, System Design, and

System Architecture

Figure 3.20 Process-component for prototyping

• The first deals with the functional needs of the users, which includes
the needs for the interface, navigation, and overall functionality.

• The second deals with the selected technology and its suitability, such
as languages, language compilers, reusable libraries, and databases.

• The third one is the architectural prototype, which deals with issues
of security and performance. This architectural prototype also
experiments with technologies such as Web application servers,
e-services, and mobile services, to consider their appropriateness in
the project or the overall organization. Therefore, in addition to the
knowledge of the languages and databases, there is also a need to
understand the overall environment for implementation.

3.4.42 Roles in Prototyping
• Prototyper (programmer, business analyst, system architect)
• User/project sponsor
• Project manager/quality manager

3.4.43 Activities and Tasks in Prototyping
Figure 3.21 describes the activities and tasks of the process-component of
prototyping. Refer to the accompanying CD for a tabular form of these activ-
ities and tasks to enable you to create your own customized project plan.

3.4.44 Deliverables in Prototyping
• Prototype (functional)

• Prototype (interface)

• Prototype (technical)

• Prototype (architectural)

3.4.45 Quality Comments on Prototyping
Necessity

1. The functional prototype is a necessary aspect of any process
because it helps set and manage expectations of users and
business sponsors.

2. The interface prototype is usually a GUI prototype that may be
produced along with the functional prototypes. It provides the

THE QUALITY PROCESS ARCHITECTURE198

“look and feel” of the system and should be attempted after at
least some part of the functionality is clear. Otherwise, there is a
risk that the functional requirements will be sidestepped for
discussions related to the interface.

3. The technical prototype provides information to the system
designer and the data modeler on the capabilities of the solution.
It is important that this prototype is produced, however briefly,
before the actual solution is implemented.

4. The architectural prototype provides information related to the
architectural capabilities that already exist in the organization, its
limitation, and how the system architecture fits with the overall
enterprise architecture. For large projects, information and secu-
rity architecture have separate influence and, therefore, benefit by
creation of a prototype.

5. The role of a prototyper can be played by any of the other roles
shown in Figure 3.20, depending on the type of prototype being
created.

THE SOFTWARE PROCESS 199

Purpose
Identification

Functional
Prototype Creation

Technical
Prototype
Creation

Analyze
Results

Execute
Prototype

Write Code for
Prototype

Create
Prototype for

Use Case

Sketch
Interface

Demonstrate
and Execute

Prototype

Create GUI
Prototype

Understand
Purpose

Identify
Purpose

Prototype

Map to Project
Goals

Architectural
Prototype Creation

Create
Architectural

Prototype

Provide Feedback
to Steering
Committee

Execute
Prototype

Set
Expectation

Explain
Purpose of
Prototype

Control
Prototype

Demo

Get Feedback

Providing
Feedback

Understand
and Execute

Prototype

Provide
Feedback to
Prototyper

Provide
Feedback to

Modeler

Figure 3.21 Activities and tasks in prototyping

6. Functional prototype creation provides the necessary input into
the requirements modeling exercise. However, this may not be an
executable prototype.

7. Technical prototype creation usually has an executable that tests
the capability of the technologies in providing the solution; it
relates to the operational requirements.

8. Architectural prototype creation also relates to the operational
requirements.

Sufficiency

1. The functional prototype needs to be iterated and checked more
than once in order to reach a satisfactory level of acceptance.
Because of the importance of the functional prototype in the
project—especially in reducing misunderstandings between users
and developers—this prototype should be carefully created and
agreed upon for sufficient quality.

2. Prototyper is not just one person playing one role but, perhaps,
more than one person playing multiple roles. While a prototyper
is necessary in this process-component, it is the variation to this
role that satisfies the sufficiency criteria.

3. The user or project sponsor provides sufficient depth to the proto-
typing exercise by providing detailed feedback to the prototypers
on their requirements, as well as getting a good understanding of
their own expectations.

4. The project manager or quality manager also provides the addi-
tional support in understanding the user expectations correctly.

5. Providing feedback is an activity that enables the prototypers to
understand their own prototypes and iteratively improve them to
enable the users to express their needs correctly.

6. Purpose identification helps to focus on the purpose of the proto-
type. It is only when the question “Why are we creating this pro-
totype?” is answered that the prototyper can be comfortable with
his work.

7. While a prototype is created for numerous purposes, setting the
expectations of the users is one of the most important aims of
prototype creation. This check provides the sufficiency criteria
of rightly setting the expectations of the users.

THE QUALITY PROCESS ARCHITECTURE200

3.4.46 Change Management Process-Component
The process-component for change management supports all the
changes that occur in the project. In addition to the sociological aspect of
change, this process-component also deals with the critical job of provid-
ing support for the configuration and version management needs of the
project. Versioning and version release is important in an IIP process.
This is where the configuration management part of change management
helps to put together the product releases. Therefore, this process-
component is closely associated with that of process configuration and

THE SOFTWARE PROCESS 201

Project
Team

 Change
Management

Version
Control

Plan

Version change
management deals with
the product and benefits

by CASE tools

Project
Manager

Quality
Manager

1 2

1

3

5

6

4

2 3

4 5

Deliverables

Quality
Comments

Process change management deals
with feedback on process during

enactment. Malleability of process
facilitates this

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Upgrade/
Release
Strategy

Soft factors
consideration

(Chapter 6)
important for
social change

Software Model’s
Change Management

Process Change
Management

Product Version
Management

Social Change
Management

Process Change
Management

Social Change
Management

Figure 3.22 Process-component for change management

project management. Once an item such as a UML model or a class has
reached a stable situation it should be placed under the change manage-
ment process-component.

3.4.47 Roles in Change Management

• Project team

• Project manager

• Quality manager

3.4.48 Activities and Tasks in Change Management
Figure 3.23 describes the activities and tasks of the process-component of
change management. Refer to the accompanying CD for a tabular form of
these activities and tasks to enable you to create your own customized
project plan.

