Introduction

Organizations want systems. They don’t want processes, meetings, mod-
els, documents, or even code.' They want systems that work—as quickly
as possible, as cheaply as possible, and as easy to change as possible.
Organizations don’t want long software development lead-times and high
costs; they just want to reduce systems development hassles to the abso-
lute minimum.

But systems development is a complicated business. It demands distilla-
tion of overlapping and contradictory requirements; invention of good
abstractions from those requirements; fabrication of an efficient, cost-
effective implementation; and clever solutions to isolated coding and
abstraction problems. And we need to manage all this work to a successful
conclusion, all at the lowest possible cost in time and money.

None of this is new. Over thirty years ago, the U.S. Department of Defense
warned of a “software crisis” and predicted that to meet the burgeoning
need for software by the end of the century, everyone in the country would
have to become a programmer. In many ways this prediction has come
true, as anyone who has checked on the progress of a flight or made a
stock trade using the Internet can tell you. Nowadays, we all write our own

! Robert Block began his book The Politics of Projects(1] in a similar manner.



1.1

INTRODUCTION

programs by filling in forms—at the level of abstraction of the application,
not the software.

Raising the Level of Abstraction

The history of software development is a history of raising the level of
abstraction. Our industry used to build systems by soldering wires
together to form hard-wired programs. Machine code allowed us to store
programs by manipulating switches to enter each instruction. Data was
stored on drums whose rotation time had to be taken into account so that
the head would be able to read the next instruction at exactly the right
time. Later, assemblers took on the tedious task of generating sequences
of ones and zeroes from a set of mnemonics designed for each hardware
platform.

Later, programming languages, such as FORTRAN, were born and “for-
mula translation” became a reality. Standards for COBOL and C enabled
portability between hardware platforms, and the profession developed
techniques for structuring programs so that they were easier to write,
understand, and maintain. We now have languages such as Smalltalk,
C++, Eiffel, and Java, each with the notion of object-orientation, an
approach for structuring data and behavior together into classes and
objects.

As we moved from one language to another, generally we increased the
level of abstraction at which the developer operates, requiring the devel-
oper to learn a new higher-level language that may then be mapped into
lower-level ones, from C++ to C to assembly code to machine code and the
hardware. At first, each higher layer of abstraction was introduced only as
a concept. The first assembly languages were no doubt invented without
the benefit of an (automated) assembler to turn the mnemonics into bits,
and developers were grouping functions together with the data they
encapsulated long before there was any automatic enforcement of the
concept. Similarly, the concepts of structured programming were taught
before there were structured programming languages in widespread
industrial use (pace, Pascal).



RAISING THE LEVEL OF ABSTRACTION 3

Layers of Abstraction and the Market

The manner in which each higher layer of abstraction reached the market fol-
lows a pattern. The typical response to the introduction of the next layer of
abstraction goes something like this: “Formula translation is a neat trick, but
even if you can demonstrate it with an example, it couldn’t possibly work on a
problem as complex and intricate as mine.”

As the tools became more useful and their value became more obvious, a whole
new set of hurdles presented themselves as technical folk tried to acquire the
wherewithal to purchase the tools. Now managers wanted to know what would
happen if they came to rely on these new tools. How many vendors are there?
Are other people doing this? Why should we take the risk in being first? What
happens if the compiler builder runs out of business? Are we becoming too
dependent on a single vendor? Are there standards? Is there interchange?

Initially, it must be said, compilers generated inefficient code. The development
environment, as one would expect, comprised a few, barely production-level
tools. These were generally difficult to use, in part because the producers of the
tools focused first on bringing the technology to market to hook early adopters,
and later on prettier user interfaces to broaden that market. The tools did not
necessarily integrate with one another. When programs went wrong, no sup-
porting tools were available: No symbolic debuggers, no performance profiling
tools, no help, really, other than looking at the generated code, which surely
defeated the whole purpose.

Executable UML and the tooling necessary to compile and debug an executable
UML model are only now passing from this stage, so expect some resistance
today and much better tools tomorrow.

But over time the new layers of abstraction became formalized, and tools
such as assemblers, preprocessors, and compilers were constructed to
support the concepts. This has the effect of hiding the details of the lower
layers so that only a few experts (compiler writers, for example) need con-
cern themselves with the details of how that layer works. In turn, this
raises concerns about the loss of control induced by, for example, elimi-
nating the GOTO statement or writing in a high-level language at a dis-
tance from the “real machine.” Indeed, sometimes the next level of
abstraction has been too big a reach for the profession as a whole, of inter-
est to academics and purists, and the concepts did not take a large enough
mindshare to survive. (ALGOL-68 springs to mind. So does Eiffel, but it has
too many living supporters to be a safe choice of example.)



