
5
Inheritance

M A N Y P R O G R A M M E R S H AV E long considered inheritance to be one of
the most significant design features of OOP. Inheritance was made

popular more than two decades ago by languages such as C++ and
Smalltalk. Since then, new languages (e.g., Java) have come along and
refined the features and syntax for using inheritance. Now with the emer-
gence of the .NET Framework, Microsoft has designed a platform from the
ground up that offers support for what is arguably one of the most elegant
forms of inheritance to date.

The more you use the .NET Framework, the more you will realize just
how extensively it takes advantage of inheritance. For example, as dis-
cussed in Chapter 3, the CTS relies heavily on inheritance. When you use
the Windows Forms package, your new forms will inherit from an existing
form-based class in the FCL. When you use ASP.NET, your Web pages and
Web services will inherit from preexisting classes in the FCL. As a devel-
oper building applications or component libraries based on the .NET
Framework, you will find that familiarity with inheritance is an absolute
necessity.

Inheriting from a Class

Inheritance allows you to derive a new class from an existing class. Suppose
that class C inherits from class B. Then class B is typically called the base

205

AW002-Pattison05 9/18/03 1:06 PM Page 205

class, and class C is called the derived class. Note that this terminology is not
necessarily standard; some refer to B and C as superclass and subclass, or as
parent and child classes, respectively. This book will stick with the terms
“base” and “derived.”

A derived class definition automatically inherits the implementation
and the programming contract of its base class. The idea is that the derived
class starts with a reusable class definition and modifies it by adding more
members or by changing the behavior of existing methods and properties.

One of the primary reasons for designing with inheritance is that it pro-
vides an effective means for reusing code. For example, you can define a set
of fields, methods, and properties in one class, and then use inheritance to
reuse this code across several other classes. Inheritance is particularly ben-
eficial in scenarios that require multiple classes with much in common but
in which the classes are all specialized in slightly different ways. Examples
include the following familiar categories: employees (administrative, tech-
nical, sales), database tables (customers, orders, products), and graphical
shapes (circle, rectangle, triangle).

Listing 5.1: A simple base class

'*** base class

Public Class Human

'*** private implementation

Private m_Name As String

'*** public members

Public Property Name() As String

'*** provide controlled access to m_Name

End Property

Public Function Speak() As String

Return "Hi, I'm a human named " & m_Name

End Function

End Class

Let’s start by looking at a simple example to introduce the basic syntax
of inheritance. Listing 5.1 defines a class named Human that we would like
to use as a base class. In Visual Basic .NET, when you want to state explic-
itly that one class inherits from another, you follow the name of the class

INHERITANCE206

AW002-Pattison05 9/18/03 1:06 PM Page 206

with the Inherits keyword and the name of the base class. For example,
here are two derived class definitions for Manager and Programmer, both
with Human as their base class:

'*** first derived class

Public Class Manager

Inherits Human

'*** code to extend Human definition

End Class

'*** second derived class

Public Class Programmer : Inherits Human

'*** code to extend Human definition

End Class

For the Programmer class, the preceding code fragment uses a colon
instead of an actual line break between the class name and the Inherits
keyword. As you might recall from earlier versions of Visual Basic, the
colon acts as the line termination character. This colon-style syntax is often
preferred because it improves readability by keeping the name of a derived
class on the same line as the name of its base class.

The Human class serves as a base class for both the Manager class and the
Programmer class. It’s now possible to write implementations for these
classes that are quite different as well as to add new members to each class
to further increase their specialization. Nevertheless, these two classes will
always share a common set of implementation details, and both support a
unified programming contract defined by the Human class.

By default, every class you create in Visual Basic .NET can be inherited
by other classes. If for some reason you don’t want other programmers to
inherit from your class, you can create a sealed class. A sealed class is
defined in the Visual Basic .NET language using the keyword NotInher-
itable. The compiler will generate a compile-time error whenever a pro-
grammer attempts to define a class that inherits from such a sealed class:

Public NotInheritable Class Monkey '*** sealed class definition

'*** implementation

End Class

Public Class Programmer : Inherits Monkey '*** compile-time error!

End Class

INHERITING FROM A CLASS 207

AW002-Pattison05 9/18/03 1:06 PM Page 207

Figure 5.1 shows a common design view of class definitions known as
an inheritance hierarchy. The Human class is located at the top of the hierar-
chy. The Manager class and the Programmer class inherit from the Human
class and are consequently located directly below it in the inheritance hier-
archy. Notice the direction of the arrows when denoting inheritance.

As shown in Figure 5.1, an inheritance hierarchy can be designed with
multiple levels. Consider the two classes at the bottom of the hierarchy in
Figure 5.1, SeniorProgrammer and JuniorProgrammer. These classes
have been defined with the Programmer class as their base class. As a con-
sequence, they inherit indirectly from the Human class. Thus a class in a mul-
tilevel inheritance hierarchy inherits from every class reachable by
following the inheritance arrows upward.

An important design rule should always be applied when designing
with inheritance. Two classes that will be related through inheritance
should be able to pass the is-a test. In short, the test goes like this: If it makes
sense to say “C is a B,” then it makes sense for class C to inherit from class
B. If such a sentence doesn’t make sense, then you should reconsider the
use of inheritance in this situation.

For example, you can correctly say that a programmer “is a” human. You
can also correctly say that a senior programmer “is a” programmer. As you can
see, the purpose of the is-a test is to ensure that a derived class is designed to
model a more specialized version of whatever entity the base class is modeling.

INHERITANCE208

Figure 5.1: An inheritance hierarchy

Manager

SeniorProgrammer JuniorProgrammer

Human

Programmer

AW002-Pattison05 9/18/03 1:06 PM Page 208

You should try never to establish an inheritance relationship between
two classes that cannot pass the is-a test. Imagine you saw a novice pro-
grammer trying to make the Bicycle class inherit from the Wheel class.
You should intervene because you cannot correctly say that a bicycle “is a”
wheel. You can correctly say that a bicycle “has a” wheel (or two), but that
relationship calls for a different design technique that doesn’t involve
inheritance. When you determine that two entities exhibit the “has a” rela-
tionship, the situation most likely calls for a design using containment, in
which the Wheel class is used to define fields within the Bicycle class. In
other words, the Bicycle class contains the Wheel class.

Base Classes in the .NET Framework
Now that you’ve seen some of the basic principles and the syntax for using
inheritance, it’s time to introduce a few important rules that have been
imposed by the .NET Common Type System (CTS).

The first rule is that you cannot define a class that inherits directly from
more than one base class. In other words, the CTS does not support multi-
ple inheritance. It is interesting to note that the lack of support for multiple
inheritance in the .NET Framework is consistent with the Java program-
ming language.

The second rule imposed by the CTS is that you cannot define a class
that doesn’t have a base class. This rule might seem somewhat confusing
at first, because you can write a valid class definition in Visual Basic .NET
(or in C#) that doesn’t explicitly declare a base class. A little more explana-
tion is required to clarify this point.

When you define a class without explicitly specifying a base class, the
compiler automatically modifies the class definition to inherit from the
Object class in the FCL. Once you understand this point, you can see that
the following two class definitions have the same base class:

'*** implicitly inherit from Object

Public Class Dog

End Class

'*** explicitly inherit from Object

Public Class Cat : Inherits System.Object

End Class

INHERITING FROM A CLASS 209

AW002-Pattison05 9/18/03 1:06 PM Page 209

These two CTS-imposed rules of inheritance can be summarized as fol-
lows: Every class (with the exception of the Object class) has exactly one
base class. Of course, it’s not just classes that have base types. For example,
every structure and every enumeration also has a base type. Recall from
Chapter 3 that the inheritance hierarchy of the CTS is singly rooted because
the system-defined Object class serves as the ultimate base type (see Fig-
ure 3.1). Every other class either inherits directly from the Object class or
inherits from another class that inherits (either directly or indirectly) from
the Object class.

Inheriting Base Class Members
Although a derived class inherits the members of its base class, the man-
ner in which certain kinds of members are inherited isn’t completely intu-
itive. While the way things work with fields, methods, and properties is
fairly straightforward, the manner in which constructors are inherited
brings up issues that are a bit more complex.