THE QUALITY PROCESS ARCHITECTURE202

Product Version
Management

Change
Management

Strategy

Baseline
Product

Release Gaps Release
Details

Change
Requests

Process Change
Management

Accept Change
Requests

Process
Architecture

Impact of
Process Change

Redeploy
Process

Modify
Process

Social Change
Management

Allay Fears
Dissociate

Past Patterns
Elicit Concerns

and Fears
Establish New

Patterns

Change Code

Use Case and
Activity Diagrams

Cross Check
with MOBS

Functional
Change Requests

Technical
Changes

Software Model’s
Change Management

Baseline
MOBS

Changes
to MOSS

Baseline
MOSS

Cross Check with
MOPS and MOBS

Baseline
MOPS

MOSS and Class
Diagrams

Figure 3.23 Activities and tasks in configuration management

3.4.49 Deliverables in Change Management
• Version control plan deals particularly with the software product

version control. This is either a separate deliverable or part of the
change management plan.

• Upgrade/release strategy is the end result of the effort made in
change management. It deals in general with any upgrade to the
software, environment, or teams. In particular, though, it deals
with upgrades to the software models and products.

3.4.50 Quality Comments on Change Management
Necessity

1. The version control plan deals with the versioning of software
releases. This is a necessary part of a good process because this
plan decides on the version numbering and deployment of the
software product.

2. Upgrade/release strategy is the result of the activities in change
management. While mostly it affects a software model or product,
this upgrade/release strategy can also be a change in team
structure, organizational structure, and so on.

3. The project manager effectuates the change.

4. The project team undergoes the change in most cases.

5. The software model’s change management will likely be the most
important aspect of change management.

6. Version management ensures that the changes and upgrades
brought about in the software are appropriately released in the
user community.

Sufficiency

1. The quality manager provides additional support to the project
manager in bringing about the changes. In some cases, though,
the quality manager herself may bring about the change.

2. Process change management provides sufficiency in terms of
process steps when change is brought about.

3. Social change management is usually associated with product
change management, although the way in which it is dealt with is
different from the product change management approach.

THE SOFTWARE PROCESS 203

4. Process change management is supported by the quality manager.

5. Social change management is supported by the quality manager.

3.4.51 Enterprise Architecture Process-Component
The enterprise architecture (EA) process-component deals with the overall
enterprise modeling and ensures that the system produced as a result of
the project under consideration is able to operate with the existing sys-
tems of the enterprise. At a project level the activity of creating the enter-
prise architecture is limited, but ensuring that the system architecture
conforms to the EA (resulting potentially in an EA Integration) is high.

THE QUALITY PROCESS ARCHITECTURE204

Project
Team

Enterprise
Architecture

Enterprise
Architecture

Enterprise
architecture may

be optionally
created

System
Architect

Project Manager/
Quality Manager

1

3

2

4

3

4

5

6

Deliverables

Quality
Comments

Quality of enterprise
architecture will influence

system architecture

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Enterprise
Architecture Creation

Enterprise
Architecture Checking

Reuse
Strategy

Web
Application
Architecture

Enterprise
Architecture Creation

Enterprise
Architecture Checking

12

System
Architecture

5

6

Architectural
Surveying

Figure 3.24 Process-component for enterprise architecture

3.4.52 Roles in Enterprise Architecture

• System architect provides expertise and experience in producing a
good, robust enterprise architecture.

• Project team interacts with the architect to ascertain the mechanism to
implement the architecture and highlights the possible limitations of
the existing technical environment.

• Project manager/quality manager organizes and manages the
creation of the enterprise architecture.

3.4.53 Activities and Tasks in Enterprise Architecture
Figure 3.25 describes the activities and tasks of the process-component of
enterprise architecture. Refer to the accompanying CD for a tabular form
of these activities and tasks to enable you to create your own customized
project plan.

THE SOFTWARE PROCESS 205

Enterprise Architecture
Creation

Information
Architecture

Update Revise
Strategy

Security
Architecture

Information
Architecture

Document
Business
Process

Identify
Business
Process

Validate Vendor
Architecture

(WAS)

Update Reuse
Strategy

MOPS against
Enterprise

Architecture

MOSS against
Enterprise

Architecture

MOBS against
Enterprise

Architecture

Architectural
Surveying

Understand
Current

Enterprise
Architecture

Understand
Current

Operational
Requirement

Figure 3.25 Activities and tasks in enterprise architecture

3.4.54 Deliverables in Enterprise Architecture

• Enterprise architecture is made up of the actual enterprisewide
architecture and the document that outlines that architecture.

• System architecture is produced during the system architecture
process-component and embellished here. Alternatively, creation
of the initial system architecture may start here, followed by its
rigorous upgrade in the system architecture process-component.

3.4.55 Quality Comments on Enterprise Architecture
Necessity

1. A primary necessity check ensures that the system architecture is
iteratively cross checked against the enterprise architecture. This
results in compliance of the system architecture with the
enterprise architecture.

2. In most projects, the opportunity to create enterprise architecture
is limited. However, each project influences the overall architec-
ture of the enterprise, and may incite rethinking on the part of the
architects in terms of, say, bandwidth requirements or database
capacity.

3. The system architect is the primary role in this process-
component, in terms of checking the influence of enterprise archi-
tecture on the system architecture. When decisions related to the
enterprise and all its related systems and architecture are to be
made, the role of system architect may be played by a senior tech-
nical person well versed in the enterprise architecture. The system
architect ensures that the architecture of the system conforms to
the enterprise architecture.

4. Architectural surveying deals with understanding the existing
enterprise architecture to ensure that the system architecture is
created within the bounds of the enterprise architecture. Opera-
tional requirements are also considered in surveying the overall
architectural needs.

