
4

.NET Languages

The Common Language Runtime is explicitly designed to sup-

port multiple languages. In general, though, languages built on

the CLR tend to have a good deal in common. By defining a

large set of core semantics, the CLR also defines a large part of

a typical programming language built using it. For example, a

substantial chunk of learning any CLR-based language is seeing

how the standard types defined by the CLR are mapped into

that language. You must also learn the language’s syntax, of

course, including the control structures the language provides.

Yet once you know what the CLR offers, you’re a long way

down the path to learning any language built on top of it.

This chapter describes C# and Visual Basic.NET, the most im-

portant CLR-based languages. It also takes a brief look at the

Managed Extensions for C++ that allow C++ developers to

write CLR-based code. The goal is not to provide exhaustive

coverage of every language feature—that would require three

more books—but rather to give you a sense of how these lan-

guages look and how they express the core functionality pro-

vided by the CLR.

119

Understanding a

CLR-based lan-

guage starts with

understanding

the CLR

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 119

120 .NET Languages

C#

As its name suggests, C# is a member of the C family of pro-

gramming languages. Unlike C, C# is explicitly object-oriented.

Unlike C++, however, which is the most widely used object-

oriented language in this family, C# isn’t fiendishly

complicated. Instead, C# was designed to be easily approach-

able by anyone with a background in C++ or Java.

C# is an object-

oriented language

with a C-like syntax

What About Java for the .NET Framework?

In the fall of 2001, Microsoft announced Visual J#.NET, an implementation of the

Java language built on the CLR. Despite this, I doubt that Java will ever be a vi-

able choice for the .NET Framework. The reason is that even if a Java aficionado

chooses to use a CLR-based Java compiler, such as Visual J#.NET, she’s unlikely

to be truly happy. Java implies a group of libraries and interfaces such as Swing

and Enterprise JavaBeans. The .NET Framework provides its own equivalent tech-

nologies, so most of these won’t be available. As a result, a developer using the

Java language on the .NET Framework won’t feel like she’s working in a true Java

environment because the familiar libraries won’t be there.

The real target market for Visual J#.NET is Microsoft’s existing Visual J++ cus-

tomers. By providing a migration path to the .NET Framework, Microsoft is help-

ing them move away from a dying product to one with a long future ahead of it.

People who believe that Microsoft is truly interested in creating a first-class envi-

ronment for building new Java applications might also wish to examine their be-

liefs about Santa Claus.

The battle lines are clear: It’s .NET versus the Java world. This is unquestion-

ably a good thing. Those who think everyone should implement Java forget

both the dangers of monopoly and the sloth that comes with having no com-

petition. Having two powerful technology camps, each with a strong position,

is the ideal world. Each has innovations that the other can learn from, and each

provides examples of things to avoid. In the end, the competition benefits

everyone.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 120

C# 121

The most popular tool today for creating C# code is Microsoft’s

Visual Studio.NET. It’s not the only choice, however. Microsoft

also provides a command-line compiler with the .NET

Framework called csc.exe, and the open source world has also

created a C# compiler. Visual Studio.NET provides a rich envi-

ronment for building CLR-based applications in C#, however,

so it’s hard to imagine that other alternatives will attract a large

share of developers.

Microsoft provides

the dominant C#

compilers but not

the only ones

Standardizing C# and the CLR

Microsoft has submitted C# and a subset of the CLR called the Common

Language Infrastructure (CLI) to the international standards body ECMA, where

they are on track to become ECMA standards. Along with C#, the things that have

been submitted for standardization include the syntax and semantics for meta-

data, MSIL (rechristened the Common Intermediate Language, or CIL), and parts

of the .NET Framework class library. For more details on exactly what has been

submitted and its current status, see http://msdn.microsoft.com/net/ecma.

Sun came close to doing something similar with its Java technology but backed

away at the last minute. Will Microsoft’s efforts be more successful? Sun resisted

this step in large part because they were unwilling to give up control of Java.

Control of Java is a valuable thing, and since Sun is a for-profit company, its re-

luctance to relinquish this control makes perfect sense. Microsoft is also a for-

profit company. Will they really wait until ECMA has approved, say, an

enhancement to C# before including it in their next release? And if they do, is this

a good thing? Standards bodies aren’t known for their speed.

I’d be surprised if Microsoft lets ECMA control the rate at which innovations ap-

pear in future releases of .NET technologies. Still, making C# and the CLI stan-

dards does give others a way to build them. Somewhat surprisingly, given its

traditional antipathy toward Microsoft, the open source world has spawned var-

ious efforts to build parts of .NET. The most visible of these is the Mono project.

(Mono means “monkey” in Spanish, which may be an oblique commentary on

the Mono team’s view of Microsoft.) Mono’s ambitious goal is to implement at

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 121

122 .NET Languages

A C# Example
Like most programming languages, C# defines data types, con-

trol structures, and more. Unlike older languages, however, C#

does this by building on the CLR. Understanding the CLR there-

fore takes one a long way toward understanding C#. To illus-

trate this, here’s a simple C# example:

// A C# example
interface IMath
{

int Factorial(int f);
double SquareRoot(double s);

}

class Compute : IMath
{

public int Factorial(int f)
{

int i;
int result = 1;
for (i=2; i<=f; i++)

result = result * i;
return result;

}

least a large part of what Microsoft has given to ECMA, including a C# compiler

and the CLI and perhaps more. Mono’s creators say that they were attracted to

the CLR for technical reasons, which must please Microsoft. In fact, from Mono’s

perspective, the CLI is the specification of a system while .NET’s CLR is just the

Microsoft implementation of this specification. Mono is certainly an interesting

undertaking; to learn more about it, see http://www.go-mono.com.

Microsoft itself, together with Corel, has announced plans to make an imple-

mentation of C# and the CLI available for BSD UNIX. As discussed in Chapter

1, Microsoft faces substantial credibility problems in porting the .NET

Framework to non-Windows platforms. Still, it’s early in the game, and anything

is possible. Whatever happens, having public standards and an open source im-

plementation for their core technologies will certainly be a new experience for

Microsoft.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 122

C# 123

public double SquareRoot(double s)
{

return System.Math.Sqrt(s);
}

}

class DisplayValues
{

static void Main()
{

Compute c = new Compute();
int v;
v = 5;
System.Console.WriteLine(

"{0} factorial: {1}",
v, c.Factorial(v));

System.Console.WriteLine(
"Square root of {0}: {1:f4}",
v, c.SquareRoot(v));

}
}

The program begins with a comment, indicated by two slashes,

giving a brief description of the program’s purpose. The body of

the program consists of three types: an interface named IMath

and the two classes Compute and DisplayValues. All C# pro-

grams consist of some number of types, the outermost of which

must be classes, interfaces, structures, enums, or delegates.

(Namespaces, discussed later, can also appear here.) All meth-

ods, fields, and other type members must belong to one of

these types, which means that C# doesn’t allow either global

variables or global methods.

The IMath interface, which is a C# incarnation of the Common

Type System (CTS) interface type described in Chapter 3, de-

fines the methods Factorial and SquareRoot. Each of these

methods takes one parameter and returns a numeric result.

These parameters are passed by value, the default in C#. This

means that changes made to the parameter’s value within the

method won’t be seen by the caller once the method returns.

Placing the keyword ref in front of a parameter causes a para-

meter to be passed by reference, so any changes made within

the method will be reflected back to the caller.

Every C# program

is made up of one

or more types

A C# interface is an

expression of a CTS

interface

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 123

124 .NET Languages

Each class in this example is also a C# incarnation of the under-

lying CTS type. C# classes can implement one or more inter-

faces, inherit from at most one other class, and do all of the

other things defined for a CTS class. The first class shown here,

Compute, implements the IMath interface, as indicated by the

colon between Compute and IMath. Accordingly, this class must

contain implementations for both of the interface’s methods. The

body of the Factorial method declares a pair of integer variables,

initializes the second of them to 1, then uses a simple for loop to

calculate the factorial of its parameter (and doesn’t bother to

check for overflow, which is admittedly bad programming prac-

tice). Compute’s second method, SquareRoot, is even simpler. It

relies on the .NET Framework class library, calling the Sqrt func-

tion provided by the Math class in the System namespace.

The last type in this simple example, the class DisplayValues,

contains only a single method named Main. Much like C and

C++, a C# program begins executing with this method in what-

ever type it appears. Although it’s not shown here, Main can

take arguments passed in when the program is started, and it

must be declared as static. In this example, Main returns void,

which is C#’s way of saying that the method has no return

value. The type void cannot be used for parameters as in C and

C++, however. Instead, its only purpose is to indicate that a

method returns no value.

