Chapter 1

Introduction to Enterprise Software

What Is Enterprise Software?

Evolution of Enterprise Software

Enterprise Software and Component-Based Software

Summary

If you bave beard of terms such as Business-to-Business (B2B) and Business-
to-Consumer (B2C), you are already familiar with enterprise software at
some level. B2B and B2C are just some of the more popular manifestations of
enterprise software.

This introductory chapter offers a more in-depth exploration of enterprise
software and the challenges and opportunities that accompany it.

What Is Enterprise Software?

The term enterprise refers to an organization of individuals or entities, presum-
ably working together to achieve some common goals. Organizations come in
all shapes and sizes, large and small, for-profit and nonprofit, governmental and
nongovernmental.

Chances are, however, that when someone uses the term enterprise, they
mean a large, for-profit organization, such as Intel, General Motors, Wal-Mart,
Bank of America, or eBay.

Enterprises generally have some common needs, such as information shar-
ing and processing, asset management and tracking, resource planning, cus-
tomer or client management, protection of business knowledge, and so on. The
term enterprise software is used to collectively refer to all software involved in
supporting these common elements of an enterprise.

Figure 1-1 depicts enterprise and enterprise software graphically.

The figure shows an enterprise software setup that is essentially a collection
of diverse systems. Software is organized along the various functions within the
organization, for example, sales, human resources, and so on. A firewall is pro-
vided to safeguard enterprise data from unauthorized access. Some software sys-
tems such as those for sales and inventory management interact; however, most
are fairly isolated islands of software.

Enterprise software may consist of a multitude of distinct pieces today, but
enterprises have gradually come to realize that there is a strong need for their
diverse systems to integrate well and leverage each other wherever appropriate
for maximum enterprise benefit. B2B and B2C are good examples of such inte-
gration and leveraging.

4 | Chapter 1 Introduction to Enterprise Software

Customer ——

= [

Inventory
Management

Customer A
Support m

Employees

Fulfillment

Other
Shared
Resources
and Apps

Figure 1-1 Enterprise and enterprise software

Some of the potential ways an enterprise hopes to leverage integrated enter-

prise software follows:

= By integrating its customer support and in-house product knowledge, an
enterprise could provide new and better services to its customers via the

Web.

= By linking its marketing machine with the online world, an enterprise

could reach a much larger audience online.

= By linking its sales management and inventory, an enterprise may be able
to devise specific, lower cost Web sales channels to reach an untapped mar-

ket segment.

= By providing a front end to one of the services used by its employees, such
as the internal office supply ordering system, and tying it into the account-

What Is Enterprise Software? | 5

ing system, the enterprise could lower the overall cost and improve
employee efficiency.

= Making the enterprise HR system available online could be used as a way to
give employees more control over their health and 401(k) choices and
reduce the overall administrative costs to the enterprise.

= By automating one of its human resource intensive operations and making
it available on an anytime, anywhere basis, an enterprise could provide bet-
ter service to its customers while reducing the overall operational costs.

Challenges in Developing Enterprise Software

Successful enterprises tend to grow in size, hire more people, have more cus-
tomers and more Web site hits, have bigger sales and revenues, add more loca-
tions, and so on. In order to support this growth, enterprise software must be
scalable in terms of accommodating a larger enterprise and its operations.

Enterprises encounter constraints as they grow. One common constraint is
the computer hardware’s inability to scale as the enterprise’s processing needs
increase. Another constraint is the enterprise’s ability to put more people in the
same physical or even geographical location. Thus, the challenge of distribution
comes into the picture. Multiple physical machines solve the processing needs
but introduce the challenge of distributed software. New building or geographi-
cal locations address the immediate need, but they introduce the challenge of
bringing the same level of services to a diversely located enterprise.

Connecting previously separate systems in order to gain enterprise-scale
efficiencies can be a major challenge. Legacy systems were typically designed
with specific purposes in mind and were not specifically conceived with inte-
gration with other systems in mind. For example, human resource management
perhaps was treated as a distinct need without much interaction with financial
management, and sales management had little, if anything, to do with customer
support. This disjointed approach to software development often resulted in
excellent point products being purchased to address specific needs, but it com-
monly resulted in software architectures that were difficult to integrate.

A related challenge is the need to deal with a multivendor environment.
Partly out of evolution, and partly out of necessity, enterprise software has often
ended up with similar products from multiple vendors used for the same pur-
pose. For instance, although the HR application might be built on an Oracle 8i
database, the customer support application might rely on Microsoft SQL Server.

Enterprise software also typically requires some common capabilities, such
as security services to safeguard the enterprise knowledge, transaction services
to guarantee integrity of data, and so on. Each of these requires specific skills
and knowledge. For instance, proper transaction handling requires strategies for

6

Chapter 1 Introduction to Enterprise Software

recovering from failures, handling multiuser situations, ensuring consistency
across transactions, and so on. Similarly, implementing security might demand a
grasp of various security protocols and security management approaches.

