
A Little Help
from Your Friends

C H A P T E R T W O

13

Asking other people to point out errors in your work is

a learned—not instinctive—behavior. We all take pride

in the work we do. We don’t like to admit we make mis-

takes, we don’t realize how many we make (or we would cor-

rect them ourselves), and we don’t like to ask someone else to

find them. If you’re going to hold successful peer reviews, you

have to overcome this natural resistance to outside critique of

your work.

Peer reviews are as much a social interaction as a technical

practice. Instilling a review program into an organization

requires an understanding of that organization’s culture and

the values its members hold. Managers need to believe that the

time spent on reviews is a sound business investment so they

will make time available for the team to hold reviews. You

need to understand why certain people resist submitting their

work to scrutiny by their colleagues and address that resis-

tance. You also must educate the team and its managers about

the peer review process, appropriate behavior during reviews,

and the benefits that getting a little help from their friends can

provide both to individuals and to the organization.

Scratch Each Other’s Backs

Busy practitioners are sometimes reluctant to spend time

examining a colleague’s work. You might be leery of a co-

worker who asks you to review his code. Does he lack con-

fidence? Does he want you to do his thinking for him?

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 13

“Anyone who needs his code reviewed shouldn’t be getting paid as a software

developer,” scoff some review resisters.

In a healthy software engineering culture, team members engage their peers to

improve the quality of their work and increase their productivity. They understand

that the time they spend looking at a colleague’s work product is repaid when other

team members examine their own deliverables. The best software engineers I have

known actively sought out reviewers. Indeed, the input from many reviewers over

their careers was part of what made these developers the best.

Gerald Weinberg introduced the concept of “egoless programming” in 1971 in

The Psychology of Computer Programming, which was reissued in 1998 (Weinberg

1998). Egoless programming addresses the fact that people tie much of their per-

ception of self-worth to their work. You can interpret a fault someone finds in an

item you created as a shortcoming in yourself as a software developer—and per-

haps even as a human being. To guard your ego, you don’t want to know about all

the errors you’ve made. Your ego might be so protective that you deny the possibil-

ity that you made errors and attempt to rationalize possible bugs into features.

Such staunch ego-protection presents a barrier to effective peer review, leads

to an attitude of private ownership of an individual’s contributions to a team

project, and can result in a poor-quality product. Egoless programming enables

an author to step back and let others point out places where improvement is

needed in a product he created. Practitioners of egoless programming also

understand that their products should be easy for others to understand. In con-

trast, some programmers enjoy writing obscure, clever code that only they can

understand, with the notion that this makes them somehow superior to others

who struggle to comprehend it. A manager who values egoless programming will

encourage a culture of collaborative teamwork, shared rewards for success, and

the open exchange of knowledge among team members.

Note that the term is “egoless programming,” not “egoless programmer.”

People are entitled to protect their egos. Developers need a robust enough ego to

trust and defend their work, but not so much ego that they reject suggestions for

better solutions. Software professionals take pride in the things they create.

However, they also recognize that people make mistakes and can benefit from

outside perspectives. The egoless reviewer has compassion and sensitivity for his

colleagues, if for no reason other than that their roles will be reversed one day.

14 A Little Help from Your Friends

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 14

Reviews and Team Culture

While individual participants can always benefit from a peer review, a broad

review program can succeed only in a culture that values quality. “Quality” has

many dimensions, including freedom from defects, satisfaction of customer

needs, timeliness of delivery, and the possession of desirable product functional-

ity and attributes. Members of a software engineering culture regard reviews as

constructive activities that help both individuals and teams succeed. They under-

stand that reviews are not intended to identify inferior performers or to find

scapegoats for quality problems.

Reviews can result in two undesirable attitudes on the part of the work prod-

uct’s author. Some people become lax in their work because they’re relying on

someone else to find their mistakes, just as some programmers expect testers to

catch their errors. The author is ultimately responsible for the product; a review

is just an aid to help the author create a high-quality deliverable. Sometimes

when I’m reading a draft of an article or book chapter I’ve written, I hear a little

voice telling me that a section is incorrect or awkwardly phrased. I used to tell

myself, “I’ll give it to the reviewers and see what they think.” Big mistake: the

reviewers invariably disliked that clumsy section. Now whenever I hear that little

voice, I fix the problem before I waste my reviewers’ time.