In this example, Main creates an instance of the Compute class

using C#’s new operator. When this program is executed, new

will be translated into the MSIL instruction newobj described in

Chapter 3. Main next declares an int variable and sets its value

to 5. This value is then passed as a parameter into calls to the

Factorial and SquareRoot methods provided by the Compute

instance. Factorial expects an int, which is exactly what’s

passed in this call, but SquareRoot expects a double. The int

will automatically be converted into a double, since this con-

version can be done with no loss of information. C# calls this

A C# class is an

expression of a CTS

class

Execution of a C#

program begins

with the method

named Main

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 124

C# 125

an implicit conversion, distinguishing it from type conversions

that are marked explicitly in the code.

The results are written out using the WriteLine method of the

Console class, another standard part of the .NET Framework’s

System namespace. This method uses numbers that are

wrapped in curly braces and that correspond to the variables to

be output. Note that in the second call to WriteLine, the num-

ber in braces is followed by “:f4”. This formatting directive

means that the value should be written as a fixed-point number

with four places to the right of the decimal. Accordingly, the

output of this simple program is

5 factorial: 120
Square root of 5: 2.2361

The goal of this example is to give you a feeling for the general

structure and style of C#. There’s much more to the language,

as the next sections illustrate.

C# Types
Each type defined by C# is built on an analogous CTS type

provided by the CLR. Table 4-1 shows most of the CTS types

and their C# equivalents. As mentioned earlier in this book, all

of these data types are defined in the System namespace. The

C# equivalents shown here are in fact just shorthand synonyms

for these alternative definitions. In the example just shown, for

instance, the line

int i;

could have been replaced with

System.Int32 i;

Both work, and both produce exactly the same results.

The Console class’s

WriteLine method

writes formatted

output to the

console

C# types are built

on CTS types

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 125

126 .NET Languages

Table 4-1 Some CTS Types and Their C# Equivalents

CTS C#

Byte byte

Char char

Int16 short

Int32 int

Int64 long

UInt16 ushort

UInt32 uint

UInt64 ulong

Single float

Double double

Decimal decimal

Boolean bool

Structure struct

String string

Class class

Interface interface

Delegate delegate

Note that C# is case sensitive. Declaring a variable as “Double”

rather than “double” will result in a compiler error. For people

accustomed to languages derived from C, this will seem nor-

mal. To others, however, it might take a little getting used to.

Classes
C# classes expose the behaviors of a CTS class using a C-

derived syntax. For example, CTS classes can implement one or

more interfaces but inherit directly from at most one other class.

A C# class Calculator that implements the interfaces IAlgebra

Like a CTS class, a

C# class can inherit

directly from only

one other class

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 126

C# 127

and ITrig and inherits from the class MathBasics would be de-

clared as

class Calculator : MathBasics, IAlgebra, ITrig { ... }

Note that the class must come first in this list. C# classes can

also be labeled as sealed or abstract, as defined in Chapter 3,

and can be assigned public or internal visibility. These translate

into the CTS-defined visibilities public and assembly, respec-

tively. The default is internal. All of this information is stored in

the metadata for this class once it has been compiled.

A C# class can contain fields, methods, and properties, all of

which are defined for any CTS class. Each of these has an

accessibility, which is indicated in C# by an appropriate ac-

cess modifier such as public or private. It can also contain

one or more constructors, called when an instance of this

class is created, and at most one destructor, which is actually

the name C# uses for a finalizer, a concept described in

Chapter 3. If the class inherits from another class, it can po-

tentially override one or more of the type members, such as a

method, in its parent. To do this, the member being overrid-

den must be declared as virtual.

A class can also define overloaded operators. An overloaded

operator is one that has been redefined to have a special mean-

ing when used with instances of this class. For example, a class

representing workgroups in an organization might redefine the

+ operator to mean combining two workgroups into one.

Interfaces
Interfaces are relatively simple things, and the basic C# syntax

for describing an interface was shown in the earlier example.

Not shown there was how C# expresses multiple interface

inheritance, that is, one interface that inherits from more than

one parent. If, for example, the interface ITrig inherits from the

A C# class can

include fields,

methods, proper-

ties, constructors,

destructors, and

more

C# supports opera-

tor overloading

A C# interface can

inherit directly from

one or more other

interfaces

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 127

128 .NET Languages

three interfaces, ISine, ICosine, and ITangent, it could be de-

clared as

Interface ITrig: ISine, ICosine, ITangent { ... }

ITrig will contain all the methods, properties, and other type

members defined in its three parent interfaces as well as any-

thing it defines on its own.

Structures
Reflecting their definition in the CTS, structures in C# are much

like classes. They can contain methods, fields, and properties

and implement interfaces and more. They are value types rather

than reference types, however, which means they’re allocated

on the stack. Value types also are prohibited from participating

in inheritance. Unlike a class, a structure can’t inherit from

another type, and it’s also not possible to define a type that

inherits from a structure.

Here’s a simple example of a C# structure:

struct employee
{

string name;
int age;

}

In this example, the structure contains only fields, much like a

traditional C-style structure. Yet a structure can be much more

complex. The Compute class shown earlier, for instance, could

be converted to a structure, methods and all, by just changing

the word class in its definition to struct. The program would

function in just the same way.

Delegates
Passing a reference to a method is a reasonably common thing

to do. For example, suppose you need to tell some chunk of

code what method in your code should be called when a spe-

C# structures are

like slightly simpli-

fied C# classes

Passing a reference

to a method as a

parameter is often

useful

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 128

C# 129

cific event occurs. You need some way to pass in the identity of

this callback function at runtime. In C and C++, you can do this

by passing the address of the method, that is, a pointer to the

code you want to be called. In the type-safe world of the .NET

Framework, however, passing raw addresses isn’t allowed. Yet

the problem doesn’t go away. A type-safe way to pass a refer-

ence to a method is still useful.

As described briefly in Chapter 3, the CTS defines the reference

type delegate for this purpose. A delegate is an object that con-

tains a reference to a method with a specific signature. Once it

has been created and initialized, it can be passed as a parame-

ter into some other method and then invoked. Here’s a simple

example of creating and using a delegate in C#:

delegate void SDelegate(string s);

class DelegateExample
{

public static void Main()
{

SDelegate del = new SDelegate(WriteString);
CallDelegate(del);

}
public static void CallDelegate(SDelegate Write)
{

System.Console.WriteLine("In CallDelegate");
Write("A delegated hello");

}
public static void WriteString(string s)
{

System.Console.WriteLine("In WriteString:
{0}", s);

}
}

The example begins by defining SDelegate as a delegate type.

This definition specifies that SDelegate objects can contain

references only to methods that take a single string parameter.

In the example’s Main method, a variable del of type

SDelegate is declared and then initialized to contain a refer-

ence to the WriteString method. This method is defined later in

A C# delegate

provides a type-safe

way to pass a refer-

ence to a method

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 129

130 .NET Languages

the class, and as required, has a single parameter of type string.

Main then invokes the CallDelegate method, passing in del as

a parameter.

CallDelegate is defined to take an SDelegate as its parameter. In

other words, what gets passed to this method is a delegate ob-

ject that contains the address of some method. Because it’s an

SDelegate, that method must have a single parameter of type

string. Inside CallDelegate, the method identified by the passed-

in parameter is referred to as Write, and after printing a simple

message, CallDelegate invokes this Write method. Because

Write is actually a delegate, however, what really gets called is

the method this delegate references, WriteString. The output of

this simple example is

In CallDelegate
In WriteString: A delegated hello

Note that the CallDelegate method executes first, followed by

WriteString.

Delegates can be significantly more complicated than this.

They can be combined, for example, so that calling a single

delegate results in calls to the two or more other delegates it

contains. Yet even simple delegates can be useful. By providing

a type-safe way to pass a reference to a method, they offer this

important feature of C and C++ in a much less risky way.

Arrays
As in other languages, C# arrays are ordered groups of elements

of the same type. Unlike many other languages, however, C#

arrays are objects. In fact, as described in Chapter 3, they are

reference types, which means they get allocated on the heap.

Here’s an example that declares a single-dimensional array of

integers:

int[] ages;

A delegate can be

combined with

other delegates

Like CTS arrays, C#

arrays are reference

types

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 130

C# 131

Since ages is an object, no instance exists until one is explicitly

created. This can be done with

ages = new int[10];

which allocates space for ten integers on the heap. As this ex-

ample shows, a C# array has no fixed size until an instance of

that array type is created. It’s also possible to both declare and

create an array instance in a single statement, such as

int[] ages = new int[10];

Arrays of any type can be declared, but exactly how an array

gets allocated depends on whether it’s an array of value types

or reference types. The example just shown allocates space for

ten integers on the heap, while

string[] names = new string[10];

allocates space for ten references to strings on the heap. An

array of value types, such as ints, actually contains the values,

but an array of reference types, such as the strings in this exam-

ple, contains only references to values.