INTRODUCTION

Object Method History

Object methods have a complex history because they derive from two very dif-
ferent sources.

One source is the programming world, whence object-oriented programming
came. Generalizing shamelessly, object-oriented programmers with an interest
in methods were frustrated with the extremely process-oriented perspective of
“structured methods” of the time. These methods, Structured Analysis and
Structured Design, took functions as their primary view of the system, and
viewed data as a subsidiary, slightly annoying, poor relation. Even the “real-
time” methods at most just added state machines to the mix to control process-
ing, and didn't encapsulate at all. There was a separate “Information Modeling”
movement that was less prominent and which viewed data as all, and process-
ing as a nuisance to be tolerated in the form of CRUD++. Either way, both of
these camps completely missed the object-oriented boat. To add insult to
injury, one motivation for objects—the notion that an object modeled the real
world, and then seamlessly became the software object—was prominently vio-
lated by the emphasis in transforming from one (analysis) notation, data flow
diagrams, to another (design) notation, the structure chart.

Be that as it may, the search was on for a higher level of abstraction than the
programming language, even though some claimed that common third-gener-
ation programming languages such as Smalltalk had already raised the level of
abstraction far enough.

The other source was more centered in analysis. These approaches focused on
modeling the concepts in the problem, but in an object-oriented way. Classes
could be viewed as combinations of data, state, and behavior at a conceptual
level only. In addition to the model, reorganization of “analysis” classes into
“design” classes, and re-allocation of functionality were expected. There was no
need to model the specific features used from a programming language
because the programmer was to fill in these details. Perhaps the purest propo-
nents of this point of view were Shlaer and Mellor. They asserted classes with
attributes clearly visible on the class icon seemingly violating encapsulation,
with the full expectation that object-oriented programming schemes would
select an appropriate private data structure with the necessary operations.

These two sources met in the middle to yield a plethora of methods, each with
its own notation (at least 30 published), each trying to some extent to meet the
needs of both camps. Thus began the Method Wars, though Notation Wars
might be more accurate.

UML is the product of the Method Wars. It uses notations and ideas from many
of the methods extant in the early nineties, sometimes at different levels of
abstraction and detail.



1.2

EXECUTABLE UML 5

As the profession has raised the level of abstraction at which developers
work, we have developed tools to map from one layer to the next automat-
ically. Developers now write in a high-level language that can be mapped
to a lower-level language automatically, instead of writing in the lower-
level language that can be mapped to assembly language, just as our pre-
decessors wrote in assembly language and translated that automatically
into machine language.

Clearly, this forms a pattern: We formalize our knowledge of an applica-
tion in as high a level language as we can. Over time, we learn how to use
this language and apply a set of conventions for its use. These conventions
become formalized and a higher-level language is born that is mapped
automatically into the lower-level language. In turn, this next-higher-level
language is perceived as low level, and we develop a set of conventions for
its use. These newer conventions are then formalized and mapped into
the next level down, and so on.

Executable UML

Executable UML is at the next higher layer of abstraction, abstracting
away both specific programming languages and decisions about the orga-
nization of the software so that a specification built in Executable UML
can be deployed in various software environments without change.

Physically, an Executable UML specification comprises a set of models
represented as diagrams that describe and define the conceptualization
and behavior of the real or hypothetical world under study. The set of
models, taken together, comprise a single specification that we can exam-
ine from several points of view. There are three fundamental projections
on the specification, though we may choose to build any number of UML
diagrams to examine the specification in particular ways.

The first model identifies, classifies, and abstracts the real or hypothetical
world under study, and it organizes the information into a formal struc-
ture. Similar “things,” or objects, in the subject matter under study are
identified and abstracted as classes; characteristics of these objects are
abstracted as attributes; and reliable associations between the objects are
abstracted as relationships.



Figure 1.1

INTRODUCTION
Concept Called Modeled As Expressed As
classes
the world attributes .
. . data o UML class diagram
is full of things associations
constraints
states
things have events .
. g control - UML statechart diagram
lifecycles transitions
procedures
things do things at . . .
algorithm actions action language
each stage

Concepts in an Executable UML Model

O

L

Operations do not appear explicitly as entries in Figure 1.1 because Execut-
able UML derives operations from actions on state machines.

Invoked actions may be shown as operations on classes, but their existence
is normally dependent on the invocation that occurs in a state machine.

We express this first model using a UML class diagram. The abstraction
process requires that each object be subject to and conform to the well-
defined and explicitly stated rules or policies of the subject matter under
study, that attributes be abstractions of characteristics of things in the
subject matter under study, and that relationships similarly model associ-
ations in the subject matter.