Inheritance and Fields, Methods, and Properties

Every field, method, and property that is part of the base class definition is
inherited by the derived class definition. As a result, each object created
from a derived type carries with it all the states and behaviors that are
defined by its base class. However, whether code in a derived class has
access to the members inherited from its base class is a different matter alto-
gether.

As mentioned in Chapter 4, each member of a class is defined with a
level of accessibility that determines whether other code may access it.
There are five levels of accessibility:

• Private. A base class member defined with the Private access modi-
fier is not accessible to either code inside the derived class or client-
side code using either class.

• Protected. A base class member defined with the Protected access
modifier is accessible to code inside the derived class but is not
accessible to client-side code. Private and protected members of a

INHERITANCE210

AW002-Pattison05 9/18/03 1:06 PM Page 210

base class are similar in that they are not accessible to client-side
code written against either the base class or the derived class.

• Public. A base class member defined with the Public access modifier
is accessible to code inside the derived class as well as all client-side
code. Public members are unlike private and protected members in
that they add functionality to the programming contract that a
derived class exposes to its clients.

• Friend. A member that is defined with the Friend access modifier is
accessible to all code inside the containing assembly but inaccessible
to code in other assemblies. The friend level of accessibility is not
affected by whether the accessing code is part of a derived class.

• Protected Friend. The protected friend level of accessibility is
achieved by combining the Protected access modifier with the
Friend access modifier. A protected friend is accessible to all code
inside the containing assembly and to code within derived classes
(whether the derived class is part of the same assembly or not).

Listing 5.2 presents an example that summarizes the discussion of what
is legal and what is not legal with respect to accessing fields of varying lev-
els of accessibility.

Listing 5.2: The meaning of access modifiers in the presence of inheritance

'*** base class

Public Class BettysBaseClass

Private Field1 As Integer

Protected Field2 As Integer

Public Field3 As Integer

End Class

'*** derived class

Public Class DannysDerivedClass : Inherits BettysBaseClass

Public Sub Method1()

Me.Field1 = 10 '*** illegal (compile-time error)

Me.Field2 = 20 '*** legal

Me.Field3 = 30 '*** legal

End Sub

End Class

'*** client-side code

Module BobsApp

continues

INHERITING FROM A CLASS 211

AW002-Pattison05 9/18/03 1:06 PM Page 211

Public Sub Main()

Dim obj As New DannysDerivedClass()

obj.Field1 = 10 '*** illegal (compile-time error)

obj.Field2 = 20 '*** illegal (compile-time error)

obj.Field3 = 30 '*** legal

End Sub

End Module

Now that we have outlined the rules of member accessibility, it’s time
to discuss how to properly encapsulate base class members when design-
ing for inheritance. Encapsulation is the practice of hiding the implementa-
tion details of classes and assemblies from other code. For example, a
protected member is encapsulated from client-side code. A private member
is encapsulated from client-side code and derived classes. A friend member
is encapsulated from code in other assemblies.

Imagine you are designing a component library that you plan to sell to
other companies. You will update this component library from time to time
and send the newest version to your customers. If your design involves dis-
tributing base classes that other programmers will likely extend through
the use of inheritance, you need to think very carefully through the issues
of defining various base class members as private versus protected.

Any member defined as private is fully encapsulated and can be modi-
fied or removed without violating the original contract between a base class
and any of its derived classes. In contrast, members defined as protected are
a significant part of the contract between a base class and its derived
classes. Modifying or removing protected members can introduce breaking
changes to your customer’s code.

To keep your customers happy, you must devise a way to maintain and
evolve the base classes in your component library without introducing
breaking changes. A decade’s worth of experience with inheritance has told
the software industry that this challenge can be very hard to meet.

When authoring base classes, it’s critical to start thinking about version-
ing in the initial design phase. You must determine how easy (or how dif-
ficult) it will be to modify derived classes if modifications to base classes
cause breaking changes. It helps to design with the knowledge that it’s a
common mistake to underestimate the importance of encapsulating base
class members from derived classes.

INHERITANCE212

AW002-Pattison05 9/18/03 1:06 PM Page 212

Another important consideration is whether it makes sense to use inher-
itance across assembly boundaries. While the compilers and the plumbing
of the CLR are more than capable of fusing a base class implementation
from one assembly together with the derived class implementation in a
second assembly, you should recognize that versioning management grows
ever more difficult as the scope of the inheritance increases.

That doesn’t mean that you should never use cross-assembly inheritance.
Many experienced designers have employed this strategy very effectively.
For example, when you leverage one of the popular .NET frameworks such
as Windows Forms or ASP.NET, you’re required to create a class in a user-
defined assembly that inherits from a class in a system-defined assembly.
But understand one thing: The designers at Microsoft who created these
frameworks thought long and hard about how to maintain and evolve their
base classes without introducing breaking changes to your code.

If you plan to create base classes for use by programmers in other devel-
opment teams, you must be prepared to think through these same issues.
It is naive to ponder encapsulation only in terms of stand-alone classes, and
only in terms of a single version. Inheritance and component-based devel-
opment make these issues much more complex. They also make mistakes
far more costly. In general, you shouldn’t expose base class members to
derived classes and/or other assemblies if these members might ever
change in name, type, or signature. Following this simple rule will help you
maintain backward compatibility with existing derived classes while
evolving the implementation of your base classes.

Inheritance and Constructors

The way in which constructors are inherited isn’t as obvious as for other
kinds of base class members. From the perspective of a client attempting
to create an object from the derived class, the derived class definition does
not inherit any of the constructors defined in the base class. Instead, the
derived class must contain one or more of its own constructors to support
object instantiation. Furthermore, each constructor defined in a derived
class must call one of the constructors in its base class before performing
any of its own initialization work.

INHERITING FROM A CLASS 213

AW002-Pattison05 9/18/03 1:06 PM Page 213

Recall from Chapter 4 that the Visual Basic .NET compiler will auto-
matically create a public default constructor for any class definition that
does not define a constructor of its own. This default constructor also con-
tains code to call the default constructor of the base class. As an example,
consider the following class definition:

'*** a class you write

Public Class Dog

End Class

Once compiled, the definition of this class really looks like this:

'*** code generated by compiler

Public Class Dog : Inherits System.Object

'*** default constructor generated by compiler

Public Sub New()

MyBase.New() '*** call to default constructor in System.Object

End Sub

End Class

As this example reveals, the compiler will generate the required construc-
tor automatically along with a call to the base class’s default constructor.
But what about the situation in which the base class does not have an acces-
sible default constructor? In such a case, the derived class definition will not
compile because the automatically generated default constructor is invalid.
As a result, the author of the derived class must provide a constructor of his
or her own, with an explicit call to a constructor in the base class.

The only time a derived class author can get away with not explicitly
defining a constructor is when the base class provides an accessible default
constructor. As it turns out, the Object class contains a public default con-
structor, which explains why you don’t have to explicitly add a construc-
tor to a class that inherits from the Object class. Likewise, you don’t have
to explicitly add a constructor to a class that inherits from another class
with an accessible default constructor.

Sometimes, however, you must inherit from a class that doesn’t contain
a default constructor. Consider the following code, which includes a
revised definition of the Human class discussed earlier. In particular, note
that the Human class now contains a parameterized constructor:

INHERITANCE214

AW002-Pattison05 9/18/03 1:06 PM Page 214

Public Class Human

Protected m_Name As String

Public Sub New(ByVal Name As String)

m_Name = Name

End Sub

Public Function Speak() As String

Return "Hi, I'm a human named " & m_Name

End Function

End Class

Public Class Programmer : Inherits Human

'*** this class definition will not compile

End Class

Because this definition contains a single parameterized constructor, the
compiler doesn’t automatically add a default constructor to class Human. As
a result, when you try to define the Programmer class without an explicit
constructor, your code will not compile because Visual Basic .NET cannot
generate a valid default constructor. To make the Programmer class com-
pile, you must add a constructor that explicitly calls an accessible con-
structor defined in the Human class:

Public Class Programmer : Inherits Human

Public Sub New(Name As String)

MyBase.New(Name) '*** call to base class constructor

'*** programmer-specific initialization goes here

End Sub

End Class

As shown in the preceding code, you make an explicit call to a base class
constructor by using MyBase.New and passing the appropriate list of
parameters. Note that when you explicitly call a base class constructor from
a derived class constructor, you can do it only once and the call must be the
first statement in the constructor’s implementation.