Arrays can also have multiple dimensions. For example, the

statement

int[,] points = new int[10,20];

creates a two-dimensional array of integers. The first dimension

has 10 elements, while the second has 20. Regardless of the

number of dimensions in an array, however, the lower bound of

each one is always zero.

C#’s array type is built on the core array support provided by

the CLR. Recall from the previous chapter that all CLR-based

C# arrays can be

multidimensional

Standard methods

and properties can

be accessed on all

C# arrays

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 131

132 .NET Languages

arrays, including all C# arrays, inherit from System.Array. This

base type provides various methods and properties that can be

accessed on any instance of an array type. For example, the

GetLength method can be used to determine the number of

elements in a particular dimension of an array, while the

CopyTo method can be used to copy all of the elements in a

one-dimensional array to another one-dimensional array.

C# Control Structures
C# provides the traditional set of control structures. Among the

most commonly used of these is the if statement, which looks

like this:

if (x > y)
p = true;

else
p = false;

Note that the condition for the if must be a value of type bool.

It can’t be an integer, as in C and C++.

C# also has a switch statement. Here’s an example:

switch (x)
{

case 1:
y = 100;
break;

case 2:
y = 200;
break;

default:
y = 300;
break;

}

Depending on the value of x, y will be set to 100, 200, or 300.

The break statements cause control to jump to whatever state-

ment follows this switch. Unlike C and C++, these (or similar)

statements are mandatory in C#, even for the default case.

Omitting them will produce a compiler error.

The control struc-

tures in C# are

typical of a modern

high-level language

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 132

C# 133

C# also includes various kinds of loops. In a while loop, the

condition must evaluate to a bool rather than an integer value,

which again is different from C and C++. There’s also a

do/while combination that puts the test at the bottom rather

than at the top and a for loop, which was illustrated in the ear-

lier example. Finally, C# includes a foreach statement, which

allows iterating through all the elements in a value of a collec-

tion type. There are various ways a type can qualify as a collec-

tion type, the most straightforward of which is to implement the

standard interface System.IEnumerable. A common example of

a collection type is an array, and so one use of a foreach loop is

to examine or manipulate each element in an array.

C# also includes a goto statement, which jumps to a particu-

lar labeled point in the program, and a continue statement,

which immediately returns to the top of whatever loop it’s

contained in and starts the next iteration. In general, the con-

trol structures in this new language are not very new, so they

will be familiar to anybody who knows another high-level

language.

Other C# Features
The fundamentals of a programming language are in its types

and control structures. There are many more interesting things

in C#, however—too many to cover in detail in this short sur-

vey. This section provides brief looks at some of the more inter-

esting additional aspects of this new language.

Working with Namespaces
Because the underlying class libraries are so fundamental,

namespaces are a critical part of programming with the .NET

Framework. One way to invoke a method in the class libraries

is by giving its fully qualified name. In the example shown ear-

lier, for instance, the WriteLine method was invoked with

System.Console.WriteLine(...);

C# includes while,

do/while, for, and

foreach loops

C#’s using state-

ment makes it

easier to reference

the contents of a

namespace

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 133

134 .NET Languages

To lessen the amount of typing required, C# provides the using

statement. This allows the contents of a namespace to be refer-

enced with shorter names. It’s common, for example, to start

each C# program with the statement

using System;

If the example shown earlier had included this line, the

WriteLine method could have been invoked with just

Console.WriteLine(...);

A program can also contain several using statements if neces-

sary, as some of the examples later in this book will illustrate.

It’s also possible to define your own namespaces directly in C#

containing types or even other namespaces. The types they

contain can then also be referenced either with fully qualified

names or through appropriate using statements.

Handling Exceptions
Errors are a fact of life, at least for developers. In the .NET

Framework, errors that occur at runtime are handled in a con-

sistent way through exceptions. As in so much else, C# pro-

vides a syntax for working with exceptions, but the fundamental

mechanisms are embedded in the CLR itself. This not only pro-

vides a consistent approach to error handling for all C# devel-

opers, but also means that all CLR-based languages will deal

with this potentially tricky area in the same way. Errors can

even be propagated across language boundaries as long as

those languages are built on the .NET Framework.

An exception is an object that represents some unusual event,

such as an error. The .NET Framework defines a large set of

exceptions, and it’s also possible to create custom exceptions.

An exception is automatically raised by the runtime when er-

rors occur. For example, in the code fragment

Exceptions provide

a consistent way to

handle errors across

all CLR-based

languages

An exception can

be raised when an

error occurs

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 134

C# 135

x = y/z;

what happens if z is zero? The answer is that the CLR raises the

System.DivideByZeroException. If no exception handling is

being used, the program will terminate.

C# makes it possible to catch exceptions, however, using try/catch

blocks. The code above can be changed to look like this:

try
{

x = y/z;
}
catch
{

System.Console.WriteLine(“Exception caught”);
}

The code within the braces of the try statement will now be

monitored for exceptions. If none occurs, execution will skip

the catch statement and continue. If an exception occurs, how-

ever, the code in the catch statement will be executed, in this

case printing out a warning, and execution will continue with

whatever statement follows the catch.

It’s also possible to have different catch statements for different

exceptions and to learn exactly which exception occurred.

Here’s another example:

try
{

x = y/z;
}
catch (System.DivideByZeroException)
{

System.Console.WriteLine("z is zero");
}
catch (System.Exception e)
{

System.Console.WriteLine("Exception: {0}",
e.Message);

}

Exceptions can be

handled using

try/catch blocks

Different excep-

tions can be han-

dled differently

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 135

136 .NET Languages

In this case, if no exceptions occur, x will be assigned the value

of y divided by z, and the code in both catch statements will be

skipped. If z is zero, however, the first catch statement will be

executed, printing a message to this effect. Execution will then

skip the next catch statement and continue with whatever fol-

lows this try/catch block. If any other exception occurs, the

second catch statement will be executed. This statement de-

clares an object e of type System.Exception and then accesses

this object’s Message property to retrieve a printable string indi-

cating what exception has occurred.

Since CLR-based languages such as C# use exceptions consis-

tently for error handling, why not define your own exceptions

for handling your own errors? This can be done by defining a

class that inherits from System.Exception and then using the

throw statement to raise this custom exception. These excep-

tions can be caught with a try/catch block, just like those de-

fined by the system.

Although it’s not shown here, it’s also possible to end a try/catch

block with a finally statement. The code in this statement gets

executed whether or not an exception occurs. This option is

useful when some final cleanup must take place no matter what

happens.

Using Attributes
Once it’s compiled, every C# type has associated metadata

stored with it in the same file. Most of this metadata describes

the type itself. As described in the previous chapter, however,

metadata can also include attributes specified with this type.

Given that the CLR provides a way to store attributes, it follows

that C# must have some way to define attributes and their val-

ues. As described later in this book, attributes are used exten-

sively by the .NET Framework class library. They can be

applied to classes, interfaces, structures, methods, fields, para-

Custom exceptions

can also be defined

A C# program can

contain attributes

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 136

C# 137

meters, and more. It’s even possible to specify attributes that are

applied to an entire assembly.

For example, suppose the Factorial method shown earlier had

been declared with the WebMethod attribute applied to it.

Assuming the appropriate using statements were in place to

identify the correct namespace for this attribute, the declaration

would look like this in C#:

[WebMethod] public int Factorial(int f) {...}

This attribute is used by ASP.NET, part of the .NET Framework

class library, to indicate that a method should be exposed as a

SOAP-callable Web service. (For more on how this attribute is

used, see Chapter 7.) Similarly, including the attribute

[assembly:AssemblyCompanyAttribute("QwickBank")]

in a C# file will set the value of an assembly-wide attribute, one

that gets stored in the assembly’s manifest, containing the name

of the company creating this assembly. This example also

shows how attributes can have parameters, allowing their user

to specify particular values for the attribute.

Developers can also create their own attributes. For example,

you might wish to define an attribute that can be used to iden-

tify the date a particular C# type was modified. To do this, you

can define a class that inherits from System.Attribute, then de-

fine the information you’d like that class to contain, such as a

date. You can then apply this new attribute to types in your

program and have the information it includes be automatically

placed into the metadata for those types. Once they’ve been

created, custom attributes can be read using the GetCustomAt-

tributes method defined by the Attribute class, part of the

System.Reflection namespace in the .NET Framework class

library. Whether standard or custom, however, attributes are a

commonly used feature in CLR-based software.