5. It is important to perform the activity of enterprise architecture
checking while keeping in mind its potential effect on the project
and the quality management aspect of the project.

THE QUALITY PROCESS ARCHITECTURE206

Sufficiency
1. With the advent of Web-based solutions in almost all modern-

day projects, it is important to consider the Web application
architecture in overall enterprise architecture. Web architectures
have the ability to influence, and many times change, the manner
in which solutions are provided.

2. Reuse strategy is important at the enterprise level in terms of its
influence on creating architecture versus buying middleware and
Web architectures off the shelf. The reuse strategy influences the
system architecture as well.

3. Some senior project team members will be involved in the
creation of part of the enterprise architecture. Other team
members should be aware of the enterprise architecture.

4. The project manager and the quality manager play supporting
roles in ensuring that the enterprise architecture is cross checked
against the architecture of the system. The project manager is
involved, in particular, when there is a conflict between the
system, enterprise architecture, and the ramification of this
conflict on project cost and time estimates.

5. Creation of enterprise architecture is not a singular activity with a
set completion time. Instead, enterprise architecture is created
based on a number of projects, with each project improving and
adding to the existing architecture. Sometimes, though, when not
only the software system is newly built, but also the organization
itself is new, there will be an opportunity to create completely new
enterprise architecture. While the system architect is primarily
responsible for this enterprise creation, the project team also joins
in discussing and understanding the architecture.

6. Enterprise architecture is checked for its completeness and
consistency by the system architect. The project manager and the
quality manager must facilitate this checking and will have to be
fully aware of it as the project progresses.

3.4.56 System Architecture Process-Component
System architecture deals with the architectural work in the background
that ensures that the requirements and the designs are in accordance with
the overall needs and availabilities of the project. The activities and tasks

THE SOFTWARE PROCESS 207

in the system architecture process-component take a “bird’s-eye” view of
the requirements and design, ensuring the consistency and completeness
of the MOBS.

3.4.57 Roles in System Architecture
• System architect

• System designer

• Project manager/quality manager

THE QUALITY PROCESS ARCHITECTURE208

System
Designer

System
Architecture

System
Architecture

Architects
deal with

prototypes

System
Architect

1

2

1

3

5

4

2

3

4

5

Deliverables

Quality
Comments

Quality Manager
works in the
background

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Pattern
 Incorporation

System
Architecture Creation

Operational
 Requirements
Confirmation

Prototype
(Architecture)

Reuse
Strategy

Project Manager/
Quality Manager

Architectural
Surveying

Figure 3.26 Process-component for system architecture

3.4.58 Activities and Tasks in System Architecture
Figure 3.27 describes the activities and tasks of the process-component of
system architecture. Refer to the accompanying CD for a tabular form of
these activities and tasks to enable you to create your own customized
project plan.

3.4.59 Deliverables in System Architecture

• System architecture (solution architecture).

• Reuse strategy. As seen in the system architecture process-
component diagram, the reuse strategy facilitates the incorporation
of reusable architectures and designs in the architecture of the
current system.

• Prototype architecture also provides valuable input into the system
architecture.

THE SOFTWARE PROCESS 209

System
Architecture Creation

Patternable
Situation

Identify Suitable
Pattern

Selected
Patterns

Incorporate
Patterns

Pattern
Incorporation

Try Out
Patterns

Operational Requirements
Confirmation

Performance
Requirements

Scalability
Requirements

Security
Requirements

Volume
Requirements

Create
Database

Architecture

Create
Network

Architecture

Execute
Architecture
Prototyping

Create
Information
Architecture

Relate to
Enterprise

Architecture

Understand
Current

Operational
Requirement

Architectural
Surveying

Understand Current
System Architecture

Needs

Figure 3.27 Activities and tasks in system architecture

3.4.60 Quality Comments on System Architecture
Necessity

1. System architecture is the main deliverable of this process-
component. It is either a document outlining the architecture of
the system or, especially in large projects, a suite of libraries and
patterns on which the actual system is built.

2. The system architect plays the primary role of creating the system
architecture.

3. Architectural surveying is an activity that takes stock of the existing
enterprise architecture before relating it to the system architecture.

4. The creation of a system architecture deals with information, net-
work, and database architectures, to name but a few. This activity
results in the system architecture mentioned in step 1 above.

5. Operational requirements confirmation ensures that all opera-
tional requirements are formally incorporated in the system archi-
tecture. While other activities in this process-component continue
to take input from the operational requirements, this specific
activity is intensely focused on ensuring that the system
architecture can handle the operational requirements.

Sufficiency
1. Reuse strategy is an iteratively produced deliverable that is

updated even during the enterprise architecture process-
component. Here, in system architecture, the reuse strategy
provides valuable and sufficient input to enable the reuse of
patterns and designs.

2. Architectural prototype, created in the prototyping process-
component, is used here to help create and verify the system
architecture.

3. The system designer plays the supporting role to the system archi-
tect in verifying the implementability of the system architecture.

4. The project manager/quality manager also plays the supporting
role in facilitating the creation and verification of the system
architecture.

5. The pattern incorporation activity provides sufficient depth to the
system architectural work by enabling identification, experimen-
tation, and adoption of known patterns. These known patterns are

THE QUALITY PROCESS ARCHITECTURE210

not restricted to published patterns. They can also include pat-
terns that were discovered and documented in previous projects
within the organization.

3.4.61 Deployment Process-Component
See figure 3.28.

3.4.62 Roles in Deployment

• The project manager organizes the deployment and release of the
product after taking input from the change management process-
component.

THE SOFTWARE PROCESS 211

User

Deployment

Deployment
Plan

Project Team with
Quality Manager

will ensure
product is fully

tested

Project
Manager

1 2 1

3 54

2

4

5

6

Deliverables

Quality
Comments

Deployment
plan is part
of project

plan

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Release Timing

Product
Packaging

Released
 Product

Operational
Plan

3

Release
Assimilation

Product
Release

Post-Testing
Verification

Project
Team

Figure 3.28 Process-component for deployment

• The project team participates in deployment and post-deployment
reviews.