Of course, you never have to rely on compiler-generated calls to the
default constructor. In some cases you might prefer to call a different con-
structor. An explicit call to MyBase.New can always be used at the top of a
derived class constructor to call the exact base class constructor you want.
Some programmers even add explicit calls to the default constructor by

INHERITING FROM A CLASS 215

AW002-Pattison05 9/18/03 1:06 PM Page 215

using MyBase.New. Even though such calls can be automatically generated
by the compiler, making these calls explicit can serve to make your code
self-documenting and easier to understand.

Let’s take a moment and consider the sequence in which the construc-
tors are executed during object instantiation by examining the scenario
where a client creates an object from the Programmer class using the New
operator. When the client calls New, a constructor in the Programmer class
begins to execute. Before this constructor can do anything interesting, how-
ever, it must call a constructor in the Human class. The constructor in the
Human class faces the same constraints. Before it can do anything interest-
ing, it must call the default constructor of the Object class.

The important observation is that constructors execute in a chain start-
ing with the least-derived class (i.e., Object) and ending with the most-
derived class. The implementation for the constructor of the Object class
always runs to completion first. In the case of creating a new Programmer
object, when the constructor for the Object class completes, it returns and
the constructor for the Human class next runs to completion. Once the con-
structor for the Human class returns, the constructor for the Programmer
class runs to completion. After the entire chain of constructors finishes exe-
cuting, control finally returns to the client that started the sequence by call-
ing the New operator on the Programmer class.

Limiting Inheritance to the Containing Assembly
Now that you understand the basics of how constructors must be coordi-
nated between a base class and its derived classes, let’s explore a useful
design technique that prevents other programmers in other assemblies
from inheriting from your base classes. The benefit of using this technique
is that you can take advantage of inheritance within your assembly, but pre-
vent cross-assembly inheritance. This approach eliminates the need to
worry about how changes to the protected members in the base class might
introduce breaking changes to code in other assemblies. Why would you
want to do this? An example will describe a situation in which you might
find this technique useful.

Suppose you’re designing a component library in which you plan to use
inheritance. You’ve already created an assembly with a base class named
Human and a few other classes that derive from Human, such as Manager and

INHERITANCE216

AW002-Pattison05 9/18/03 1:06 PM Page 216

Programmer. In this scenario, you will benefit from the features of inheri-
tance inside the scope of your assembly. In an effort to minimize your ver-
sioning concerns, however, you want to limit the use of inheritance to your
assembly alone. To be concise, you’d like to prevent classes in other assem-
blies from inheriting from your classes.

Of course, it’s a simple matter to prevent other programmers from
inheriting from the derived classes such as Programmer and Manager: You
simply declare them as sealed classes using the NotInheritable keyword.
Such a declaration makes it impossible for another programmer to inherit
from these classes. However, you cannot define the Human class using the
NotInheritable keyword because your design relies on it serving as a
base class. Also, you cannot define a base class such as Human as a friend
class when public classes such as Programmer and Manager must inherit
from it. The CTS doesn’t allow a public class to inherit from a friend class,
because in general the accessibility of an entity must be equal to or greater
than the accessibility of the new entity being defined (a new entity can
restrict access, but cannot expand access).

To summarize the problem, you want the Human class to be inheritable
from within the assembly and, at the same time, to be non-inheritable to
classes outside the assembly. There is a popular design technique that expe-
rienced software designers often use to solve this problem—they create a
public base class with constructors that are only accessible from within the
current assembly. You accomplish this by declaring the base class con-
structors with the Friend keyword:

'*** only inheritable from within the current assembly!

Public Class Human

Friend Sub New()

'*** implementation

End Sub

End Class

Now the definition of the Human class is inheritable from within its assembly
but not inheritable to classes in other assemblies. While this technique is not
overly intuitive at first, it can prove very valuable. It allows the compiler to
enforce your design decision so as to prohibit cross-assembly inheritance.
Again, the reason to use this technique is to help simplify a design that

INHERITING FROM A CLASS 217

AW002-Pattison05 9/18/03 1:06 PM Page 217

involves inheritance. Remember that cross-assembly inheritance brings up
many issues that are often best avoided when they’re not a requirement.

Polymorphism and Type Substitution

In the first part of this chapter, inheritance was presented as an effective way
to reuse the implementation details of a base class across many derived
classes. While reuse of implementations is valuable, another aspect of inher-
itance is equally important—its support for polymorphic programming.

Polymorphism
Every derived class inherits the programming contract that is defined by
the public members of its base class. As a result, you can program against
any object created from a derived class by using the same programming
contract that’s defined by the base class. In other words, inheritance pro-
vides the ability to program against different types of objects using a sin-
gle programming contract. This polymorphic programming style is a
powerful programming technique because it allows you to write generic,
client-side code. That is, the client-side code, which is written against the
base class, is also compatible with any of the derived classes, because they
all share a common, inherited design. The derived classes are thus plug-
compatible from the perspective of the client, making the client’s code more
applicable to a wider range of situations.

Poly-whatism?

Polymorphism is one of the authors’ favorite computer science terms.

While precise definitions vary, polymorphism can be envisioned as the

notion that an operation (method) supports one or more types (classes).

For example, you can write “X + Y”, and this operation will work in .NET

whether X and Y are both integers, reals, or strings. Hence the operator “+”

is polymorphic, and the code “X + Y” represents polymorphic program-

ming. Expressing this in OOP terms, it might be easier to think of this code

as “X.plus(Y)”. At the end of the day, “X.plus(Y)” is more generic because

it works in multiple situations.

INHERITANCE218

AW002-Pattison05 9/18/03 1:06 PM Page 218

Let’s look at an example of writing generic client-side code based on the
principle of polymorphism. This example will use classes within an inheritance
hierarchy that has been designed by the Windows Forms team at Microsoft. Fig-
ure 5.2 shows some of the more commonly used classes in the Windows Forms
framework that provide the implementations for forms and various controls.

The hierarchy depicted in Figure 5.2 contains a class named Control
that serves as a base class for several other classes. Let’s write a method def-
inition called FormatControl against this Control class:

Imports System.Windows.Forms

Imports System.Drawing

Public Class ControlManager

Public Sub FormatControl(ByVal ctrl As Control)

'*** generic code using Control class

ctrl.BackColor = Color.Blue

ctrl.ForeColor = Color.Red

End Sub

End Class

POLYMORPHISM AND T YPE SUBSTITUTION 219

Object

MarshalByRefObject

Control

Component

ButtonBase TextBoxBaseScrollableControl

ContainerControl

Form1

Form

Button

CheckBox

TextBox

RichTextBox

Figure 5.2: The inheritance hierarchy of the Windows Forms framework

AW002-Pattison05 9/18/03 1:06 PM Page 219

This implementation of FormatControl is truly generic code. You can call
this method and pass a reference to many different types of objects, includ-
ing Button, CheckBox, TextBox, and Form. When a method such as this
one defines a parameter based on the Control class, you can pass an object
of any type that inherits either directly or indirectly from the Control class
in the inheritance hierarchy.

Suppose you are writing an implementation for an event handler in a
form that contains a command button named cmdExecuteTask, a check
box named chkDisplayMessage, and a text box named txtMessage. You
can achieve polymorphic behavior by writing the following code:

Dim mgr As New ControlManager()

mgr.FormatControl(cmdExecuteTask)

mgr.FormatControl(chkDisplayMessage)

mgr.FormatControl(txtMessage)

Each of these calls is dispatched to the FormatControl method. Even
though each call passes a distinct type of object, the FormatControl
method responds appropriately because each object “is a” control. The
important lesson you should draw from this example is that objects created
from a derived class can always be substituted when an instance of the base
class is expected.