Custom attributes

can also be defined

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 137

138 .NET Languages

Writing Unsafe Code
C# normally relies on the CLR for memory management.

When an instance of a reference type is no longer in use, for

example, the CLR’s garbage collector will eventually free the

memory occupied by that type. As described in Chapter 3, the

garbage collection process also rearranges the elements that

are on the managed heap and currently in use, compacting

them to free more space.

What would happen if traditional C/C++ pointers were used in

this environment? A pointer contains a direct memory address,

so a pointer into the managed heap would reference a specific

location in the heap’s memory. When the garbage collector

rearranged the contents of the heap to create more free space,

whatever the pointer pointed to could change. Blindly mixing

pointers and garbage collection is a recipe for disaster.

Yet it’s sometimes necessary. For example, suppose you need to

call existing non-CLR-based code, such as the underlying oper-

ating system, and the call includes a structure with embedded

pointers. Or perhaps a particular section of an application is so

performance critical that you can’t rely on the garbage collector

to manage memory for you. For situations like these, C# pro-

vides the ability to use pointers in what’s known as unsafe code.

Unsafe code can use pointers, with all of the attendant benefits

and pitfalls pointers entail. To make this “unsafe” activity as safe

as possible, however, C# requires that all code that does this be

explicitly marked with the keyword unsafe. Within an unsafe

method, the fixed statement can be used to lock one or more

values of a reference type in place on the managed heap. (This

is sometimes called pinning a value.) Here’s a simple example:

class Risky
{

unsafe public void PrintChars()
{

C# developers

typically rely on the

CLR’s garbage

collection for mem-

ory management

Pointers and

garbage collection

don’t mix well

C# allows creating

unsafe code that

uses pointers

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 138

C# 139

char[] charList = new char[2];
charList[0] = 'A';
charList[1] = 'B';

System.Console.WriteLine("{0} {1}",
charList[0], charList[1]);

fixed (char* f = charList)
{

charList[0] = *(f+1);
}
System.Console.WriteLine("{0} {1}",

charList[0], charList[1]);
}

}

class DisplayValues
{

static void Main()
{

Risky r = new Risky();
r.PrintChars();

}
}

The PrintChars method in the class Risky is marked with the

keyword unsafe. This method declares the small character array

charList and then sets the two elements in this array to “A” and

“B,” respectively. The first call to WriteLine produces

A B

just as you’d expect. The fixed statement then declares a char-

acter pointer f and initializes it to contain the address of the

charList array. Within the fixed statement’s body, the first ele-

ment of this array is assigned the value at address f+1. (The

asterisk in front of the expression means “return what’s at this

address.”) When WriteLine is called again, the output is

B B

The value that is one beyond the start of the array, the character

“B,” has been assigned to the array’s first position.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 139

140 .NET Languages

This example does nothing useful, of course. Its intent is to

make clear that C# does allow declaring pointers, performing

pointer arithmetic, and more, as long as those statements are

within areas clearly marked as unsafe. The language’s creators

really want you to be sure about doing this, so compiling any

unsafe code requires specifying the /unsafe option to the C#

compiler. Also, unsafe code can’t be verified for type safety,

which means that the CLR’s built-in code access security fea-

tures described in Chapter 3 can’t be used. Unsafe code can be

run in only a fully trusted environment, which makes it gener-

ally unsuitable for software that will be downloaded from the

Internet. Still, there are cases when unsafe code is the right

solution to a difficult problem.

Preprocessor Directives
Unlike C and C++, C# has no preprocessor. Instead, the com-

piler has built-in support for the most useful features of a pre-

processor. For example, C#’s preprocessor directives include

#define, a familiar term to C and C++ developers. This directive

can’t be used to define an arbitrary replacement string for a

word, however—you can’t define macros. Instead, #define is

used to define only a symbol. That symbol can then be used

together with the directive #if to provide conditional compila-

tion. For example, in the code fragment

#define DEBUG
#if DEBUG

// code compiled if DEBUG is defined
#else

//code compiled if DEBUG is not defined
#endif

DEBUG is defined, so the C# compiler would process the code

between the #if and #else directives. If DEBUG were

undefined, something that’s accomplished using the preproces-

sor directive #undef, the compiler would process the code be-

tween the #else and #endif directives.

Unsafe code has

limitations

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 140

C# 141

Is C# Just a Copy of Java?

C# certainly does look a lot like Java. Given the additional similarities between the

CLR and the Java virtual machine, it’s hard to believe that Microsoft wasn’t at least

somewhat inspired by Java’s success. By uniting C-style syntax with objects in a

more approachable fashion than C++, Java’s creators found the sweet spot for a

large population of developers. I have seen projects that chose the Java environ-

ment rather than Microsoft technologies primarily because, unlike Java, neither

Visual Basic 6 nor C++ was seen as a good language for large-scale enterprise

development.

The arrival of C# and Visual Basic.NET will surely shore up Microsoft’s technol-

ogy against the Java camp. The quality of the programming language is no longer

an issue. Yet this once again begs the question: Isn’t C# like Java?

In many ways, the answer is yes. The core semantics of the CLR are very Java-

esque. Being deeply object-oriented, providing direct support for interfaces,

allowing multiple interface inheritance but only single implementation inher-

itance—these are all similar to Java. Yet C# also adds features that aren’t available

in Java. C#’s native support for properties, for instance, built on the support in the

CLR, reflects the Visual Basic influence on C#’s creators. Attributes, also a CLR-

based feature, provide a measure of flexibility beyond what Java offers, as does the

ability to write unsafe code. Fundamentally, C# is an expression of the CLR’s se-

mantics in a C-derived syntax. Since those semantics are much like Java, C# is nec-

essarily much like Java, too. But it’s not the same language.

Is C# a better language than Java? There’s no way to answer this question objec-

tively, and it wouldn’t matter if there were. Choosing a development platform

based solely on the programming language is like buying a car because you like

the radio. You can do it, but you’ll be much happier if your decision takes into

account the complete package.

If Sun had allowed Microsoft to modify Java a bit, my guess is that C# wouldn’t ex-

ist today. For understandable reasons, however, Sun resisted Microsoft’s attempts to

customize Java for the Windows world. The result is two quite similar languages,

each targeting a different development environment. Competition is good, and I’m

confident that both languages will be in wide use five years from now.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 141

142 .NET Languages

C# is an attractive language. It combines a clean, concise de-

sign with a modern feature set. Although the world is littered

with the carcasses of unsuccessful programming languages, C#

isn’t likely to join them. With Microsoft pushing it and its own

quality pulling it, C# looks destined for a bright future.

Visual Basic.NET

Visual Basic is by a large margin the most popular programming

language in the Windows world. Visual Basic.NET (VB.NET)

brings enormous changes to this widely used tool. Like C#,

VB.NET is built on the Common Language Runtime, and so

large parts of the language are effectively defined by the CLR.

In fact, except for their syntax, C# and VB.NET are largely the

same language. Because both owe so much to the CLR and the

.NET Framework class library, the functionality of the two is

very similar.

VB.NET can be compiled using Visual Studio.NET or vbc.exe, a

command-line compiler supplied with the .NET Framework.

Unlike C#, however, Microsoft has not submitted VB.NET to a

standards body. Accordingly, while the open source world or

some other third party could still create a clone, the Microsoft

tools are likely to be the only viable choices for working in this

language, at least for now.

A VB.NET Example
The quickest way to get a feeling for VB.NET is to see a sim-

ple example. The example that follows implements the same

functionality as did the C# example shown earlier in this

chapter. As you’ll see, the differences from that example are

largely cosmetic.

' A VB.NET example
Module DisplayValues

Only Microsoft

provides VB.NET

compilers today

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 142

Visual Basic.NET 143

Interface IMath
Function Factorial(ByVal F As Integer) _

As Integer
Function SquareRoot(ByVal S As Double) _

As Double
End Interface

Class Compute
Implements IMath

Function Factorial(ByVal F As Integer) _
As Integer Implements IMath.Factorial
Dim I As Integer
Dim Result As Integer = 1

For I = 2 To F
Result = Result * I

Next
Return Result

End Function

Function SquareRoot(ByVal S As Double) _
As Double Implements IMath.SquareRoot
Return System.Math.Sqrt(S)

End Function

End Class

Sub Main()
Dim C As Compute = New Compute()
Dim V As Integer

V = 5
System.Console.WriteLine(_

"{0} factorial: {1}", _
V, C.Factorial(V))

System.Console.WriteLine(_
"Square root of {0}: {1:f4}", _
V, C.SquareRoot(V))

End Sub

End Module

The example begins with a simple comment, indicated by the

single quote that begins the line. Following the comment is an

instance of the Module type that contains all of the code in this

example. Module is a reference type, but it’s not legal to create

an instance of this type. Instead, its primary purpose is to pro-

vide a container for a group of VB.NET classes, interfaces, and

A Module provides

a container for

other VB.NET types

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 143

144 .NET Languages

C# or VB.NET?