Next, the objects (the instances of the classes) may have lifecycles (behav-
iors over time) that are abstracted as state machines. These state
machines are defined for classes, and expressed using a UML statechart
diagram. The abstraction process requires that each object be subject to
and conform to the well-defined and explicitly stated rules or policies of
the world under study, so each object is known to exhibit the same pattern
of behavior.

The behavior of the system is driven by objects moving from one stage in
their lifecycles to another in response to events. When an object changes



1.3

MAKING UML EXECUTABLE 7

Executable UML is a single language in the UML family, designed for a single
purpose: to define the semantics of subject matters precisely. Executable
UML is a particular usage, or profile, the formal manner in which we specify
a set of rules for how particular elements in UML fit together for a particular
purpose.

This book, then, describes a profile of UML for execution.

state, something must happen to make this new state be so. Each state
machine has a set of procedures, one of which is executed when the object
changes state, thus establishing the new state.

Each procedure comprises a set of actions. Actions carry out the funda-
mental computation in the system, and each action is a primitive unit of
computation, such as a data access, a selection, or a loop. The UML only
recently defined a semantics for actions, and it currently has no standard
notation or syntax, though several (near-)conforming languages are avail-
able.

These three models—the class model, the state machines for the classes,
and the states’ procedures—form a complete definition of the subject
matter under study. Figure 1.1 describes the concepts in an Executable
UML model.

In this book we will informally make use of other UML diagrams, such as
use case and collaboration diagrams, that support the construction of exe-
cutable UML models or can be derived from them. We encourage using
any modeling technique, UML-based or otherwise, that helps build the
system.

Making UML Executable

Earlier versions of UML were not executable; they provided for an
extremely limited set of actions (sending a signal, creating an object,
destroying an object, as well as our personal favorite, “uninterpreted
string”). In late 2001, the UML was extended by a semantics for actions.
The action semantics provides a complete set of actions at a high level of
abstraction. For example, actions are defined for manipulating collections



O

INTRODUCTION

Executable UML isn't just a good idea, it’s real. There are several Executable
UML vendors, and the models in this book have been executed to ensure
they are correct. The case study models and the toolset are downloadable.

For the latest information on executable UML, go to
http://www.executableumlbook.com.

of objects directly, thus avoiding the need for explicit programming of
loops and iterators. Executable UML relies on these new actions to be
complete.

For UML to be executable, we must have rules that define the dynamic
semantics of the specification. Dynamically, each object is thought of as
executing concurrently, asynchronously with respect to all others. Each
object may be executing a procedure or waiting for something to happen
to cause it to execute. Sequence is defined for each object separately; there
is no global time and any required synchronization between objects must
be modeled explicitly.

The existence of a defined dynamic semantics makes the three models
computationally complete. A specification can therefore be executed, ver-
ified, and translated into implementation.

Executable UML is designed to produce a comprehensive and compre-
hensible model of a solution without making decisions about the organi-
zation of the software implementation. It is a highly abstract thinking tool
to aid in the formalization of knowledge, a way of thinking about and
describing the concepts that make up an abstract solution to a client
problem.

Executable UML helps us work out how we want to think about a solution:
the terms we need to define, the assumptions we make in selecting those
terms, and the consistency of our definitions and assumptions. In addi-
tion, executable UML models are separate from any implementation, yet
can readily be executed to test for completeness and correctness.

Most important of all, together with a model compiler, they are execut-
able.



1.4

MODEL COMPILERS 9

Model Compilers

At some level, it is fair to say that any language that can be executed is nec-
essarily a programming language; it’s just a matter of the level of abstrac-
tion. So, is executable UML yet another (graphical) programming
language?

An executable UML model completely specifies the semantics of a single
subject matter, and in that sense, it is indeed a “program” for that subject
matter. There is no magic. Yet an executable UML model does not specify
many of the elements we normally associate with programming today. For
example, an executable UML model does not specify distribution; it does
not specify the number and allocation of separate threads; it does not
specify the organization of data; it does not even require implementation
as classes and objects. All of these matters are considered decisions that
relate to hardware and software organization, and they have no place in a
model concerned with, say, the purchase of books online.

Decisions about the organization of the hardware and software are
abstracted away in an executable UML model, just as decisions about reg-
ister allocation and stack/heap organization are abstracted away in the
typical compiler. And, just as a typical language compiler makes decisions
about register allocation and the like for a specific machine environment,
so does an executable UML model compiler make decisions about a par-
ticular hardware and software environment, deciding, for example, to use
a distributed Internet model with separate threads for each user window,
HTML for the user interface displays, and so on.

An executable UML model compiler turns an executable UML model into
an implementation using a set of decisions about the target hardware and
software environment.

There are many possible executable UML model compilers for different
system architectures. Each architecture makes its own decisions about the
organization of hardware and software, including even the programming
language. Each model compiler can compile any executable UML model
into an implementation.