Method overloading adds yet another dimension to polymorphic pro-
gramming. For example, you could overload the FormatControl method
of the ControlManager class with a more specialized definition in the case
of TextBox objects:

Public Class ControlManager

Public Sub FormatControl(ByVal txt As TextBox)

'*** process object as a text box

End Sub

Public Sub FormatControl(ByVal ctrl As Control)

'*** process other objects as a generic control

End Sub

End Class

The Visual Basic .NET compiler will dispatch the call to the implementation
of FormatControl(TextBox) when it determines that the caller is pass-

INHERITANCE220

AW002-Pattison05 9/18/03 1:06 PM Page 220

ing a TextBox reference. It will call FormatControl(Control) when it
determines that the Control class is the most-derived class compatible
with the type of reference being passed:

Dim mgr As New ControlManager()

'*** this call invokes FormatControl(TextBox)

mgr.FormatControl(txtMessage)

'*** these calls invoke FormatControl(Control)

mgr.FormatControl(cmdExecuteTask)

mgr.FormatControl(chkDisplayMessage)

As the discussion here reveals, polymorphism is very powerful because
it allows you to program in more generic terms and to substitute different
compatible implementations for one another. To design, write, and use
class definitions in Visual Basic .NET that benefit from polymorphism,
however, you must understand a number of additional concepts. The first
is the difference between an object type and a reference variable type.

Converting between Types
It’s important that you distinguish between the type of object you’re pro-
gramming against and the type of reference you’re using to interact with that
object. This consideration is especially critical when you are working with
classes in an inheritance hierarchy, because you will commonly access derived
objects using a base class reference. For example, a TextBox object can be ref-
erenced through a variable of type TextBox or a variable of type Control:

Dim textbox1 As TextBox = txtMessage

textbox1.Text = "test 1"

Dim control1 As Control = txtMessage

control1.Text = "test 2"

In the preceding code, the same TextBox object is being accessed through
two types of reference variables. The subtle but critical observation here is
that an object—and the reference variables used to access that object—can be
based on different types. The only requirement is that the reference variable
type must be compatible with the object type. A base class reference variable
is always compatible with an object created from that base class, or any class

POLYMORPHISM AND T YPE SUBSTITUTION 221

AW002-Pattison05 9/18/03 1:06 PM Page 221

that inherits directly or indirectly from that base class. In this example, the
control1 reference variable is compatible with a TextBox object because
the TextBox class inherits (indirectly) from the Control class.

As you see, inheriting one class from another creates an implicit com-
patibility between the two types. If you can reference an object using a
TextBox reference variable, you are guaranteed that you can also reference
that object using a Control reference variable. This is consistent with the
is-a rule because a text box “is a” control. Due to this guaranteed compat-
ibility, the Visual Basic .NET compiler allows you to implicitly convert from
the TextBox type to the Control type, even with strict type checking
enabled. This technique, which is sometimes referred to as up-casting (i.e.,
casting up the inheritance hierarchy), is always legal.

Trying to convert a base class reference to a derived class reference—that
is, down the inheritance hierarchy—is an entirely different matter. Known as
down-casting, this technique is not always legal. For example, if you can ref-
erence an object using a Control reference variable, you cannot necessarily
also reference that object using a TextBox reference variable. While this type
of reference might be permitted in some situations, it’s definitely not legal in
all cases. What if the object is actually a Button and not a TextBox?

When strict type checking is enabled, the Visual Basic .NET compiler
will not allow you to implicitly convert down an inheritance hierarchy (e.g.,
from Control to TextBox). The following code demonstrates how to con-
vert back and forth between Control and TextBox references:

Dim textbox1, textbox2, textbox3 As TextBox

Dim control1, control2, control3 As Control

'*** (1) compiles with or without Option Strict

textbox1 = txtMessage

control1 = textbox1

'*** (2) doesn't compile unless Option Strict is disabled

control2 = txtMessage

textbox2 = control2 '*** error: illegal implicit conversion

'*** (3) compiles with or without Option Strict

control3 = txtMessage

textbox3 = CType(control3, TextBox)

INHERITANCE222

AW002-Pattison05 9/18/03 1:06 PM Page 222

No problem arises if you want to implicitly convert from the TextBox class
to the Control class (1). However, the automatic compatibility between
these two types works only in a single direction—upward. It is therefore
illegal to perform an implicit conversion from a Control reference to a
TextBox reference (2). You cannot implicitly convert to a type located
downward in the inheritance hierarchy. Therefore, the conversion from
Control to TextBox must be made explicitly by using the CType conver-
sion operator (3).

The Visual Basic .NET compiler never worries about the type of the
actual object when it decides whether to allow an implicit conversion.
Instead, it always relies on the static types of the reference variables being
used when deciding whether implicit conversion should be permitted.

Keep in mind that an attempt to convert between types will not always
be successful. For example, suppose you attempt to convert a reference
variable that is pointing to a CheckBox object into a reference variable of
type TextBox:

Dim control1 As Control = chkDisplayMessage

Dim textbox1 As TextBox = CType(control1, TextBox)

This code will compile without error because the CType operator is used to
perform the conversion explicitly. It will fail at runtime, however, because
a CheckBox object is not compatible with the programming contract
defined by the TextBox class. In particular, the CLR will determine that the
type-cast is illegal and throw an exception. A more detailed discussion of
throwing and handling exceptions is deferred until Chapter 9.

If you aren’t sure whether an attempt to convert a reference downward to
a more-derived type will succeed, you can always perform a runtime test using
the TypeOf operator. For example, you can test whether a Control reference
variable points to a TextBox-compatible object using the following code:

Public Sub FormatControl(ByVal ctrl As Control)

'*** check whether object is a TextBox

If TypeOf ctrl Is TextBox Then '*** safe to convert!

Dim txt As TextBox = CType(ctrl, TextBox)

'*** program against control as TextBox

txt.TextAlign = HorizontalAlignment.Center

End If

End Sub

POLYMORPHISM AND T YPE SUBSTITUTION 223

AW002-Pattison05 9/18/03 1:06 PM Page 223

It’s not always necessary to write code that performs this kind of run-
time test. You could instead overload the FormatControl method with a
more specialized implementation to handle the case of a TextBox object.
Nevertheless, sometimes you cannot predict the type of object you’ll be
dealing with until runtime.

Consider the situation in which you’d like to enumerate through all the
controls on a form and perform a specific action only with the text boxes.
The form provides a Controls collection that you can enumerate through
using a For Each loop, but you cannot determine which controls are
TextBox objects until runtime. This scenario offers a perfect example of
when you should perform a runtime test using the TypeOf operator:

'*** code in a form's event handler

Dim ctrl As Control

For Each ctrl In Me.Controls

If TypeOf ctrl Is TextBox Then

Dim txt As TextBox = CType(ctrl, TextBox)

'*** program against control as TextBox

txt.TextAlign = HorizontalAlignment.Center

End If

Next

You have just seen how polymorphism works with a set of classes defined
in an existing inheritance hierarchy like the Windows Forms framework. Now
it’s time to turn your attention to how you can create an inheritance hierar-
chy of your own and produce the same effect. As part of this discussion, we’ll
continue with the example started earlier in this chapter, which included the
Human base class and the Programmer derived class (see Figure 5.1).

Replacing Methods in a Derived Class

Now that you have seen the high-level motivation for polymorphism, it’s
time for a low-level explanation of the mechanics of how members are
accessed at runtime. To use inheritance to add polymorphic behavior to
your designs, you must first understand the differences between static bind-
ing and dynamic binding.

Static binding and dynamic binding represent two different ways in
which a client can invoke a method or property of an object. Static binding

INHERITANCE224

AW002-Pattison05 9/18/03 1:06 PM Page 224

is usually more straightforward and results in better performance.
Dynamic binding yields greater flexibility and is the underlying mecha-
nism that allows a derived class to replace behavior inherited from a base
class. The latter type of binding is one of the crucial ingredients of poly-
morphic programming.

Static Binding

Listing 5.3: A simple base class with a statically bound method

Public Class Human

Public Function Speak() As String

Return "I am a human"

End Function

End Class

Public Class Programmer : Inherits Human

'*** inherits Speak from base class

End Class

First, let’s tackle static binding. Suppose you are designing the Human and
Programmer classes and come up with the two class definitions shown in
Listing 5.3. Now imagine someone writes code that creates a Programmer
object and invokes the Speak method. The caller can invoke the Speak
method through a reference variable of type Programmer or through a ref-
erence variable of type Human:

Dim programmer1 As Programmer = New Programmer()

Dim human1 As Human

Dim message1, message2 As String

message1 = programmer1.Speak() '*** calls Human.Speak()

message2 = human1.Speak() '*** calls Human.Speak()

Console.WriteLine(message1) '*** "I am a human"

Console.WriteLine(message2) '*** "I am a human"

Both method invocations work via static binding, which is the default
method invocation mechanism used by Visual Basic .NET and by the CLR.
Static binding is based on the type of the reference variable, not the type of
object being referenced. For example, if you are accessing a Programmer
object through a reference variable of type Human, the type information

REPLACING METHODS IN A DERIVED CLASS 225

AW002-Pattison05 9/18/03 1:06 PM Page 225

from the definition of Human is used to bind the client to the correct mem-
ber definition.