Before .NET, the language choice facing Microsoft-oriented developers was sim-

ple. If you were a hard-core developer, deeply proud of your technical knowl-

edge, you embraced C++ in all its thorny glory. Alternatively, if you were more

interested in getting the job done than in fancy technology and if that job wasn’t

too terribly complex or low level, you chose Visual Basic 6. Sure, the C++ guys

abused you for your lack of linguistic savoir faire, but your code had a lot fewer

obscure bugs.

This decade-old divide is over. C# and VB.NET are very nearly the same lan-

guage. Except for relatively uncommon things such as writing unsafe code and

operator overloading, they’re equally powerful. Microsoft may change this in the

future, making the feature sets of the two languages diverge. Until this happens,

however (if it ever does), the main issue in making the choice is personal prefer-

ence, which is really another way of saying “syntax.”

Developers get very attached to how their language looks. C-oriented people

love curly braces, while VB developers feel at home with Dim statements. Since

many more developers use Visual Basic today than C++, I expect that VB.NET

will be a more popular choice than C#. For the vast majority of VB developers

who are fond of VB-style syntax, there’s no reason to switch to C#. Even the .NET

Framework documentation supplied by Microsoft is quite even-handed, usually

providing examples in both languages. Given its much greater popularity today,

I expect the dominant language for building Windows applications five years

from now will still be Visual Basic.

In spite of this, however, I believe that any developer who knows C# can (and

should) acquire at least a reading knowledge of VB.NET, and vice versa. The core

semantics are identical, and after all, this is the really hard part of learning a lan-

guage. In fact, to illustrate the near equality of these two languages, the examples

in the following chapters of this book alternate more or less randomly between

the two. In the world of .NET, you shouldn’t think of yourself as a VB.NET de-

veloper or a C# developer. Whichever language you choose, you will in fact be

a .NET Framework developer.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 144

Visual Basic.NET 145

other types. In this case, the module contains an interface, a

class, and a Sub Main procedure. It’s also legal for a module to

contain directly method definitions, variable declarations, and

more that can be used throughout the module.

The module’s interface is named IMath, and as in the earlier C#

example, it defines the methods (or in the argot of Visual Basic,

the functions) Factorial and SquareRoot. Each takes a single

parameter, and each is defined to be passed by value, which

means a copy of the parameter is made within the function.

(The trailing underscore is the line continuation character, indi-

cating that the following line should be treated as though no

line break were present.) Passing by value is the default, so the

example would work just the same without the ByVal indica-

tions. Passing by reference is the default in Visual Basic 6,

which shows one example of how the language was changed

to match the underlying semantics of the CLR.

The class Compute, which is the VB.NET expression of a CTS

class, implements the IMath interface. Each of the functions in

this class must explicitly identity the interface method it imple-

ments. Apart from this, the functions are just as in the earlier C#

example except that a Visual Basic–style syntax is used. Note

particularly that the call to System.Math.Sqrt is identical to its

form in the C# example. C#, VB.NET, and any other language

built on the CLR can access services in the .NET Framework

class library in much the same way.

This simple example ends with a Sub Main procedure, which is

analogous to C#’s Main method. The application begins execut-

ing here. In this example, Sub Main creates an instance of the

Compute class using the VB.NET New operator (which will

eventually be translated into the MSIL instruction newobj). It

then declares an Integer variable and sets its value to 5.

As in the C# example, this simple program’s results are written

out using the WriteLine method of the Console class. Because

By default, VB.NET

passes parameters

by value, unlike

Visual Basic 6

A VB.NET class is

an expression of a

CTS class

Execution begins

in the Sub Main

procedure

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 145

146 .NET Languages

this method is part of the .NET Framework class library rather

than any particular language, it looks exactly the same here as

it did in the C# example. Not too surprisingly, then, the output

of this simple program is

5 factorial: 120
Square root of 5: 2.2361

just as before.

To someone who knows Visual Basic 6, VB.NET will look famil-

iar. To someone who knows C#, VB.NET will act in a broadly

familiar way since it’s built on the same foundation. But

VB.NET is not the same as either Visual Basic 6 or C#. The sim-

ilarities can be very helpful in learning this new language, but

they can also be misleading. Be careful.

VB.NET Types
Like C#, the types defined by VB.NET are built on the CTS

types provided by the CLR. Table 4-2 shows most of these types

and their VB.NET equivalents.

Notice that some types, such as unsigned integers, are missing

from VB.NET. Unsigned integers are a familiar concept to C++

developers but not to typical Visual Basic 6 developers. The

core CTS types defined in the System namespace are available

in VB.NET just as in C#, however, so a VB.NET developer is

free to declare an unsigned integer using

Dim J As System.UInt32

Unlike C#, VB.NET is not case sensitive. There are some fairly

strong conventions, however, which are illustrated in the exam-

ple shown earlier. For people coming to .NET from Visual Basic

6, this case insensitivity will seem entirely normal. It’s one ex-

ample of why both VB.NET and C# exist, since the more a new

VB.NET’s similari-

ties to Visual Basic

6 both help and

hurt in learning this

new language

VB.NET doesn’t

support all of the

CTS types

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 146

Visual Basic.NET 147

environment has in common with the old one, the more likely

people will adopt it.

Classes
VB.NET classes expose the behaviors of a CTS class using a VB-

style syntax. Accordingly, VB.NET classes can implement one

or more interfaces, but they can inherit from at most one other

class. In VB.NET, a class Calculator that implements the inter-

faces IAlgebra and ITrig and inherits from the class MathBasics

looks like this:

Class Calculator
Inherits MathBasics
Implements IAlgebra
Implements ITrig

. . .
End Class

Like a CTS class, a

VB.NET class can

inherit directly from

only one other

class

Table 4-2 Some CTS Types and Their VB.NET Equivalents

CTS VB.NET

Byte Byte

Char Char

Int16 Short

Int32 Integer

Int64 Long

Single Single

Double Double

Decimal Decimal

Boolean Boolean

Structure Structure

String String

Class Class

Interface Interface

Delegate Delegate

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 147

148 .NET Languages

Note that, as in C#, the base class must precede the interfaces.

Note also that any class this one inherits from might be written

in VB.NET or in C# or perhaps in some other CLR-based lan-

guage. As long as the language follows the rules laid down in

the CLR’s Common Language Specification, cross-language

inheritance is straightforward. Also, if the class inherits from

another class, it can potentially override one or more of the

type members, such as a method, in its parent. This is allowed

only if the member being overridden is declared with the key-

word Overridable, analogous to C#’s keyword virtual.

VB.NET classes can be labeled as NotInheritable or MustInherit,

which means the same thing as sealed and abstract, respec-

tively, the terms used by the CTS and C#. VB.NET classes can

also be assigned various accessibilities, such as Public and

Friend, which largely map to visibilities defined by the CTS. A

VB.NET class can contain variables, methods, properties,

events, and more, just as defined by the CTS. Each of these can

have an access modifier specified, such as Public, Private, or

Friend. A class can also contain one or more constructors that

get called whenever an instance of this class is created. Unlike

C#, however, VB.NET does not support operator overloading. A

class can’t redefine what various standard operators mean when

used with an instance of this class.

Interfaces
Interfaces as defined by the CTS are a fairly simple concept.

VB.NET essentially just provides a VB-derived syntax for ex-

pressing what the CTS specifies. Along with the interface be-

havior shown earlier, CTS interfaces can inherit from one or

more other interfaces. In VB.NET, for example, defining an in-

terface ITrig that inherits from the three interfaces, ISine,

ICosine, and ITangent, would look like this:

Interface ITrig
Inherits ISine
Inherits ICosine
Inherits ITangent

...
End Interface

VB.NET doesn’t

support operator

overloading

Like a CTS inter-

face, a VB.NET

interface can in-

herit directly from

one or more other

interfaces

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 148

Visual Basic.NET 149

Is Inheritance Really Worthwhile?

Inheritance is an essential part of object technology. Until .NET, Visual Basic did-

n’t really support inheritance, and so (quite correctly) it was not viewed as an ob-

ject-oriented language. VB.NET has inheritance, since it’s built on the CLR, and

so it is unquestionably truly object-oriented.