• The user is involved in ensuring that the deployment of the system is
smooth, especially from the sociological angle.

3.4.63 Activities and Tasks in Deployment
Figure 3.29 describes the activities and tasks of the process-component of
deployment. Refer to the accompanying CD for a tabular form of these activi-
ties and tasks to enable you to create your own customized project plan.

3.4.64 Deliverables in Deployment
• The deployment plan deals with the strategies of sending the product

out in the real world. This deployment plan also deals with issues
related to switching the business over from one product to another. It
may be a part of the overall project plan.

• The released product is the final software product that is released to
the users.

• The operational plan provides important information in deployment,
as it contains details of the system’s requirements when it goes out in
operation.

THE QUALITY PROCESS ARCHITECTURE212

Product
Packaging Release

 Timing

Release Time

Release
Assimilation

Assimilate
Software

Components

Assimilate
Hardware and

Operating
Components

Physical
Product

Product
Release

Keys and
Licenses

Downloads
and Installs

Emails and
Internet

Release Dates
Ensure User
Readiness to

Accept System

Post-Testing
Verification

Ensure Acceptance
Test is Complete

Package Keys and
Registration Info

Package User
Guide

Package Final
Product (Cut CDs)

Figure 3.29 Activities and tasks in deployment

3.4.65 Quality Comments on Deployment
Necessity

1. It is necessary to ensure that the deployment plan is in accordance
with the expectations of the users. This plan must consider the
issues of new deployment as well as of switching over, when a
replacement product is introduced. It is also necessary to consider
supporting materials such as help and user manuals and initial
training to support the product being deployed.

2. Check that the released product is in a fully deployable format.
This means that not only is the product fully tested in the devel-
opment environment, but it is also litmus-tested in the production
environment before being deployed.

3. The project manager is in a continuous coordination role in this
process-component.

4. Product packaging is important in cases where the product is
released in physical forms such as CDs and Zip disks. In these
cases, packaging of the product, its associated licensing, and so
on, is crucial.

5. This is the activity of actually releasing the product to the users.

Sufficiency
1. Check the operational plan for additional information on the

system in terms of its operations. For example, backups and mir-
roring are common requirements of a system in operation and
should be specified and adhered to for the system to be of good
quality in operation.

2. The user representative facilitates deployment of the system,
especially socially, wherein it is made acceptable and promoted
within the larger user community.

3. The project team is involved in getting the product ready for
release. While there will be very little programming or design-
related activities here, the technical aspect of the deployment is
still critical and is handled by the project team.

4. Release assimilation becomes important in cases where the prod-
uct has to be physically sent to the users or when the product is
packaged and put on shelves for sale (for example, shrink-
wrapped software).

THE SOFTWARE PROCESS 213

5. Release timing provides for the sufficiency of release by ensuring that
the release is properly coordinated. This becomes important when a
new module or system is released to replace an existing system that is
working on a 24 × 7 basis (online and available all the time).

6. Post-testing verification ensures that the integration and acceptance
testing is complete and that the users are ready to accept the system.

3.4.66 Training Process-Component

THE QUALITY PROCESS ARCHITECTURE214

User

Training

Training
 Manuals

Project Manager
may play this role

Training
Manager

Project
Team

1

2

3

5

6

7

4

1

Deliverables

Quality
Comments

All training should eventually result
in trained people with training

material

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

IT Training

Training
Plan

2 3

Business
Process Training

Software
Product Training

Call Center
Training

Assessing
Training Needs

Figure 3.30 Process-component for training

3.4.67 Roles in Training

• Training manager, who organizes the training. This role may be
played by the project manager or a member of the project team.

• Project team plays a dual role here. Initially, the project team needs
technical and other related training. Later, during the deployment of
the product, this team is also responsible for creation of a training
mechanism for the user. Selected members from the project team can
be made responsible for creation of appropriate training packages.
User representatives on the project can provide invaluable assistance
in creating such training packages.

• Users, who will undergo training and learn to use the system
effectively.

3.4.68 Activities and Tasks in Training
Figure 3.31 describes the activities and tasks of the process-component in
training. Refer to the accompanying CD for a tabular form of these activi-
ties and tasks to enable you to create your own customized project plan.

THE SOFTWARE PROCESS 215

Business Process
Training

Call Center
Personnel

Staff in
Products and

Services

Interview
Techniques

Support for
Call Center

IT Training

UML

Iterative,
Incremental,

Parallel

Management

Quality

Recording, Analyzing,
and Feedback SystemsTraining in New

Product
Relate Product

to Business
Process

 Training
Organization

Business User’s
Need

Project Team’s
Need

Product
(Operational)
Training Need

Organize
Training Courses

Relate to
Trainees

Relate to
Training Plan

Create Course
for Changed

Business
Process

Train and
Review Impact
on Business

Process

Assessing
Training
Needs

Software Product
Training

Call Center
Training

Figure 3.31 Activities and tasks in training

3.4.69 Deliverables in Training

• The training plan contains descriptions of what type of training is
required, who are the target participants of the training, and most
importantly, when the training is conducted.

• The training materials are the handouts or other accompanying
materials provided to the participants of a training course. This
training material need not be printed paper only, as it is common to
have CDs and videos accompanying training courses. These addi-
tional tools containing training materials are especially helpful in
conducting user training in the software product delivered.

3.4.70 Quality Comments on Training
Necessity

1. The training material is the prime material accompanying a
training course. This step ensures that such material is readily
available and is provided in a format acceptable to the users.

2. The training manager should be fully aware of the training needs
of the organization, the suppliers of the training needs, and the
timing of the training. In small projects the project manager may
also play this role; large projects will greatly benefit if this respon-
sibility is assigned to a separate individual.