Another important aspect of static binding is that the decision about
where to locate the definition for the method being invoked is always made
at compile time—that is, statically. This decision-making process is differ-
ent than in dynamic binding, in which the decision about where to locate the
method definition is made at runtime. With static binding, the compiler can
perform more of the work at compile time. For this reason, static binding can
provide a measurable performance advantage over dynamic binding.

Dynamic Binding and Overridable Methods
One of the most valuable features of inheritance is the fact that the designer
of a base class can provide default behavior that can optionally be replaced
by a derived class author. For example, a base class author can provide a
default implementation for a method. A derived class author can then
choose whether to use the base class implementation or to write a more spe-
cialized implementation. In some cases, a derived class author even has the
option of extending the base class implementation by adding extra code to
the derived class.

Using a derived class to replace the implementation of a method or a
property defined in a base class is known as overriding. Method overriding
relies on dynamic binding, not static binding. Dynamic binding takes into
account the type of an object at runtime, which gives the CLR a chance to
locate and call the overriding method. In this way dynamic binding sup-
ports more flexible code, albeit with a runtime cost. Interestingly, dynamic
binding is the default in the Java programming language and, in fact, the
only option in Java in most cases.

An example will illustrate why dynamic binding is so important. Imag-
ine you have written the following client-side code that uses the program-
ming contract defined by the Human class shown in Listing 5.3:

Public Class Reporter

Public Sub InterviewHuman(ByVal target As Human)

Dim Message As String = target.Speak()

MessageBox.Show(Message)

End Sub

End Class

INHERITANCE226

AW002-Pattison05 9/18/03 1:06 PM Page 226

A caller could invoke the InterviewHuman method by passing a Human
object or by passing a Programmer object. Whichever type of object is
passed to the InterviewHuman method must, however, provide an imple-
mentation of the Speak method as defined by the programming contract
of the Human class.

An important aspect of polymorphism is that any Human-derived class
should be able to provide a behavior for the Speakmethod that differs from
the behavior of other Human-derived classes. For example, a Programmer
class should be able to provide an implementation of Speak that is different
from that in the Human class. You cannot take advantage of these different
behaviors if static binding is being used. Because the InterviewHuman
method programs against the Human type, static binding would result in
every call to Speak being dispatched to the implementation defined in the
Human class. Therefore, true polymorphic behavior is not possible with
static binding. Your class design must contain methods that are invoked
through dynamic binding.

Of course, the features of dynamic binding don’t apply to all kinds of
class members. When you add methods and properties to a base class, you
have the option of defining them to be invoked through either static bind-
ing or dynamic binding. You don’t have the same option when you add
fields to a base class. In the CTS, fields can be accessed only through static
binding. In other words, method and properties can be declared as overrid-
able but fields cannot. This restriction gives public methods and properties
yet another advantage over public fields from a design perspective.

Now that you’ve learned the fundamental concepts behind dynamic
binding, it’s time to see the Visual Basic .NET syntax that’s required to sup-
port it. You enable dynamic binding by defining overridable methods and
properties.

Listing 5.4: A simple base class with a dynamically bound method

Public Class Human

Public Overridable Function Speak() As String

'*** default implementation

Return "I am a human"

End Function

End Class

REPLACING METHODS IN A DERIVED CLASS 227

AW002-Pattison05 9/18/03 1:06 PM Page 227

The first requirement to enable overriding is that a base class must
define the method or property as overridable. To do so, you declare the
member definition using the Overridable keyword (equivalent to the
virtual keyword in C# and C++), as shown in Listing 5.4. It’s important to
understand the implications of defining a method with the Overridable
keyword. In this case, it means that every invocation of the Speak method
through a reference variable of type Human will result in dynamic binding.
Also, classes that inherit from Human will have the option of overriding the
Speak method to provide a more specialized implementation.

Because a dynamically bound call is potentially slower than a statically
bound call, it makes sense that a base class author must ask for it explicitly.
Languages such as Visual Basic .NET and C# require a base class author to
be very explicit about declaring methods that are overridable for another
reason, too: When a method is overridable, the design becomes more chal-
lenging because the method overriding complicates the contract between
a base class and its derived classes. We will revisit this topic later in this
chapter. For now, just take it on faith that declaring a method or property as
overridable increases your responsibilities as a base class author.

Let’s finish our example by creating a derived class that overrides a
method implementation defined within its base class. First, the derived class
must contain a method with the same name and the same signature as the
overridable method in its base class. Second, the overriding method must be
explicitly declared to override the base class implementation using the
Overrides keyword. In the following code fragment, the Programmer class
overrides the Speak method inherited from the Human class of Listing 5.4:

Public Class Programmer : Inherits Human

Public Overrides Function Speak() As String

'*** overriding implementation

Return "I am a programmer"

End Function

End Class

Now that we’ve written a derived class definition that overrides a
method implementation in its base class, we are ready to see an example of
dynamic binding in action. Examine the following client-side code:

INHERITANCE228

AW002-Pattison05 9/18/03 1:06 PM Page 228

Dim programmer1 As Programmer = New Programmer()

Dim human1 As Human = programmer1

Dim message1, message2 As String

message1 = programmer1.Speak() '*** calls Programmer.Speak

message2 = human1.Speak() '*** calls Programmer.Speak

Console.WriteLine(message1) '*** "I am a programmer"

Console.WriteLine(message2) '*** "I am a programmer"

As this code demonstrates, it doesn’t matter whether you access the Pro-
grammer object through a reference variable of type Programmer or of type
Human. The dynamic binding scheme employed by the CLR always locates
the appropriate method implementation by looking up the inheritance
hierarchy for the most-derived class that holds a definition for the method
in question. In the preceding code, Programmer is the most-derived class
that contains an implementation of the Speak method.

Chaining Calls from a Derived Class to a Base Class
When you override a method, it’s fairly common practice to chain a call
from your overriding implementation in the derived class to the overrid-
den implementation in the base class. This technique allows you to lever-
age the implementation provided by the base class and extend it with extra
code written in the derived class. Consider the following reimplementation
of the Programmer class:

Public Class Programmer : Inherits Human

Public Overrides Function Speak() As String

'*** chain call to Speak method in base class

Return MyBase.Speak() & " who is a programmer"

End Function

End Class

The Visual Basic .NET keyword MyBase is used in a derived class to explic-
itly access public or protected members in its base class. In this example, the
Programmer definition of Speak makes an explicit call to the Human imple-
mentation of Speak. This approach allows the derived class author to reuse
and extend the method implementation provided by the base class author.

As shown in the preceding example, the MyBase keyword allows a
derived class author to chain a call to the base class author’s implementa-

REPLACING METHODS IN A DERIVED CLASS 229

AW002-Pattison05 9/18/03 1:06 PM Page 229

tion. A chained call doesn’t have to be made at the beginning of the derived
class implementation, however. It can be made at any point in the overrid-
ing implementation.

Design Issues with Overridable Methods
You’ve just seen the syntax for creating overridable methods. You’ve also
seen the syntax for overriding a method and for chaining a call to an over-
ridden base class implementation. As a result of the discussion, you might
have concluded that the syntax required for method overriding isn’t espe-
cially complicated.

In reality, mastering the syntax is the easy part. Making sure you get the
semantics correct is a much tougher job. Anyone who has managed a large
software project using inheritance and method overriding can tell you that
managing the semantics of overridable methods and properties requires a
high level of expertise and attention to detail.

An overridable method complicates the programming contract of a base
class because a derived class author can use any of three possible approaches:

• A derived class author can inherit a base class implementation and
reuse it without modification.

• A derived class author can provide an overriding implementation
that chains a call back to the base class implementation.

• A derived class author can provide an overriding implementation
that does not chain a call back to the base class implementation.

Consider these three approaches for dealing with an overridable
method from a design perspective. You might say that there are really three
options: reusing, extending, and replacing. When a derived class inherits
a method, it reuses the base class implementation. When a derived class
overrides a method and chains a call back the base class, it extends the base
class implementation. When a derived class overrides a method and does
not chain a call back the base class, it replaces the base class implementation.