But is this a good thing? Microsoft certainly could have added inheritance to

Visual Basic long ago, yet the language’s keepers chose not to. Whenever I asked

Microsoft why this was so, the answers revolved around two main points. First,

inheritance can be tricky to understand and to get right. In a class hierarchy many

levels deep, with some methods overridden and others overloaded, figuring out

exactly what’s going on isn’t always easy. Given that the primary target audience

for Visual Basic was not developers with formal backgrounds in computer sci-

ence, it made sense to keep it simple.

The second point often made about why Visual Basic didn’t have inheritance was

that in many contexts, inheritance was not a good thing. This argument was made

most strongly with COM, a technology that has no direct support for implemen-

tation inheritance. Inheritance binds a child class to its parent very closely, which

means that a change in the parent can be catastrophic for the child. This “fragile

base class” issue is especially problematic when the parent and child classes are

written and maintained by completely separate organizations or when the par-

ent’s source isn’t available to the creator of the child. In the component-oriented

world of COM, this is a more than plausible argument.

So why has Microsoft apparently changed its mind about inheritance? Inheritance

still can be problematic if changes in a parent class aren’t communicated effec-

tively to all developers who depend on that class, and it can also be complicated.

The arguments Microsoft made are not incorrect. Yet the triumph of object tech-

nology is complete: Objects are everywhere. To create new languages in a com-

pletely new environment—that is, to create the .NET Framework—without full

support for inheritance would brand any organization as irretrievably retro. And

the benefits of inheritance, especially those gained by providing a large set of

reusable classes such as the .NET Framework class library, are huge. The pendu-

lum has swung, and inheritance is now essential.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 149

150 .NET Languages

Structures
Because both are based on the structure type defined by the

CTS, structures in VB.NET are very much like structures in C#.

Like a class, a structure can contain fields, members, and prop-

erties, implement interfaces, and more. VB.NET structures are

value types, of course, which means that they can neither in-

herit from nor be inherited by another type. A simple employee

structure might be defined in VB.NET as follows:

Structure Employee
Public Name As String
Public Age As Integer

End Structure

To keep the example simple, this structure contains only data

members. As described earlier, however, CTS structures—and

thus VB.NET structures—are in fact nearly as powerful as

classes.

Delegates
The idea of passing an explicit reference to a procedure or func-

tion and then calling that procedure or function is not something

that the typical Visual Basic programmer is accustomed to. Yet

the CLR provides support for delegates, which allows exactly

this. Why not make this support visible in VB.NET?

VB.NET’s creators chose to do this, allowing VB.NET program-

mers to create callbacks and other event-oriented code easily.

Here’s an example, the same one shown earlier in C#, of creat-

ing and using a delegate in VB.NET:

Besides, most of the people in Redmond who argued against inheritance in the

1990s have probably retired by now. Never underestimate the power of new

blood in a development group.

VB.NET structures

can contain fields,

provide methods,

and more

VB.NET allows

creating and using

delegates

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 150

Visual Basic.NET 151

Module Module1

Delegate Sub SDelegate(ByVal S As String)

Sub CallDelegate(ByVal Write As SDelegate)
System.Console.WriteLine("In CallDelegate")
Write("A delegated hello")

End Sub

Sub WriteString(ByVal S As String)
System.Console.WriteLine(_

"In WriteString: {0}", S)
End Sub

Sub Main()
Dim Del As New SDelegate(_

AddressOf WriteString)
CallDelegate(Del)

End Sub

End Module

Although it’s written in VB.NET, this code functions exactly like

the C# example shown earlier in this chapter. Like that exam-

ple, this one begins by defining SDelegate as a delegate type.

As before, SDelegate objects can contain references only to

methods that take a single String parameter. In the example’s

Sub Main method, a variable Del of type SDelegate is declared

and then initialized to contain a reference to the WriteString

subroutine. (A VB.NET subroutine is a method that, unlike a

function, returns no result.) Doing this requires using VB.NET’s

AddressOf keyword before the subroutine’s name. Sub Main

then invokes CallDelegate, passing in Del as a parameter.

CallDelegate has an SDelegate parameter named Write. When

Write is called, the method in the delegate that was passed into

CallDelegate is actually invoked. In this example, that method

is WriteString, so the code inside the WriteString procedure

executes next. The output of this simple example is exactly the

same as for the C# version shown earlier in this chapter:

In CallDelegate
In WriteString: A delegated hello

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 151

152 .NET Languages

Is VB.NET Too Hard?

Maybe. There have been lots of complaints about the changes, and certainly

some Visual Basic 6 developers will get left behind. Microsoft has historically tar-

geted quite separate developer markets with Visual Basic and C++, yet with the

.NET Framework, this distinction is greatly blurred. VB.NET and C# are function-

ally almost identical.

The .NET Framework is certainly simpler in many ways than the Windows DNA

environment. The complexity of COM for cross-language calls is no longer re-

quired, for example. But the Framework is also harder for a certain class of de-

velopers, especially those with no formal training in computer science. One

reason for Microsoft’s success in the developer market was the approachability of

Visual Basic. The people who create software tools often forget that they’re al-

most always much better software developers than the people who will use those

tools. As a result, they tend to create tools that they themselves would like to use,

tools that are too complex for many of their potential customers.

The creators of Visual Basic never made this mistake. Despite the opprobrium

heaped on the language and its users by C++ developers, Microsoft kept a clear

focus on the developer population and skill level they wished to target. This was

a good decision, as Visual Basic is now perhaps the world’s most widely used

programming language.

And yet many Visual Basic developers wanted more. VB.NET certainly gives

them more, but it also requires all Visual Basic developers to step up a level in

their technical knowledge. The skills required to build the GUI-based client of a

two-tier application, the original target for this language, are almost entirely un-

related to what’s needed to build today’s scalable, multitier, Web-accessible so-

lutions. Given this, perhaps the original audience Microsoft targeted for Visual

Basic, some of the audience was just a step above power users, no longer has a

role. With its complete object orientation and large set of more advanced fea-

tures, VB.NET will certainly be too complex for many of them.

Yet building today’s applications effectively was becoming more and more diffi-

cult with the old Visual Basic. Between a rock and a hard place, Microsoft chose

to make this popular language both more powerful and more complex. Some de-

velopers will be very happy about this, but some won’t. You can’t please every-

body, and the market will decide whether Microsoft has made the right decision.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 152

Visual Basic.NET 153

Delegates are another example of the additional features

Visual Basic has acquired from being rebuilt on the CLR.

While this rethinking of the language certainly requires lots of

learning from developers using it, the reward is a substantial

set of features.

Arrays
Like arrays in C# and other CLR-based languages, arrays in

VB.NET are reference types that inherit from the standard

System.Array class. Accordingly, all of the methods and proper-

ties that class makes available are also usable with any VB.NET

array. Arrays in VB.NET look much like arrays in earlier versions

of Visual Basic. Perhaps the biggest difference is that the first

member of a VB.NET array is referenced as element zero, while

in previous versions of this language, the first member was ele-

ment one. The number of elements in an array is thus one greater

than the number that appears in its declaration. For example, the

following statement declares an array of eleven integers:

Dim Ages(10) As Integer

Unlike C#, there’s no need to create explicitly an instance of

the array using New. It’s also possible to declare an array with

no explicit size and later use the ReDim statement to specify

how big it will be. For example, this code

Dim Ages() As Integer
ReDim Ages(10)

results in an array of eleven integers just as in the previous ex-

ample. Note that the index for both of these arrays goes from 0

to 10, not 1 to 10.

VB.NET also allows multidimensional arrays. For example, the

statement

Dim Points(10,20) As Integer

Unlike Visual Basic

6, array indexes in

VB.NET start at

zero

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 153

154 .NET Languages

creates a two-dimensional array of integers with 11 and 21 ele-

ments, respectively. Once again, both dimensions are zero-

based, which means that the indexes go from 0 to 10 in the

array’s first dimension and 0 to 20 in the second dimension.

VB.NET Control Structures
While the CLR says a lot about what a .NET Framework–based

language’s types should look like, it says essentially nothing

about how that language’s control structures should look.

Accordingly, adapting Visual Basic to the CLR required making

changes to VB’s types, but the language’s control structures are

fairly standard. An If statement, for example, looks like this:

If (X > Y) Then
P = True

Else
P = False

End If

while a Select Case statement analogous to the C# switch

shown earlier looks like this:

Select Case X
Case 1

Y = 100
Case 2

Y = 200
Case Else

Y = 300
End Select

As in the C# example, different values of x will cause y to be

set to 100, 200, or 300. Although it’s not shown here, the Case

clauses can also specify a range rather than a single value.