3. Users will have to be trained not only in the use of the new system
but also in the altered business procedures as a result of the new
system.

4. The project team undergoes training depending on its skill levels
and needs. In a large project, it is important to train the team in
relevant modeling (UML) and processes early. The project team
will also deliver relevant training on their product to the user.

5. Assessing the training needs of all players in the project should be
done carefully to ensure that the training relates to the needs of
the trainees. It is also important to ensure the support of the man-
agement by referring to the training plan.

6. Software product training is undertaken to enable the user to start
using the system.

7. IT training is aimed at the project team to equip them with their
needs for modeling, process, and technical skills.

THE QUALITY PROCESS ARCHITECTURE216

Sufficiency
1. The training plan is part of the overall project plan, and describes

the training needs of the project. This includes a range of training
needs from technical training to be provided to the technical team
through end user training on the software product.

2. Business process training ensures that the users are able to carry
out the changes in conducting business.

3. Call center training is required if the new system requires the
organization to provide that support.

3.4.71 Reuse Process-Component
The process-component for reuse provides the crucial background set of
activities and tasks that actively encourage reuse at all levels within the
project. This includes not only the well-known code level reuse (through

THE SOFTWARE PROCESS 217

Reuse

Reuse
Plan

System
Architect

Project/Quality
Manager

2

1

3

5 6 7 84

2

3 4

5
6

Deliverables

Quality
Comments

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Reusable
 Entities

(Consumed)Patterns

Reusable
 Entities

(Produced)

Project Manager/
Quality Manager

will facilitate reuse

Code Reuse

1

Reuse
 Support

All roles shown
here are

responsible for
reuse

System Designer/
Business Analyst/

Programmer

System
Architect/System

Designer will
enable reuse

Reuse
Opportunity
Identification

Architectural
Reuse

Requirement Reuse Design Reuse
Reuse

Opportunity
Identification

Figure 3.32 Process-component for reuse

classes and components in the domain of object technology) but also
includes the reuse of requirements, architecture, design, and testing.

3.4.72 Roles in Reuse

• System architect, who knows enough about the overall technical
environment to facilitate both creation and consumption of reusable
components.

• System designer/business analyst/programmer

• Project manager/quality manager

3.4.73 Activities and Tasks in Reuse
Figure 3.33 describes the activities and tasks of the process-component in
reuse. Refer to the accompanying CD for a tabular form of these activities
and tasks to enable you to create your own customized project plan.

THE QUALITY PROCESS ARCHITECTURE218

Code Reuse Testing Reuse

Reuse Support

Reuse Test Data

Reward
Producer

Consider Other
Third-Party

Reuse

Consider WAS
Reuse

Consider
Middleware

Reuse

Incorporate and
Integrate
Reusable

Architecture

Consider MDA
Reuse

Architectural Reuse

Requirement
Reuse

Identify
Reusable

Use Cases

Extend Use
Cases

Ascertain Abstract
and Concrete
Requirements

Design
Reuse

Incorporate
Reusable Design

Apply Quality
Review

Produce/Generalize
Reusable Designs

Document
Search Criteria

Code Reuse

Apply Quality
Review

Document
Search Criteria

Generalize
Reusable Code

Incorporate
Reusable Code

Ascertain Reuse
Benefits

Consider Raw
Factors in Reuse

Reward
Consumer

Encourage
External Reuse

Ascertain Reuse
Costs

Reuse
Opportunity
Identification

Requirements
Reuse

Design Reuse
(Patterns)

Architecture
Reuse

Extend Test
Cases

Map against
Design Reuse

Testing Reuse

Figure 3.33 Activities and tasks in reuse

3.4.74 Deliverables in Reuse

• The reuse plan helps to organize the process-component of reuse
within the project.

• Reusable entities (consumed) are models and documentation of
reusable components that have been inserted in the architecture and
the software design within the current project.

• Reusable entities (produced) are models and documentation of
potential reuse components produced by this project for future use.

3.4.75 Quality Comments on Reuse
Necessity

1. Reusable entities are produced by the project.

2. The reuse plan iteratively provides input into enabling reuse
opportunity identification.

3. The system architect provides necessary support in terms of
enabling reuse strategies by identifying opportunities for reuse
and actually reusing the architectural aspects of the system.

4. The system designer, business analyst, and programmer are
involved in their respective aspects of reuse.

5. Reuse opportunity identification is an activity carried out by
people of relevant roles.

6. Requirement reuse is important and is easily facilitated by the
UML’s use case-based approach.

7. Design reuse is also facilitated by the object-oriented aspect of the
UML and, in particular, design patterns and class diagrams. It is
important to note that both production and consumption of reuse
is encouraged in design reuse.

8. Code reuse is well known and the first attempt at reuse by the
software community.

Sufficiency
1. Reusable entities consumed by the new projects provide for the

sufficiency aspect of reuse.

2. Patterns—both published and internally created—are crucial for
analysis- and design-level reuse in any project.

THE SOFTWARE PROCESS 219

3. Reuse opportunity identification is additionally carried out by the
system architect.

4. Architectural reuse enables reuse of Web application servers and
other middleware-type architectures.

5. The project manager and quality manager facilitate reuse and
work on the reward structures supporting reuse.

6. Reuse support deals with the managerial activities of rewarding
reuse and also promoting the policy of “reuse rather than build.”

3.5 The Quality Process
3.5.1 Quality Management Process-Component
The quality management process-component strives to bring together the
social and methodological aspects of the project with a focus on quality.
Some of the responsibilities of this process-component are planning for the
project while keeping quality in mind, identifying the standards (including
the UML standards for modeling), setting the expectations of the users, and,
most importantly, getting the right people together for the quality work.

3.5.2 Roles in Quality Management
• Quality manager organizes and manages the quality function

including creation of the quality environment.

• User highlights the quality expectations and provides feedback on
the product/team’s ability to meet those expectations.

• Quality team/quality analysts carry out the quality functions.