10

INTRODUCTION

The notion of so many different model compilers for such different software
architecture designs is a far cry from the one-size-fits-all visual modeling
tools of the past.

Here are some examples of possible model compilers:

1. Multi-tasking C++ optimized for embedded systems, targeting Win-
dows, Solaris, and various real-time operating systems. [3]

2. Multi-processing C++ with transaction safety and rollback. [2]

3. Fault-tolerant, multi-processing C++ with persistence supporting
three processor types and two operating systems.

4. Cstraight on to an embedded system, with no operating system. [3]

5. C++, widely distributed discrete-event simulation, Windows, and
UNIX.

6. Java byte code for single-tasking Java with EJB session beans and XML
interfaces.

7. Handel-C and C++ for system-level hardware/software development.

8. A directly executing executable UML virtual machine.

A single model compiler may employ several languages or approaches to
problems such as persistence and multi-tasking. Then, however, the sev-
eral approaches must be shown to fit together into a single, coherent
whole.

Of these, some are commercially available, as indicated by the references
provided above, and some are proprietary, built specifically to optimize a
property found in related systems produced by a company, such as the
fault-tolerant multi-processing model compiler. Some are still just proto-
types or twinkles in our eyes, such as the last three.

As a developer, you will build an executable UML model that captures
your solution for the subject matter under study, purchase a model com-
piler that meets the performance properties and system characteristics
you require, and give directives to the compiler for the particular applica-
tion. Hence, a system that must control a small robot would select the
small footprint C model compiler or one like it, and a system executing



1.5

MODEL-DRIVEN ARCHITECTURE 11

financial transactions would prefer one with transaction safety and roll-
back.

The performance of the model compiler may depend on the allocations of
application model elements, and a model compiler may not know enough
to be able to allocate a particular class to that task or processor for the best
performance. Similarly, a model compiler that provides persistence may
not know enough about your subject matter to determine what to make
persistent. Consequently, you will also need to provide model compiler—
specific configuration information. Each feature provided by the model-
compiler that does not have a direct analog in executable UML will
require directives to determine which feature to use.

These choices will affect performance of the model compiler. One particu-
larly performance-sensitive feature is static allocation to tasks and proces-
sors. Allocating two classes that communicate heavily with different
processors could cause significant degradation of network performance
and of your system. If this is so, of course, it’s a simple matter to re-allo-
cate the elements of the model and recompile. This is why executable
UML is so powerful—by separating the model of the subject matter from
its software structure, the two aspects can be changed independently,
making it easier to modify one without adversely affecting the other. This
extends the Java notion of the “write once, run anywhere” concept; as we
raise the level of abstraction, we also make our programs more portable. It
also enables a number of interesting possibilities for hardware-software
co-design.

Model-Driven Architecture

Executable UML is one pillar supporting the Model-Driven Architecture
(MDA) initiative announced by the Object Management Group (OMG) in
early 2001, the purpose of which is to enable specification of systems
using models.

Model-driven architecture depends on the notion of a Platform-Indepen-
dent Model (PIM), a model of a solution to a problem that does not rely on
any implementation technologies. A PIM is independent of its platform(s).



12

1.6

INTRODUCTION

A model of a online bookstore, for example, is independent of the user
interface and messaging services it employs.

A PIM can be built using an executable UML.

Some proponents of MDA hold that a specification of the interface in a
language such as the OMG’s Interface Description Language (IDL), plus
some constraints, is sufficient to specify without overspecifying. The views
of these two camps are not contradictory, but complementary. There is no
technical reason why a PIM specified using an executable UML cannot be
bridged to one specified in terms of interfaces and constraints. One is just
amore complete version of the other.

It is because an executable model is required as a way to specify PIMs
completely that we view an executable UML as a foundation of model-
driven architectures.

MDA also defines the concept of a Platform-Specific Model (PSM): a
model that contains within it the details of the implementation, enough
that code can be generated from it. A PSM is produced by weaving
together the application model and the platforms on which it relies. The
PSM contains information about software structure, enough information,
possibly, to be able to generate code. Executable UML views the PSM as an
intermediate graphical form of the code that is dispensable in the case of
complete code generation.

At the time of writing, MDA is still being defined. However, some variation
of the concepts of executable UML will, in our opinion, be required to sup-
port MDA. We offer our view on executable UML concepts here. Describ-
ing and defining MDA is another project and another book.

References

[1] Block, Robert: The Politics of Projects. Yourdon Press, New York, NY,
1983.

[2] Kabira Technologies URL: www.kabira.com

[3] Project Technology, Inc. URL: www.projtech.com



	Introduction
	1.1 Raising the Level of Abstraction
	1.2 Executable UML
	1.3 Making UML Executable
	1.4 Model Compilers
	1.5 Model-Driven Architecture
	1.6 References