The loop statements available in VB.NET include a While loop,

which ends when a specified Boolean condition is no longer

true; a Do loop, which allows looping until a condition is no

longer true or until some condition becomes true; and a

For...Next loop, which was shown in the example earlier in this

VB.NET’s control

structures will look

familiar to most

developers

VB.NET includes a

While loop, a Do

loop, a For...Next

loop, and a For

Each loop

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 154

Visual Basic.NET 155

section. And like C#, VB.NET includes a For Each statement,

which allows iterating through all the elements in a value of a

collection type.

VB.NET also includes a goto statement, which jumps to a la-

beled point in the program, and a few more choices. The inno-

vation in the .NET Framework doesn’t focus on language

control structures (in fact, it’s not easy to think of the last inno-

vation in language control structures), and so VB.NET doesn’t

offer much that’s new in this area.

Other VB.NET Features
The CLR provides many other features, as seen in the description

of C# earlier in this chapter. With very few exceptions, the cre-

ators of VB.NET chose to provide these features to developers

working in this newest incarnation of Visual Basic. This section

looks at how VB.NET provides some more advanced features.

Working with Namespaces
As mentioned in Chapter 3, namespaces aren’t directly visible to

the CLR. Just as in C#, however, they are an important part of

writing applications in VB.NET. As shown earlier in the VB.NET

example, access to classes in .NET Framework class library

namespaces looks just the same in VB.NET as in C#. Because

the Common Type System is used throughout, methods, parame-

ters, return values, and more are all defined in a common way.

Yet how a VB.NET program indicates which namespaces it will

use is somewhat different from how it’s done in C#. Commonly

used namespaces can be identified for a module with the

Imports statement. For example, preceding a module with

Imports System

would allow invoking the System.Console.WriteLine method

with just

Console.WriteLine(. . .)

VB.NET exposes

most of the CLR’s

features

VB.NET’s Imports

statement makes it

easier to reference

the contents of a

namespace

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 155

156 .NET Languages

VB.NET’s Imports statement is analogous to C#’s using state-

ment. Both allow developers to do less typing. And as in C#,

VB.NET also allows defining and using custom namespaces.

Handling Exceptions
One of the greatest benefits of the CLR is that it provides a

common way to handle exceptions across all .NET Framework

languages. This common approach allows errors to be found in,

say, a C# routine and then is handled in code written in

VB.NET. The syntax for how these two languages work with

exceptions is different, but the underlying behavior, specified by

the CLR, is the same.

Like C#, VB.NET uses Try and Catch to provide exception han-

dling. Here’s a VB.NET example of handling the exception

raised when a division by zero is attempted:

Try
X = Y/Z

Catch
System.Console.WriteLine(“Exception caught”)

End Try

Any code between the Try and Catch is monitored for excep-

tions. If no exception occurs, execution skips the Catch clause

and continues with whatever follows End Try. If an exception

occurs, the code in the Catch clause is executed, and execution

continues with what follows End Try.

As in C#, different Catch clauses can be created to handle dif-

ferent exceptions. A Catch clause can also contain a When

clause with a Boolean condition. In this case, the exception

will be caught only if that condition is true. Also like C#,

VB.NET allows defining your own exceptions and then raising

them with the Throw statement. VB.NET also has a Finally

statement. As in C#, the code in a Finally block is executed

whether or not an exception occurs.

As in C#, try/catch

blocks are used to

handle exceptions

in VB.NET

VB.NET offers

essentially the same

exception handling

options as C#

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 156

Visual Basic.NET 157

Using Attributes
Code written in VB.NET is compiled into MSIL, so it must have

metadata. Because it has metadata, it also has attributes. The

designers of the language provided a VB-style syntax for speci-

fying attributes, but the end result is the same as for any CLR-

based language: Extra information is placed in the metadata of

some assembly. To repeat once again an example from earlier

in this chapter, suppose the Factorial method shown in the

complete VB.NET example had been declared with the

WebMethod attribute applied to it. This attribute instructs the

.NET Framework to expose this method as a SOAP-callable

Web service, as described in more detail in Chapter 7.

Assuming the appropriate Imports statements were in place to

identify the correct namespace for this attribute, the declaration

would look like this in VB.NET:

<WebMethod()> Public Function Factorial(ByVal F _
As Integer) As Integer Implements IMath.Factorial

This attribute is used by ASP.NET to indicate that a method

contained in an .asmx page should be exposed as a SOAP-

callable Web service. Similarly, including the attribute

<assembly:AssemblyCompanyAttribute("QwickBank")>

in a VB.NET file will set the value of an attribute stored in this

assembly’s manifest that identifies QwickBank as the company

that created this assembly. VB.NET developers can also create

their own attributes by defining classes that inherit from

System.Attribute and then have whatever information is defined

for those attributes automatically copied into metadata. As in

C# or another CLR-based language, custom attributes can be

read using the GetCustomAttributes method defined by the

System.Reflection namespace’s Attribute class.

Attributes are just one more example of the tremendous se-

mantic similarity of VB.NET and C#. While they look quite

A VB.NET program

can contain

attributes

VB.NET and C#

offer very similar

features

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 157

158 .NET Languages

different, the capabilities of the two languages are very similar.

Which one a developer prefers will be largely an aesthetic

decision.

Why Provide All of These Languages?

Microsoft says that more than twenty languages have been ported to the CLR.

Along with the languages shipped by Microsoft itself, programmers will have

plenty of options to choose from. Yet given the CLR’s central role in defining these

languages, they often have much in common. What’s the real benefit of having

multiple languages based on the CLR?

There are two key advantages. First, the existing pre-.NET population of Windows

developers is split into two primary language camps: C++ and Visual Basic.

Microsoft needs to move both groups of developers forward, and both certainly

have some attachment to their language. Although the semantics of the CLR (and

of languages built on it such as C# and Visual Basic.NET) are different from either

C++ or Visual Basic 6, the fundamental look of these new languages will be fa-

miliar. If Microsoft chose to provide only, say, C#, it’s a safe bet that developers

who were wedded to Visual Basic 6 would probably be resistant to moving to

.NET. Similarly, providing only a CLR-based language derived from Visual Basic

wouldn’t make C++ developers very happy. People who write code get attached

to the oddest things (curly braces, for example), and so providing both C# and

Visual Basic.NET is a good way to help the current Windows developer popula-

tion move forward.

The second benefit in providing multiple languages is that it gives the .NET

Framework something the competition doesn’t have. One complaint about the

Java world has been that it requires all developers always to use the same lan-

guage. The .NET Framework’s multilingual nature offers more choice, so it gives

Microsoft something to tout over its competitors.

In fact, however, there are some real benefits to having just one language. Why

add extra complexity, such as a different syntax for expressing the same be-

havior, when there’s no clear benefit? Java’s one-language-all-the-time ap-

proach has the virtue of simplicity. Even in the .NET world, organizations

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 158

C++ with Managed Extensions 159

C++ with Managed Extensions

C++ is a very popular language, one that’s been in wide use for

more than a dozen years. Providing some way to use C++ with

the .NET Framework is essential. Yet the semantics of C++ don’t

exactly match those of the CLR. They have much in common—

both are object-oriented, for example—but there are also many

differences. C++, for instance, supports multiple inheritance,

the ability of a class to inherit simultaneously from two or more

parent classes, while the CLR does not.

Visual Basic 6 also differs substantially from the CLR, but

Microsoft owns Visual Basic. The company was free to change

it as they wished, so VB.NET was designed to match the CLR.

Microsoft does not own C++, however. Unilaterally changing

the language to match the CLR would have met with howls of

protest. Yet providing no way to create .NET Framework–based

applications in C++ would also have left many developers very

unhappy. What’s the solution?

C++ was too popu-

lar for the .NET

Framework’s cre-

ators to ignore

Unlike Visual

Basic, Microsoft

isn’t free to change

C++ unilaterally to

fit the CLR

would do well to avoid multilanguage projects if possible. This isn’t the problem

it was with Windows DNA, since code written in different CLR-based languages

can interoperate with no problems. Developers who know C# should also have

no trouble understanding VB.NET, and vice versa. Still, having two or more sep-

arate development groups using distinct languages will complicate both the ini-

tial project and the maintenance effort that follows. It’s worth avoiding if possible.

In the end, the diverse set of languages announced for the .NET Framework prob-

ably won’t matter much. Because of Microsoft’s strong support, expressed most

powerfully in Visual Studio.NET, C# and Visual Basic.NET will be dominant for

creating new CLR-based applications. The other languages might be interesting

for universities, but for professional developers, good tools are essential. Most

Windows developers today believe that Visual Studio is the best tool for building

code on Windows. Just as in the pre-.NET world, I expect Visual Studio.NET and

the languages it supports to be the dominant choices for Windows developers.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 159

160 .NET Languages

The answer Microsoft chose was to create a set of extensions to

the base C++ language. Officially known as Managed

Extensions for C++, the resulting dialect is commonly referred

to as just Managed C++. C++ is not simple to begin with, and

Managed C++ adds new complexities. The goal of this chap-

ter’s final section is to provide an overview of the changes

wrought by Managed C++.