3.5.3 Activities and Tasks in Quality Management
Figure 3.35 describes the activities and tasks of the process-component in
quality management. Refer to the accompanying CD for a tabular form of
these activities and tasks to enable you to create your own customized
project plan.

3.5.4 Deliverables in Quality Management

• The quality plan handles the overall approach to quality within the
project.

THE QUALITY PROCESS ARCHITECTURE220

• The test plan handles the management aspect of testing within the
project.

• The Quality Software Process describes the software process that can
be customized and followed by the project members.

• The standards (interim/input) exist at all levels within the project,
including design, documentation, coding, and testing standards, to
name but a few.

THE QUALITY PROCESS 221

User

Quality
Management

Quality
Plan

Standards

Setting some
expectations is

essential

Quality
Manager

Quality Team/
Quality Analyst

1 21

3

5

6 7 8

4

3

4

6

Deliverables

Quality
Comments

Quality
process in

background

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Quality
Expectations

Quality
Planning

Quality
Team Formation

Test
Planning

Quality
Team Formation

Quality
Process

Test
Plan

Quality
Environment

Creation

9 5

2

Process
Standardization

Model
Standardization

Standardization
(Others)

Process
Standardization

Model
Standardization

Standardization
(Others)

Figure 3.34 Process-component for quality management

3.5.5 Quality Comments on Quality Management
Necessity

1. The quality plan includes all documentation related to organizing
the quality function. This includes all resources and schedules
related to quality management, as well as to the project itself. This
can be considered the main controlling deliverable for all quality-
related activities in the project.

2. The quality process is part of the overall QSP, but specifically
deals with the process-components related to quality.

3. The quality manager is responsible for overall planning,
execution, and tracking of the quality functions—supported by
the project manager.

4. The user participates in explaining her quality needs and
expectations, as well as providing input into quality activities.

THE QUALITY PROCESS ARCHITECTURE222

Quality
Planning

Quality Criterion Time and
Budget

Standards

Quality Team
Formation

Identify People
People into

Quality Team

Quality
Environment Creation

Process
Standardization

Model
Standardization

UML-Based
Modeling

Enhance
E-factor

Test
Planning

Quality Roles to
Project roles

Organize Test
Resources

Test Time
and Budget

Modeling
Language

Project-Level
Modeling

Conventions

Create Physical
Environment

Support
Development
Environment

Documentation
Standards

Quality
Standards

Language
Standards

Database
Standards

Middleware and
Distribution
Standards

Update Quality
Plan Based on
Expectations

Provide
Continuous
Feedback

Set User’s
Expectations of

Quality

Quality
Expectations

Standardization
(Other)

Software
Development

Process

Process
Standards

Quality Software
Process

Process
Standards
Benchmark

Process CASE
Tools

Figure 3.35 Activities and tasks in quality management

5. The quality expectations are created and continuously updated by
the user with the quality manager.

6. The quality planning activity undertakes planning and
documentation of all quality functions.

7. The quality environment creation deals with the creation of the
physical and technical environment for quality activities.

8. The quality team formation includes staffing, organizing, and
motivating the people who perform quality roles in the projects.

9. The process/model/other standardizations deal with creation
and implementation of all relevant standards within the
project.

Sufficiency
1. The standards document provides a reference point for all stan-

dards within the project. In addition to the process and model
standards, there are standards related to languages and data-
bases, which are referred to in this iteratively produced standards
document.

2. The test plan deals with the quality control aspect of testing. It is
created here especially from the resourcing point of view.

3. The quality team and quality analyst are responsible for following
the standards. At this stage, though, they provide input into the
project and the organizational-level standards.

4. The quality team formation is achieved by users who may decide
to become part of the quality team, facilitating direct and contin-
uous input in terms of quality expectations.

5. The test planning activity creates and updates the test plan.

6. The process/model/other standardizations are updated and
followed by the quality team.

3.5.6 Quality Assurance Process-Component
Quality assurance follows the process-component of quality management
and it undertakes the actual effort of assuring the quality of the models
and processes in the project. As with most other process-components, the
quality assurance process-component is not an independent process-
component, but rather is intertwined with the process-components that

THE QUALITY PROCESS 223

produce the MOPS, MOSS, and MOBS. The project manager and the qual-
ity manager play key supporting roles in the execution of this process-
component.

3.5.7 Roles in Quality Assurance

• Quality analyst

• Project team

• Project manager/quality manager

THE QUALITY PROCESS ARCHITECTURE224

Project
Team

Quality
Assurance

Quality
Software
Process

in Enactment

Deliverable corrections is an
ongoing responsibility of

the Project Team, following
the QA of the models

Quality
Analyst

1 2

1

3

5

6
7 8

4

9

2

3 4

5 6

Deliverables

Quality
Comments

QA of MOSS will
eventually

become quality
of code

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

Quality Assuring
MOSS

Quality Assuring
MOPS

Quality Process
Enactment

Standards
Compliance

Quality Assuring
MOBS

Model of
Problem Space

 (MOPS)

Model of
Solution Space

 (MOSS)

Model of
Background

Space
 (MOBS)

QSP Compliance

QSP Compliance

Project Manager/
Quality Manager

Deliverable
Corrections

Figure 3.36 Process-component for quality assurance

3.5.8 Activities and Tasks in Quality Assurance
Figure 3.37 describes the activities and tasks of the process-component in
quality assurance. Refer to the accompanying CD for a tabular form of
these activities and tasks to enable you to create your own customized
project plan.

3.5.9 Deliverables in Quality Assurance

• Quality Software Process in enactment. The QSP provides the basis
for enacting the quality aspect of the project. This is made up of the
templates, deliverables, activities, and tasks (including the ones
mentioned here) that focus on quality.

• MOPS. The Model Of Problem Space is subject to the rigors of quality
assurance activities and tasks.