These are just some of the common challenges that must be addressed
when dealing with enterprise software development.

Evolution of Enterprise Software

Not too long ago, mainframes ruled the world, and all software was tied to this
central entity. The advantages of such a centralized approach included the sim-
plicity of dealing with a single system for all processing needs, colocation of all
resources, and the like. On the disadvantage front, it meant having to deal with
physical limitations of scalability, single points of failure, limited accessibility
from remote locations, and so on.

Such centralized applications are commonly referred to as single tier appli-
cations. The Random House dictionary defines a tier as “one of a series of rows,
rising one behind or above another.” In software, a tier is primarily an abstrac-
tion and its main purpose is to help us understand the architecture associated
with a specific application by breaking down the software into distinct, logical
tiers. See Chapter 6 for a more detailed discussion of tiers.

From an application perspective, the single most problematic aspect of a
single tier application was the intermingling of presentation, business logic, and
the data itself. For instance, assume that a change was required to some aspect
of the system. In a single tier application, all aspects were pretty much fused;
that is, the presentation side of the software was tied to the business logic, and
the business logic portion had intimate knowledge of the data structures. So any
changes to one potentially had a ripple effect and meant revalidation of all
aspects. Another drawback of such intermingling was the limitations it imposed
on the reuse of business logic or data access capabilities.

The client-server approach alleviated some of these major issues by moving
the presentation aspects and some of the business logic to a separate tier. How-
ever, from an application perspective, the business logic and presentation
remained very much intermingled. As well, this fwo-tier approach introduced
some new issues of its own, for instance, the challenge of updating application
software on a large number of clients with minimal cost and disruption.

The n-tier approach attempts to achieve a better balance overall by separat-
ing the presentation logic from business logic and the business logic from the
underlying data. The term n-tier (as opposed to three-tier) is representative of
the fact that software is not limited to three tiers only, and can be and indeed is,
organized into deeper layers to meet specific needs.

Evolution of Enterprise Software | 7

It should be noted that each tier in an n-tier does not imply a separate piece
of hardware, although that is certainly possible. A tier is, above all, a separation
of concerns within the software itself. The different tiers are logically distinct
within the software but may physically exist on the same machine or be distrib-
uted across multiple machines.

Some examples of the types of advantages and benefits offered by n-tier
computing are

» Faster and potentially lower cost development: New applications can be
developed faster by reusing existing, pretested business and data access
components.

» Impact of changes is isolated: As long as interfaces remain unchanged,
changes on one tier do not affect components on another tier.

» Changes are more manageable: For example, it is easier to replace one
version of a business component with a new one if it is residing on a busi-
ness tier (on one or a few dedicated servers) rather than having to replace
hundreds or thousands of client applications around town, or around the
globe.

Figure 1-2 illustrates enterprise software organized along these single, two,
and n-tiers.

Single Dumb M_ainfrar_ne
Tier Terminal (Single Tier)
Two
; LAN
Tier Client Server

N-Tier Web Web | | Application -
Browser Server Server Database

Figure 1-2 Architectural evolution of enterprise software

8 | Chapter1 Introduction to Enterprise Software

Enterprise Software and Component-Based Software

Summary

When the object-oriented software approach burst onto the software develop-
ment scene, it was widely expected that adoption of object-oriented software
development techniques would lead to reuse, but this hope was only partially
realized. One of the reasons for this partial success was the fine granularity of
the objects and the underlying difficulty of achieving large-scale reuse at that
level due to the more strongly coupled nature of fine-grained objects.

Software components are designed to address this precise issue. Unlike an
object, a software component is designed at a much higher level of abstraction
and provides a complete function or a service. Software components are more
loosely coupled. Using interfaces the components have deliberately exposed,
they can be combined together rapidly to build larger applications quickly and
are more cost-effective.

Component-based software, of course, requires that components from dif-
ferent sources be compatible. That is, an underlying common understanding, a
contract if you will, is required on which the components are to be developed.

Various component models have been developed over the years to provide
the common understanding. Microsoft’s ActiveX, later COM, and Sun Microsys-
tem’s applets and JavaBeans are examples of such component models.

Distributed component models have also been developed to address com-
ponent-based software in the context of distributed enterprise software and
associated challenges discussed earlier. Such component models essentially
provide an “operating system” for distributed and component-based software
development. Examples of these include DCOM, Microsoft DNA (now
Microsoft. NET), and Sun Microsystem’s Enterprise JavaBeans (EJB), which is
part of the Java 2 Platform, Enterprise Edition (J2EE).

Enterprise software has undergone a gradual evolution in pursuit of providing
ever-greater value to the enterprise. Enterprise software faces some distinct
challenges. These include, among others, scalability, distribution, security, and
the need to work with a diverse set of vendor technology. Various evolutionary
architectural approaches have been tried over the years to meet such chal-
lenges. An increasingly popular solution revolves around using a distributed
component model to develop superior enterprise software. Such distributed
component models hold promise, but they are still in their infancy.