While the CLR’s support for method overriding allows for reusing,
extending, and replacing, many overridable methods have semantics that
do not support all three approaches. The overridable Finalize method of
the Object class, for instance, is a real-world example of an overridable

INHERITANCE230

AW002-Pattison05 9/18/03 1:06 PM Page 230

method that does not allow replacing. If you elect to override the Finalize
method in a user-defined class, your implementation must chain a call back
to the Finalize implementation of the base class. If you fail to chain a call
to the base class implementation, you have broken the semantic contract of
this overridable method and your code will likely exhibit problematic
behavior. Chapter 10 discusses when and how to override the Finalize
method; for now, just recognize that replacing the implementation for an
overridable method creates problems.

As you can see, some overridable methods only support reusing or
extending the base class implementation. An overridable method may also
have semantics that allow for reusing and replacing yet disallow extending.
In general, the semantics of overridable methods and properties require
extra attention.

The semantics involved with chaining can become even more compli-
cated because the semantics of some overridable methods require an over-
riding implementation to chain a call back to the base class implementation
at a specific point in time. For example, the semantics of one overridable
method might require overriding method implementations to chain a call
to the base class implementation before doing any work in the derived
class. The semantics of another overridable method might require overrid-
ing method implementations to chain a call to the base class implementa-
tion after all work has been completed in the derived class implementation.

This discussion should lead you to two important observations:

• The semantics of method and property overriding are often sensitive
to whether an overriding method should chain a call to its base class.

• The semantics of overriding can be affected by whether the chained
call should be made at the beginning or at the end of the overriding
method or property implementation.

If you must ever design a base class, it is your responsibility to document
the semantics for each overridable method and property. Your documentation
should specify for each overridable method and property whether chaining
a call back to your base class implementation is required. You should also
point out any occasion where a chained call must be made at the beginning
or at the end of the overriding implementation in the derived class.

REPLACING METHODS IN A DERIVED CLASS 231

AW002-Pattison05 9/18/03 1:06 PM Page 231

Even if you never design or write a base class definition, you must keep
these rules in mind. As a .NET programmer, you will almost certainly
encounter situations in which you must create classes that inherit from one
of the base classes provided by the .NET Framework.

When you are working with inheritance, semantic errors can be much
more challenging to find than syntax errors. The compiler will catch syn-
tax errors and identify their exact locations in your code, but it cannot catch
semantic errors. This factor makes semantic errors related to inheritance far
more difficult to locate. Making sure the semantics for overridable methods
are well defined and adhered to requires a lot of discipline. It may also
require coordination across different development teams.

Declaring a Method as NotOverridable
Recall that a class created with Visual Basic .NET is inheritable by default.
If you create a class named Programmer that inherits from Human, another
programmer can create a third class, SeniorProgrammer, that inherits
from your derived class:

Public Class SeniorProgrammer : Inherits Programmer

'*** can this class override Speak?

End Class

Given the class definitions for Human, Programmer, and SeniorPro-
grammer (which now form the inheritance hierarchy shown in Figure 5.1),
ask yourself the following question: Should the author of SeniorPro-
grammer be able to override the Programmer implementation of Speak?
The answer is yes. A method that is declared with the Overrides keyword
is itself overridable. The author of SeniorProgrammer can override the
implementation of Speak in Programmer with the following code:

Public Class SeniorProgrammer : Inherits Programmer

Public Overrides Function Speak() As String

'*** overriding implementation

End Function

End Class

You can take this example one step further by creating a class named
SuperSeniorProgrammer that inherits from SeniorProgrammer. Super-

INHERITANCE232

AW002-Pattison05 9/18/03 1:06 PM Page 232

SeniorProgrammer would be able to override the SeniorProgrammer
definition of the Speak method with yet another implementation.

If you take this example to the logical extreme, you can create as many
classes as you want in the inheritance hierarchy, with each class inheriting
from the one above it and overriding the Speak method with a new imple-
mentation. There isn’t really a theoretical limitation on how many levels
you can design in an inheritance hierarchy. In reality, practical limitations
often determine how many levels of inheritance you should allow. A few
examples will demonstrate how you can limit the use of inheritance to keep
a complicated design from getting out of hand.

Suppose you’ve created a definition for Programmer by inheriting from
Human. From your perspective, you are the beneficiary of inheritance
because you were able to reuse code from Human and you saved yourself a
good deal of time in doing so. However, if you allow other programmers
to inherit from your derived class, you must also live up to the responsi-
bilities of a base class author. That includes documenting the semantics for
all of your overridable methods.

When you override a method using the Overrides keyword, your
method definition becomes overridable by default. You can reverse this
default behavior by adding the NotOverridable keyword before the
Overrides keyword. This technique is used here to prevent the continued
overriding of the Speak method:

Public Class Programmer : Inherits Human

Public NotOverridable Overrides Function Speak() As String

'*** overriding implementation

End Function

End Class

Class SeniorProgrammer : Inherits Programmer

'*** this class cannot override Speak

End Class

The author of SeniorProgrammer is no longer allowed to override the
Speakmethod. As this example illustrates, when you declare an overriding
method implementation with the NotOverridable keyword, that choice
simplifies your design. You don’t have to worry about other classes inher-
iting from your class and breaking the semantics of your method.

REPLACING METHODS IN A DERIVED CLASS 233

AW002-Pattison05 9/18/03 1:06 PM Page 233

Using the NotOverridable keyword allows you to disallow overriding
on a method-by-method or a property-by-property basis, but another
option can make life even easier. Recall that you can disallow inheriting
altogether by using the NotInheritable keyword. This keyword is appli-
cable to base classes as well as derived classes such as Programmer:

Public NotInheritable Class Programmer : Inherits Human

Public Overrides Function Speak() As String

'*** overriding implementation

End Function

End Class

Now classes may no longer inherit from Programmer. This choice really
simplifies things because you don’t have to worry about a contract of
behavior between Programmer and derived classes. Sometimes it makes
sense to define overridden methods and properties as NotOverridable;
at other times it’s better to define a derived class as NotInheritable. Both
techniques simplify the overall design of a derived class.

Most software developers agree that keeping a design as simple as pos-
sible is beneficial. But there’s another good reason to apply the NotOver-
ridable and NotInheritable keywords whenever you can: They can
also improve performance.

Recall that overridable methods require the use of dynamic binding
and, therefore, may incur a runtime cost. Judicious use of the NotOver-
ridable and NotInheritable keywords allows the Visual Basic .NET
compiler to employ static binding rather than dynamic binding at times,
thereby reducing execution time.

For example, imagine Programmer is defined with the NotInherita-
ble keyword. The Visual Basic .NET compiler can make the assumption
that a reference variable of type Programmer will only reference an object
created from the Programmer class. That is, the client will never use a Pro-
grammer reference variable to access an object of some class derived from
Programmer. Because Programmer is sealed, a Programmer reference vari-
able can only be used to access objects created from Programmer. There is
no opportunity for polymorphism and, consequently, no need to use
dynamic binding. In such a case, the compiler will optimize calls by using
static binding instead of dynamic binding.

INHERITANCE234

AW002-Pattison05 9/18/03 1:06 PM Page 234

MyBase versus MyClass versus Me
While we’re on the topic of static binding versus dynamic binding, it makes
sense to discuss some subtle differences between the keywords Me,
MyClass, and MyBase. All three can be used inside a method implementa-
tion of a class to refer to a class member, but they can exhibit quite differ-
ent behavior.

Listing 5.5 summarizes the class definitions we have discussed so far:
Human, Programmer, and SeniorProgrammer. Study the listing, and deter-
mine which methods are invoked using static binding and which are
invoked using dynamic binding.

Listing 5.5: An inheritance hierarchy with statically and dynamically bound methods

Public Class Human

Public Overridable Function Speak() As String

Return "I am a human"

End Function

End Class

Public Class Programmer : Inherits Human

Public Overrides Function Speak() As String

Return "I am a programmer"

End Function

Public Sub GetInfo()

'*** what happens when you call Speak from this method?