• MOSS. The Model Of Solution Space is subject to the rigors of quality
assurance activities and tasks.

THE QUALITY PROCESS 225

Standards
Compliance

Identify Relevant
Process Elements

Apply Necessity
Process Quality

Checks

Reapply Process
Checks

Correct Errors in
Process Elements

(Malleability)

Apply Sufficiency
Process Quality

Checks

Identify Model
and Elements for

Checking

Quality
Assuring MOPS

Select Quality
Techniques

Mark and
Report Errors

Quality
Process

Enactment

Checks after
Fixes

Apply Quality
Checks

Quality
Assuring MOSS

Identify Model
and Elements for

Checking

Select Quality
Techniques

Checks after
Fixes

Apply Quality
Checks

Mark and
Report Errors

Quality
Assuring MOBS

Apply Quality
Checks

Select Quality
Techniques

Mark and
Report Errors

Identify Model
and Elements
for Checking

Checks after
Fixes

Estimate and
Measure Quality

Process

Organize Quality
Process

Enactment

Refine Quality
Process

Project
Standards

Modeling
Standards

Language
Standards

Database
Standards

Management
Standards

Quality
Standards

Industrial
Standards

Organizational
Standards

Process
Standards

Deliverable
Corrections

Quality Software
Process Compliance

Figure 3.37 Activities and tasks in quality assurance

• MOBS. The Model Of Background Space is subject to the rigors of
quality assurance activities and tasks.

3.5.10 Quality Comments on Quality Assurance
Necessity

1. The MOPS contains the relevant UML diagrams, descriptions, and
specifications that are subjected to the quality checks. It is essen-
tial that this model is at a suitable level of completion (ideally at
the end of an iteration) before quality checks are applied to it. As a
result of the quality activities, the MOPS is updated.

2. The MOSS contains the solution-level UML diagrams. This model
is iteratively produced; therefore, its quality checks also iterate
with the other two models.

3. The MOBS is also subject to quality checks (a list of suggested
quality checks appears in the accompanying CD for all three
models including MOBS).

4. The project team plays the supporting role to the quality analyst
in his attempts to ensure quality of the models.

5. The quality analyst is the primary role in this process-component.
This role ensures that all the quality-related activities and tasks
are carried out at the correct time and by the right people. In large
practical projects, more than one person plays this role.

6. Quality Software Process compliance ensures the compliance of
the process as it is enacted. The necessary, sufficient, and mal-
leable aspects of the process itself are assured here. This activity is
carried out by the quality analyst.

7. Quality Assuring MOPS undertakes the quality checks for MOPS
as suggested on the accompanying CD.

8. Quality Assuring MOSS undertakes the quality checks for MOSS
as suggested on the accompanying CD.

9. Quality Assuring MOBS undertakes the quality checks for MOBS
as suggested on the accompanying CD.

Sufficiency
1. The Quality Software Process in enactment is not a document-

based deliverable but rather represents the entire QSP in
enactment.

THE QUALITY PROCESS ARCHITECTURE226

2. In addition to the necessary roles played by the quality analyst,
project manager, and quality manager, these managerial roles
provide the organizational support for the quality effort.

3. Quality Software Process compliance is supported by the project
team.

4. Deliverable correction is a reminder activity. It reminds the project
team that they will continue to make corrections to the models,
executables, and other deliverables in the project.

5. In the quality process enactment, the project manager and the
quality manager enact the process configured earlier in the
process-configuration process-component.

6. The standards compliance is also organized by the quality
manager, but may be enforced by the quality analyst.

3.5.11 Quality Control Process-Component
While the process-component for quality control is mentioned here as a part
of the overall quality process, it is discussed in great detail in Chapter 6.

3.5.12 Roles in Quality Control
• Tester

• Modeler/programmer/user

• Quality manager

3.5.13 Activities and Tasks in Quality Control
Figure 3.39 describes the activities and tasks of the process-component in
quality control. Refer to the accompanying CD for a tabular form of these
activities and tasks to enable you to create your own customized project
plan.

3.5.14 Deliverables in Quality Control
• The test plan contains the organizational aspect of testing. This

includes details of the people and the schedules of testing, as well as
what is expected of the testing process.

• The test design provides a more tactical view of testing. Test designs
can be organized around subsystems or packages.

THE QUALITY PROCESS 227

• The test environment is the physical environment that needs to be
created before testing can begin. It is also the software environment
(like the test databases and machines) that needs to be created for
testing.

• Test cases are the basic units of tests. They can be technical or
business test cases. They contain, in addition to the steps to be
executed in testing, inputs and expected results.

• Test data is created, based on the sampling mechanisms (discussed in
detail in Chapter 6), to ensure correct execution of tests—especially
the ones with dependencies on another.

THE QUALITY PROCESS ARCHITECTURE228

Quality
Control

Test
Plan

Activity-deliverable
mapping not finalized yet

Tester

Quality
Manager

1 2 1 3

5

6

7

8

4

9

10

2

3

4 5

6

7

8

Deliverables

Quality
Comments

Quality control is
mostly testing

Process Quality Checks: Necessity

Process Quality Checks: Sufficiency

11

9

Test Case
Documentation

Model/Program
Correction

Test
Environment

Creation

Result
Reporting

Regression
Testing/
Planning

Result
Collation

Test
Design

Test
Environment

Test
Cases

Test
Data

Test
Results

Model/Program
Submission

Modeler/
Programmer/

User

Model/Program
Finalization

Testing
Architecture

Establishment

Testing
Approach

Establishment

Testing
(Test Execution)

Figure 3.38 Process-component for quality control

• Test results are documented, collated, and used for reporting pur-
poses. They can also be used to anticipate areas of the system that
need more corrections, or even rewrites.