The other extreme to avoid is the temptation to perfect the product before

you allow another pair of eyes to see it. This is an ego-protecting strategy: you

won’t feel embarrassed about your mistakes if no one else sees them. I once man-

aged a developer who refused to let anyone review her code until it was complete

and as good as she could make it—fully implemented, tested, formatted, and

documented. She regarded a review as a seal of approval rather than as the in-

process quality-improvement activity it really is.

Such reluctance has several unfortunate consequences. If your work isn’t

reviewed until you think it’s complete, you are psychologically resistant to sug-

gestions for changes. If the program runs, how bad can it be? You are likely to

rationalize away possible bugs because you believe you’ve finished and you’re

eager to move on to the next task. Relying on your own deskchecking and unit

testing ignores the greater efficiency of a peer review for finding many defects.

At the same time, the desire to show our colleagues only our best side can

become a positive factor. Reviews motivate us to practice superior craftsmanship

because we know our coworkers will closely examine our work. In this indirect

way, peer reviews lead to higher quality. One of my fellow consultants knows a

quality engineer who began to present his team with summaries of defects found

Reviews and Team Culture 15

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 15

during reviews, without identifying specific work products or authors. The team

soon saw a decrease in the number of bugs discovered during reviews. Based on

what he knew about the team, my colleague concluded that authors created bet-

ter products after they learned how reviews were being used on the project and

knew what kinds of defects to look for. Reviews weren’t a form of punishment

but stimulated a desire to complete a body of work properly.

The Influence of Culture

In a healthy software engineering culture, a set of shared beliefs, individual behav-

iors, and technical practices define an environment in which all team members are

committed to building quality products through the effective application of sen-

sible processes (Wiegers 1996a). Such a culture demands a commitment by man-

agers at all levels to provide a quality-driven environment. Recognizing that team

success depends on helping each other do the best possible job, members of a

healthy culture prefer to have peers, not customers, find software defects. Having a

coworker locate a defect is regarded as a “good catch,” not as a personal failing.

Peer reviews have their greatest impact in a healthy software culture, and

a successful review program contributes strongly to creating such a culture.

Prerequisites for establishing and sustaining an effective review program include:

• Defining and communicating your business goals for each project so review-

ers can refer to a shared project vision

• Determining your customers’ expectations for product quality so you can set

attainable quality goals

• Understanding how peer reviews and other quality practices can help the

team achieve its quality goals

• Educating stakeholders within the development organization—and, where

appropriate, in the customer community—about what peer reviews are, why

they add value, who should participate, and how to perform them

• Providing the necessary staff time to define and manage the organization’s

review process, train the participants, conduct the reviews, and collect and

evaluate review data

The dynamics between the work product’s author and its reviewers are critical.

The author must trust and respect the reviewers enough to be receptive to their

comments. Similarly, the reviewers must show respect for the author’s talent and

hard work. Reviewers should thoughtfully select the words they use to raise an

issue, focusing on what they observed about the product. Saying, “I didn’t see

16 A Little Help from Your Friends

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 16

where these variables were initialized” is likely to elicit a constructive response,

whereas “You didn’t initialize these variables” might get the author’s hackles up.

The small shift in wording from the accusatory “you” to the less confrontational “I”

lets the reviewer deliver even critical feedback effectively. Reviewers and authors

must continue to work together outside the reviews, so they all need to maintain a

level of professionalism and mutual respect to avoid strained relationships.

An author who walks out of a review meeting feeling embarrassed, person-

ally attacked, or professionally insulted will not voluntarily submit work for peer

review again. Nor do you want reviews to create authors who look forward to

retaliating against their tormentors. The bad guys in a review are the bugs, not

the author or the reviewers, but it takes several positive experiences to internalize

this reality. The leaders of the review initiative should strive to create a culture of

constructive criticism in which team members seek to learn from their peers and

to do a better job the next time. To accelerate this culture change, managers

should encourage and reward those who initially participate in reviews, regard-

less of the review outcomes.