End Sub

End Class

Public Class SeniorProgrammer : Inherits Programmer

Public Overrides Function Speak() As String

Return "I am a senior programmer"

End Function

End Class

Listing 5.5 includes three different definitions of the Speak method. The
Programmer class overrides the definition of Speak from its base class, then
is itself overridden again by the derived class SeniorProgrammer. Notice
that the Programmer class now contains an additional method named Get-
Info. Imagine you wrote the following definition for this method:

REPLACING METHODS IN A DERIVED CLASS 235

AW002-Pattison05 9/18/03 1:06 PM Page 235

'*** method definition in Programmer class

Public Sub GetInfo()

Dim message1, message2, message3, message4 As String

message1 = MyBase.Speak()

message2 = MyClass.Speak()

message3 = Me.Speak()

message4 = Speak()

Console.WriteLine(message1) '*** ?

Console.WriteLine(message2) '*** ?

Console.WriteLine(message3) '*** ?

Console.WriteLine(message4) '*** ?

End Sub

As you can see, there are four different ways to call the Speak method. The
question is, What does the method output? The answer: The output
depends on the type of object. First, suppose you call GetInfo using a ref-
erence variable of type Human:

Dim h1 As Human = New Human

h1.GetInfo()

This code fails to compile because the Human class does not contain a
method called GetInfo—just making sure you were awake! Next, suppose
you call GetInfo using a reference variable of type Programmer that refers
to a Programmer object:

Dim p1 As Programmer = New Programmer

p1.GetInfo()

The method call outputs the following to the console window:

I am a human

I am a programmer

I am a programmer

I am a programmer

That should make sense, because the base class of a Programmer is Human.
Finally, suppose you call GetInfo using a reference variable of type Pro-
grammer that refers to a SeniorProgrammer object:

Dim p2 As Programmer = New SeniorProgrammer()

p2.GetInfo()

Here is the resulting output:

INHERITANCE236

AW002-Pattison05 9/18/03 1:06 PM Page 236

I am a human

I am a programmer

I am a senior programmer

I am a senior programmer

The explanation of this result is a little more subtle. While the object is of
type SeniorProgrammer, the method being called is defined inside the
Programmer class. Therefore, this example illustrates a case where the Pro-
grammer class has other classes both above it and below it in the inheritance
hierarchy that can affect what happens at runtime.

What happens when this call to p2.GetInfo executes?

• When GetInfo calls MyBase.Speak, the Visual Basic .NET compiler
uses static binding to invoke the implementation of Speak within
the base class—in this case the Human class, because Programmer
inherits from Human.

• When it calls MyClass.Speak, the compiler use static binding to
invoke the implementation of Speak in the calling method’s class—in
this case Programmer because GetInfo is defined within Programmer.

• When it calls Me.Speak, the compiler uses dynamic binding to
invoke the most-derived implementation of Speak—in this case it is
defined in SeniorProgrammer.

If you call Speakwithout using one of these three keywords, it has the exact
same effect as calling Me.Speak—namely, it uses dynamic binding.

Calls through the MyBase and MyClass keywords always result in static
binding to the base class and the current class, respectively. Calls through
the Me keyword result in dynamic binding whenever the method being
called is declared as overridable. Each of these keywords can be useful in
certain scenarios.

Shadowing Methods
While most uses of static binding are relatively straightforward, this is not
always the case. In certain situations, static binding can become complex
and non-intuitive. In particular, it can be tricky when a base class and a
derived class have one or more member definitions with the same name.
An example will demonstrate this point.

REPLACING METHODS IN A DERIVED CLASS 237

AW002-Pattison05 9/18/03 1:06 PM Page 237

Suppose we return to Listing 5.3, where the Human class defines Speak
as a statically bound method. What would happen if the Programmer class
also supplied a method called Speak? In other words:

Public Class Human

Public Function Speak() As String

Return "I am a human"

End Function

End Class

Public Class Programmer : Inherits Human

Public Function Speak() As String

Return "I am a programmer"

End Function

End Class

Both class definitions contain a method named Speakwith the same calling
signature. When a member in a derived class is defined in this manner with
the same name as a non-overridable member in its base class, the technique
is called member shadowing. That is, the Programmer class definition of
Speak shadows the Human class definition of Speak.

Listing 5.6: A derived class that shadows a method of its base class

Public Class Human

Public Function Speak() As String

Return "I am a human"

End Function

End Class

Public Class Programmer : Inherits Human

Public Shadows Function Speak() As String

Return "I am a programmer"

End Function

End Class

The Visual Basic .NET compiler produces a compile-time warning when
you shadow an inherited member. This warning is meant to raise a red flag
so you can avoid shadowing if you have stumbled upon it accidentally. If
you want to deliberately shadow a member from a base class, you can sup-
press the compiler warning by making your intentions explicit with the
Shadows keyword, as shown in Listing 5.6.

INHERITANCE238

AW002-Pattison05 9/18/03 1:06 PM Page 238

In a few rare situations, an experienced class designer may decide to use
shadowing. The most common scenario where shadowing occurs is when
the base class author adds new members to a later version. Imagine that
you created the Programmer class by inheriting from an earlier version of
the Human class that did not contain a Speak method. Therefore, at the time
when you added the public Speak method to the Programmer class, it did
not conflict with any of the methods inherited from its base class.

What would happen if the author of the Human class decided to add a
public Speakmethod in a later version of the class? You would then face the
dilemma of either removing the Speak method from the Programmer class
or shadowing the Speak method from the Human class. A few other scenar-
ios call for shadowing, but this one is probably the most common.

You should do your best to avoid shadowing members from a base
class, because member shadowing creates ambiguities that make it easy for
a client-side programmer to get into trouble. The problem with member
shadowing is that it is based on static binding and, consequently, produces
inconsistent results.

The following example will demonstrate where shadowing a member in
a base class can create a good deal of confusion. Imagine you’re writing
client-side code in which you will create an object of type Programmer.
Assume the Programmer class is defined as shown in Listing 5.6, where
Programmer contains a Speak method that shadows the Speak method in
the Human class.

To understand what’s going on, you must remember how static bind-
ing works: The reference variable’s type controls method invocation. Now
look at the following code:

Dim programmer1 As Programmer = New Programmer

Dim human1 As Human

Dim message1, message2 As String

message1 = programmer1.Speak() '*** calls Programmer.Speak()

message2 = human1.Speak() '*** calls Human.Speak()

The reference variable named programmer1 is of type Programmer. There-
fore, invoking the Speak method through programmer1 will result in
invoking the implementation defined in the Programmer class. Likewise,
the reference variable named human1 is of type Human. Therefore, invoking

REPLACING METHODS IN A DERIVED CLASS 239

AW002-Pattison05 9/18/03 1:06 PM Page 239

the Speak method through human1 will result in invoking the implemen-
tation defined in the Human class. The strange thing about this example is
that a single object responds in different ways to a call of Speak depend-
ing on the type of reference that is used to access the object. Dynamic bind-
ing produces much more intuitive results because the type of object—not
the type of reference—determines which method is actually executed.

To make matters worse, it is legal to shadow an overridable method.
However, shadowing an overridable method is something you rarely want
to do. This possibility is mentioned here only as a warning that sloppy syn-
tax can result in shadowing by mistake. This kind of mistake is likely to
lead to trouble. For example, what happens when a base class defines an
overridable method, and a derived class author attempts to override it but
forgets to use the Overrides keyword? The compiler produces a warning
but still compiles your code as if you had used the Shadows keyword:

Public Class Human

Public Overridable Function Speak() As String

'*** default implementation

End Function

End Class

Public Class Programmer : Inherits Human

'*** author forgot to use Overrides keyword

Public Function Speak() As String

'*** method shadows Human.Speak

End Function

End Class

Shadowing Overloaded Methods and Properties
Shadowing can become even more complicated when it involves methods
and properties that have been overloaded. Recall that the name for a
method or property can be overloaded with multiple implementations that
differ in terms of their parameter lists. Let’s look at an example in which the
Human class contains two overloaded methods named Speak, and then the
Programmer class inherits from Human and defines Speak so that it shadows
one of the inherited methods:

Public Class Human

Public Function Speak() As String

Return "I am a human"

End Function

INHERITANCE240

AW002-Pattison05 9/18/03 1:06 PM Page 240

Public Function Speak(ByVal message As String) As String

Return "I am a human who says " & message

End Function

End Class

Public Class Programmer : Inherits Human

Public Function Speak() As String

Return "I am a programmer"

End Function

End Class

In this example, the definition of the Speak method in the Programmer
class will shadow the definition of the Speak method in the Human class
with the matching signature. What you might not expect is that the other
overloaded definition of Speak within Human is hidden as well. Thus the
method with the signature Speak(String) is not part of the Programmer
class definition. For this reason, the semantics of shadowing in Visual Basic
.NET are sometimes referred to as hide-by-name.