Before looking at a Managed C++ example, it’s useful to de-

scribe some of the extensions made to the language. In particu-

lar, several keywords have been added to allow access to CLR

services, all of which begin with two underscores. (This follows

Microsoft has de-

fined a set of

Managed

Extensions for C++

Managed C++

defines several new

keywords

Managed C++ or C#?

C++ has legions of die-hard fans. And why shouldn’t it? It’s a powerful, flexible

tool for building all kinds of applications. It’s complicated, too, which means that

learning to exploit all that power and flexibility takes a substantial amount of ef-

fort. Anyone who’s put in the time to master C++ is bound to be less than thrilled

about leaving it behind.

Yet for brand-new applications built from scratch on the .NET Framework, C++

probably should be left behind. For a C++ developer, learning C# isn’t difficult.

In fact, learning C# will probably be easier than using Managed C++ to write

.NET Framework–based applications. As the short summary in this chapter sug-

gests, Managed C++ adds even more complexity to an already complex lan-

guage. For new applications, C# is probably a better choice.

For extending existing C++ applications with managed code, however, Managed

C++ is a good choice. And if you plan to port an existing C++ application to run

on the Framework, Managed C++ is also a good choice, since it saves you from

rewriting large parts of your code. Although it’s not as important in the .NET

Framework world as either VB.NET or C#, Managed C++ is nevertheless a sig-

nificant member of .NET’s language arsenal.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 160

C++ with Managed Extensions 161

the convention defined in the ANSI standard for C++ exten-

sions.) Among the most important of these are the following:

� __gc: Indicates that a type is subject to garbage collec-

tion. In other words, this keyword means that the type

being declared is a CTS reference type. Managed C++

allows this keyword to be applied to classes, arrays, and

other types.

� __value: Indicates that a type is not subject to garbage

collection; that is, that the type is a CTS value type.

� __interface: Used to define a CTS interface type.

� __box: An operation that converts a CTS value type to a

reference type.

� __unbox: An operation that converts a boxed CTS value

type back to its original form.

� __delegate: Used to define a CTS delegate type.

Given this brief introduction, we can now make some sense out

of an example.

A Managed C++ Example
C# and VB.NET were both designed for the CLR, while C++

was not. As a result, code written in Managed C++ can look a

bit odd. Here’s the same example shown earlier in this chapter,

this time in Managed C++:

// A Managed C++ example
#include "stdafx.h"
#using <mscorlib.dll>

__gc __interface IMath
{

int Factorial(int f);
double SquareRoot(double s);

};

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 161

162 .NET Languages

__gc class Compute : public IMath
{

public: int Factorial(int f)
{

int i;
int result = 1;
for (i=2; i<=f; i++)

result = result * i;
return result;

};

public: double SquareRoot(double s)
{

return System::Math::Sqrt(s);
}

};

void main(void)
{

Compute *c = new Compute;
int v;
v = 5;

System::Console::WriteLine(
"{0} factorial: {1}",
box(v), __box(c->Factorial(v)));

System::Console::WriteLine(
"Square root of {0}: {1:f4}",
box(v), __box(c->SquareRoot(v)));

}

The first thing to notice is how much this example resembles

the C# version. Most of the basic syntax and many of the oper-

ators are the same. Yet it’s different, too, beginning with the

#include and #using statements necessary for creating managed

code in C++. Following these, the interface IMath is defined,

just as before. This time, however, it uses the __interface key-

word and precedes it with the __gc keyword. The result is a

C++ incarnation of a CTS-defined interface.

Next comes the class Compute, which implements the IMath

interface. This class too is declared with the __gc keyword,

which means that it’s a CTS class with a lifetime managed by

the CLR rather than the developer. The class varies a bit in syn-

tax from the C# example, since C++ doesn’t express things in

exactly the same way, but it’s nonetheless very similar.

Managed C++

resembles C#

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 162

C++ with Managed Extensions 163

The example ends with a standard C++ main function. Just as

before, it creates an instance of the Compute class and then

calls its two methods, all using standard C++ syntax. The only

substantive difference is in the calls to WriteLine. Because this

method expects reference parameters, the __box operator must

be used to pass the numeric parameters correctly. Boxing also

occurred for this parameter in C# and VB.NET, but it was done

automatically. Because C++ was not originally built for the

CLR, however, the developer must explicitly request this opera-

tion. Finally, just as you’d expect, the output of this example is

the same as before: the factorial and square root of five.

Managed C++ Types
Managed C++ allows full access to the .NET Framework, in-

cluding the types defined by the CLR and more. It’s important

to note that managed and unmanaged code, classes defined

with and without __gc, can be defined in the same file, and

they can exist in the same running process. Only the managed

classes are subject to garbage collection, however; unmanaged

classes must be explicitly freed as usual in C++. Table 4-3

shows some of the major CLR types and their equivalents in

Managed C++.

Other Managed C++ Features
Because it fully supports the CLR, there’s much more in

Managed C++. Delegates can be created using the __delegate

keyword, while namespaces can be referenced with a using

namespace statement, such as

using namespace System;

Exceptions can be handled using try/catch blocks, and custom

CLR exceptions that inherit from System::Exception can be cre-

ated. Attributes can also be embedded in code using the same

syntax as in C#.

Managed C++

requires explicit

boxing

Managed and un-

managed C++ code

can coexist in a

process

Managed C++

allows full access

to the CLR’s

features

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 163

164 .NET Languages

Managed C++ is a major extension to the C++ environment

provided by Visual Studio.NET, but it’s not the only new fea-

ture. This latest edition of Microsoft’s flagship development

tool also includes better support for building traditional appli-

cations, including COM-based applications. Except for C++,

all languages in Visual Studio.NET compile only to MSIL, and

they require the .NET Framework to run. Since all Managed

C++ classes are compiled to MSIL, the language can obviously

be used to generate Framework-based code, but C++ is unique

in that it also allows compiling directly to a machine-specific

C++ is the only

language in Visual

Studio that can

compile directly to

native code

Table 4-3 Some CLR Types and Their Managed C++ Equivalents

CLR Managed C++

Byte unsigned char

Char wchar_t

Int16 short

Int32 int, long

Int64 __int64

UInt16 unsigned short

UInt32 unsigned int, unsigned long

UInt64 unsigned __int64

Single float

Double double

Decimal Decimal

Boolean bool

Structure struct

String String*

Class __gc class

Interface __gc __interface

Delegate __delegate

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 164

Conclusion 165

binary. For building applications that don’t require the CLR,

C++ is the only way to go.

Conclusion

Programming languages are a fascinating topic. There appears

to be wide agreement on what fundamental features a modern

programming language should have and how it should behave.

These features and behaviors are essentially what the CLR pro-

vides. There is little agreement on how a modern programming

language should look, however, with everyone voting for his or

her preferred syntax. By providing a common implementation

The .NET

Framework brings a

new approach to

programming lan-

guage design

Is C++ a Dead Language?

C++ has been the workhorse of professional software developers for most of the

last decade. It’s been used to write Lotus Notes, a surfeit of business applications,

and even parts of Windows. Yet in a world that offers C#, VB.NET, and Java,

where does C++ fit? Has its usefulness come to an end?

Certainly not. C#, VB.NET, and Java are much better than C++ for many types of

applications, even many for which C++ has commonly been used. But all three

of these languages operate in a virtual machine environment. This has many ben-

efits, but there’s also a substantial price: performance and size. Some categories

of applications, especially system-level software, can’t afford this. Who’s going to

build an operating system in a garbage-collected language? Who wants to build

embedded applications for memory-constrained devices in a language that re-

quires a large supporting runtime library?

The day when C++ was the default choice for building a broad range of new ap-

plications is over. In the Microsoft world, C# and VB.NET will be the new de-

faults, while Java dominates elsewhere. Yet in cases where none of these is

appropriate—and they do exist—C++ will still dominate. Its role will surely

shrink, probably substantially, but C++ is not about to disappear.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 165

166 .NET Languages

of the core and then allowing diverse expressions of that core,

the .NET Framework brings a new approach to language de-

sign. Even without Microsoft’s backing, this would be an attrac-

tive model for creating a development environment. With the

backing of the world’s largest software company, it’s bound to

affect the lives of many, many developers.

97_CHAP.ch04.qk 1/10/02 12:59 PM Page 166