3.5.15 Quality Comments on Quality Control
Necessity

1. The test plan is necessary for proper testing organization.

2. Test cases are the basic units of tests and have to be created by
users, testers, and programmers.

3. Test data is the data on which tests are carried out. This is either
the input in a test case or the test database.

4. Test results should be carefully documented and analyzed.

5. The tester is the primary actor in this process-component. The
tester is played by more than one person, and depending on

THE QUALITY PROCESS 229

Test
Organization

Test
Planning

Test
Design

Test
Execution

Regression
Testing/
Planning

Testing
Resources

Technical Test
Environment

Physical Test
Environment

Test Tools

Test Plan Testing Risks

Test Cycles Review Test
Plan

Acceptance
Criteria

Create and
Document

Test Designs

Reuse Existing
Test Designs

Test Cases as
Development
Progresses

Architectural
Needs

Verify Test
Cases

Create Test
Cases

Testing
Architecture

Establishment

Result
Collation

Result
Reporting

Software
IncidencesIncidencesRetest after

Fixes
Automated
Test Cases

Manual Test
Cases

Testing

Figure 3.39 Activities and tasks in quality control

whether it is a technical or business testing, this role is played by
a programmer, a business analyst, or a user.

6. The quality manager supports the quality control activities.

7. The model/program finalization is necessary before proper
testing commences.

8. The test case documentation must be carried out before testing
can proceed.

9. The model/program submission is made to the test manager, who
then proceeds with the testing.

10. The test execution is the testing of the model, executable, or what-
ever artifact is submitted for testing.

11. The result collation is achieved preferably by using a tool to
analyze the result, collate, and report.

Sufficiency
1. The test design provides the sufficiency criteria, as good test

designs based around the system design ensure that the testing is
modular.

2. The test environment focuses on creating a good test environ-
ment. It ensures that testing progresses in an orderly manner and
takes less time than testing without the proper environment.

3. The modelers, programmer, and user provide all necessary sup-
port to the programmer or, at times, play the tester role, as well.

4. Testing the architecture establishment provides the additional
impetus to testing by providing a well-organized basis for con-
ducting the tests. This means organizing the databases, software,
and operating systems for testing to commence.

5. Testing the approach establishment ensures that all participants in
the test teams are aware of the testing approach. This can be, at a
high level, a decision to intensely test data, but not functionality,
and vice versa.

6. Test environment creation supports the physical creation of the
environment.

7. Reporting results is further analysis and reporting of the results
from tests carried out.

THE QUALITY PROCESS ARCHITECTURE230

8. Model/program correction is correcting whatever has been found
in error.

9. Regression testing/planning is redoing tests after the corrections
have been made by the developers/modelers.

3.6 Bibliographic Notes
The use of process CASE tools is invaluable in deploying a process in a
large organization. Check UML CASE Tools for some popular process-
based CASE tools.

Most process CASE tools provide their own variation to the process-
components as well as the ability to maintain the process. This is done by
taking the feedback from the developers and other users of the process,
considering the type of the project, and then customizing the process.

Proponents of eXtreme Programming and Agile methodologies may
not fully concur with what has been described in this chapter. But this
description is scalable and works effectively with a large number of indi-
viduals in a project. Combining the nimbleness of Agile methodologies
with the process-components described here is my most judicious and
favored approach.

3.7 Frequently Asked Questions (FAQs)
Q1: Are there aspects in a process apart from the “what,” the “who,”

and the “how”?

A1: Yes, and they are related to the timing of execution of the process—
in other words, the “when.” I have described the three parts of a
process in order to simplify the understanding of a process. They
are not the only aspects in a process. Furthermore, the issues of
creating a process environment itself, the corresponding process-
based CASE tool, along with the issues of transitioning to a new
process, are some important practical considerations to consider.
These practical issues are discussed in Chapter 4.

Q2: Is understanding the process metamodel important for process-
based work in a project?

FREQUENTLY ASKED QUESTIONS (FAQS) 231

A2: The metamodel I have described in Figure 3.2 is only to create a
theoretical understanding of how process-components are put
together. You can work a process without worrying about the
logic behind the metamodel. However, if your role in a project is
that of a process engineer, then this understanding of a process
metamodel is invaluable in your work of creating a SEP and
adopting it. The same applies to the role of a process CASE tool
developer.

Q3: How do I apply the process-components?

A3: You don’t apply the process-components as they are described in
this chapter. Rather, you create a project task plan based on the
requirements of your particular project, its size and type, and how
you want to iterate within the project by taking help and guidance
from the process-components. This is also described in Chapter 4.

Q4: How do the process-components described here relate to the
Agile methodologies like eXtreme Programming and Crystal?

A4: Agile methodologies eschew the formal descriptions and possible
bureaucracy of complete process. However, in practice, I find it
highly advisable to combine the process-components described in
this chapter with the principles of Agility.

3.8 Exercises
E3.1: How does a software process differ from a quality process?

Describe how together the software process and the quality
process form a good QSP.

E3.2: Which process-components would you use in creating the
MOPS?

E3.3: Describe the relevance of prototyping process-components in
MOSS.

E3.4: Describe why the project management process-component
applies to all modeling spaces.

E3.5: Name two important deliverables produced by the business
analyst.

E3.6: Name two important deliverables produced by the test
manager.

THE QUALITY PROCESS ARCHITECTURE232

E3.7: Name all the tasks involved in the activity of use case
modeling.

E3.8: Name all the tasks involved in the activity of business class
modeling.

E3.9: To which activity does the task of “create state chart diagrams”
belong? Why, according to you, is the activity named as such?

E3.10: In which process-component is the system actually produced?

E3.11: How does the reuse process-component apply to other
process-components where reuse takes place?

E3.12: Where is the incremental and iterative aspect of a process
handled?

E3.13: Describe the responsibilities of a training manager.

E3.14: In which types of projects would you not envisage a steering
committee?

3.9 References
Jacobson, I., et al. Object-Oriented Software Engineering: A Use Case Driven
Approach, Reading, Mass.: Addison-Wesley, 1992.

REFERENCES 233