If you try to compile these two class definitions, you will receive another
compiler warning. As before, you can suppress this warning by adding the
Shadows keyword to the definition of the Speakmethod in Programmer, as
depicted in Listing 5.7.

Listing 5.7: Shadowing an overloaded method

Public Class Human

Public Function Speak() As String

Return "I am a human"

End Function

Public Function Speak(ByVal message As String) As String

Return "I am a human who says " & message

End Function

End Class

Public Class Programmer : Inherits Human

Public Shadows Function Speak() As String

Return "I am a programmer"

End Function

'*** hides Speak(String) from base class

End Class

REPLACING METHODS IN A DERIVED CLASS 241

AW002-Pattison05 9/18/03 1:06 PM Page 241

You might ask why the Visual Basic .NET compiler requires you to use
the Shadows keyword to suppress the compiler warning in this situation.
To understand the motivation behind this requirement, ask yourself the fol-
lowing question: Should the definition for the method with the signature
Speak() in the Programmer class hide every definition of Speak in the
Human class, or should it just shadow the one with the matching signature?
In this case the Shadows keyword indicates that every implementation of
Speak in the Human class should be hidden from clients programming
against the definition of Programmer.

There’s a subtle yet important difference between shadowing a method
and hiding a method. In Listing 5.7, the method Speak() is shadowed,
whereas the method Speak(String) is hidden. The shadowed method is
still accessible to clients through the derived class definition, but the hidden
method is not. Take a look at the following client-side code to see the dif-
ference. This code creates only one object of type Programmer, yet accesses
this same object through two different reference variables:

Dim programmer1 As Programmer = New Programmer

Dim human1 As Human

Dim message1, message2, message3, message4 As String

'*** access object through derived class reference

message1 = programmer1.Speak() '*** calls Programmer.Speak()

message2 = programmer1.Speak("Hello") '*** error: method doesn't exist

'*** access object through base class reference

message3 = human1.Speak() '*** calls Human.Speak()

message4 = human1.Speak("Hello") '*** calls Human.Speak(String)

As this example reveals, member hiding has a strange side effect. An object
created from the Programmer class still provides a definition for
Speak(String)—as evidenced by the fact that human1.Speak("Hello")
works. However, the Speak(String) method is accessible only to clients
that are accessing the object through a reference variable of type Human. As
this example involves static binding, a call to Speak() through a reference
variable of type Human will use the method definition from Human. Thus
hiding doesn’t remove a method or property definition from an object; it
simply makes a member inaccessible to clients that use reference variables
based on the derived class.

INHERITANCE242

AW002-Pattison05 9/18/03 1:06 PM Page 242

You’ve just seen how Visual Basic .NET allows you to shadow and hide
methods using hide-by-name semantics with the Shadows keyword. It also
allows you to use the Overloads keyword instead of the Shadows keyword
in situations in which you would rather achieve hide-by-signature semantics.
With this technique, you can shadow an overloaded method from a base
class without hiding other method definitions of the same name. Let’s
revisit Listing 5.7 and make one minor modification:

Public Class Human

Public Function Speak() As String

Return "I am a human"

End Function

Public Function Speak(ByVal message As String) As String

Return "I am a human who says " & message

End Function

End Class

Public Class Programmer : Inherits Human

Public Overloads Function Speak() As String

Return "I am a programmer"

End Function

'*** inherits Speak(String) from base class

End Class

The only change that has been made to this code from Listing 5.7 is that the
Overloads keyword has replaced the Shadows keyword in the Program-
mer class definition of Speak(). This change has the effect of shadowing a
method by signature as opposed to hiding it by name. The result is that
class Programmer now makes the definition of Speak(String) accessible
to clients:

Dim programmer1 As Programmer = New Programmer

Dim human1 As Human

Dim message1, message2, message3, message4 As String

'*** access object through derived class reference

message1 = programmer1.Speak() '*** calls Programmer.Speak()

message2 = programmer1.Speak("Hello") '*** calls Human.Speak(String)

'*** access object through base class reference

message3 = human1.Speak() '*** calls Human.Speak()

message4 = human1.Speak("Hello") '*** calls Human.Speak(String)

REPLACING METHODS IN A DERIVED CLASS 243

AW002-Pattison05 9/18/03 1:06 PM Page 243

It’s now possible to call Speak() and Speak(String) using a reference
variable of type Programmer or a reference variable of type Human. One of
these method signatures is shadowed, and the other is inherited directly
from Human to Programmer. Calls to Speak() are dispatched to either the
Human class definition or the Programmer class definition depending on the
type of reference variable used. Calls to Speak(String) are always dis-
patched to the definition in the Human class.

The Overloads keyword should be used on some occasions that do not
involve any form of hiding or shadowing. For example, you might want to
add a method to a derived class that shares the same name as one or more
methods in its base class but doesn’t match any of their parameter lists. Sup-
pose you wanted to create a new class that inherits from our running defini-
tion of Human (see Listing 5.7). What if you decided to add a third method
named Speak that had a signature that was different from the two signatures
of Speak inherited from Human? This scenario does not involve either shad-
owing or hiding, but you can and should use the Overloads keyword:

Class Programmer : Inherits Human

'*** inherits Speak() from base class

'*** inherits Speak(String) from base class

Public Overloads Function Speak(ByVal excited As Boolean) As String

If excited Then

Return "Oh boy, I am an excited programmer"

Else

Return "I am a programmer"

End If

End Function

End Class

Now the Programmer class supports three overloaded versions of Speak.
Two implementations of Speak are inherited from Human, and a third
implementation is added to the Programmer class. Notice that you would
get very different results if you do not use the Overloads keyword in the
Speak(Boolean) method definition of the Programmer class. If you omit
this keyword, the Visual Basic .NET compiler would once again default to
using the Shadows keyword. In that case, the Programmer class would con-
tain only one definition of Speak, not three.

Clearly, a design in which members are shadowed and/or hidden has
the potential to catch programmers off guard. The shadowing of fields,

INHERITANCE244

AW002-Pattison05 9/18/03 1:06 PM Page 244

methods, and properties results in multiple definitions with the same
name. Confusion may arise because different types of reference variables
produce inconsistent results when accessing the same object.

While most of this discussion has dealt at length with the complexities of
shadowing and hiding, you most likely will not have to deal with these top-
ics on a regular basis. In fact, the complexities discussed over the last several
pages explain why most designers try their best to avoid designs involving
shadowing and hiding. You are well advised to follow suit and avoid the use
of shadowing and hiding when you design and implement your own classes.

SUMMARY

As you read through this chapter, one theme probably became clear: The
use of inheritance increases your responsibilities both during the design
phase and during the coding phase. If you decide to create a class from
which other classes will inherit, you must make several extra design deci-
sions. If you make these decisions incorrectly, you can get yourself into hot
water pretty quickly. This is especially true when you need to revise a base
class after other programmers have already begun to use it.

The first question you should address is whether it makes sense to use
inheritance in your designs. In other words, should you be designing and
writing your own base classes to be inherited by other classes? Once you’ve
made a decision to use inheritance in this manner, you take on all the
responsibilities of a base class author. It’s your job to make sure that every
derived class author understands the programming contract your base
class has defined for its derived classes.

While you may never create your own base class, you will more than
likely create custom classes that inherit from someone else’s base class. It’s
difficult to imagine that you could program against the classes of the FCL
without being required to inherit from a system-provided base class such
as the Form class, the Page class, or the WebService class. Because so many
of the class libraries in the .NET Framework have designs that involve base
classes, every .NET developer needs to understand the responsibilities of
a derived class author. If you don’t have a solid understanding of the issues
at hand, you will find it difficult to implement a derived class correctly.

SUMMARY 245

AW002-Pattison05 9/18/03 1:06 PM Page 245

AW002-Pattison05 9/18/03 1:06 PM Page 246