Reviews and Managers

The attitude and behavior that managers exhibit toward reviews affect how well

the reviews will work in an organization. Although managers want to deliver qual-

ity products, they also feel pressure to release products quickly. They don’t always

understand what peer reviews or inspections are or the contribution they make to

shipping quality products on time. I once encountered resistance to inspections

from a quality manager who came from a manufacturing background. He

regarded inspections as a carryover from the old manufacturing quality practice

of manually examining finished products for defects. After he understood how

software inspections contribute to quality through early removal of defects, his

resistance disappeared.

Managers need to learn about peer reviews and their impact on the organi-

zation so they can build the reviews into project plans, allocate resources for

them, and communicate their commitment to reviews to the team. If reviews

aren’t planned, they won’t happen. Managers also must be sensitive to the inter-

personal aspects of peer reviews. Watch out for known culture killers, such as

managers singling out certain developers for the humiliating “punishment” of

having their work reviewed.

Without visible and sustained commitment to peer reviews from manage-

ment, only those practitioners who believe reviews are important will perform

Reviews and Team Culture 17

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 17

them. Management commitment to any engineering practice is more than pro-

viding verbal support or giving team members permission to use the practice.

Figure 2–1 lists eleven signs of management commitment to peer reviews.

To persuade managers about the value of reviews, couch your argument in

terms of what outcomes are important to the manager’s view of success. Published

data convinces some people, but others want to see tangible benefits from a pilot or

trial application in their own organization. Still other managers will reject both

logical and data-based arguments for reviews and simply say no. In this case, keep

in mind one of my basic software engineering cultural principles—“Never let your

boss or your customer talk you into doing a bad job”—and engage your colleagues

in reviews anyway (perhaps quietly, to avoid unduly provoking your managers).

A dangerous situation arises when a manager wishes to use data collected

from peer reviews to assess the performance of the authors (Lee 1997). Software

18 A Little Help from Your Friends

Eleven Signs of Management Commitment
to Peer Reviews

1. Providing the resources and time to develop, implement, and sustain
an effective review process

2. Setting policies, expectations, and goals about review practice
3. Maintaining the practice of reviews even when projects are under time

pressure
4. Ensuring that project schedules include time for reviews
5. Making training available to the participants and attending the training

themselves
6. Never using review results to evaluate the performance of individuals
7. Holding people accountable for participating in reviews and for con-

tributing constructively to them
8. Publicly rewarding the early adopters of reviews to reinforce desired

behaviors
9. Running interference with other managers and customers who

challenge the need for reviews
10. Respecting the review team’s appraisal of a document’s quality
11. Asking for status reports on how the program is working, what it costs,

and the team’s benefits from reviews

Figure 2–1. Eleven signs of management commitment to peer reviews

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 18

metrics must never be used to reward or penalize individuals. The purposes of

collecting data from reviews is to better understand your development and qual-

ity processes, to improve processes that aren’t working well, and to track the

impact of process changes. Using defect data from inspections to evaluate indi-

viduals is a classic culture killer. It can lead to measurement dysfunction, in which

measurement motivates people to behave in a way that produces results inconsis-

tent with the desired goals (Austin 1996).

I recently heard from a quality manager at a company that had operated a

successful inspection program for two years. The development manager had just

announced his intention to use inspection data as input to the performance eval-

uations of the work product authors. Finding more than five bugs during an

inspection would count against the author. Naturally, this made the development

team members very nervous. It conveyed the erroneous impression that the pur-

pose of inspections is to punish people for making mistakes or to find someone

to blame for troubled projects. This misapplication of inspection data could lead

to numerous dysfunctional outcomes, including the following:

1. To avoid being punished for their results, developers might not submit their

work for inspection. They might refuse to inspect a peer’s work to avoid con-

tributing to someone else’s punishment.

2. Inspectors might not point out defects during the inspection, instead telling

the author about them offline so they aren’t tallied against the author. Al-

ternatively, developers might hold “pre-reviews” to filter out bugs unoffi-

cially before going through a punitive inspection. This undermines the open

focus on quality that should characterize inspection. It also skews any met-

rics you’re legitimately tracking from multiple inspections.

3. Inspection teams might debate whether something really is a defect, because

defects count against the author, and issues or simple questions do not. This

could lead to glossing over actual defects.

4. The team’s inspection culture might develop an implicit goal of finding few

defects rather than revealing as many as possible. This reduces the value of

the inspections without reducing their cost, thereby lowering the team’s

return on investment from inspections.

5. Authors might hold many inspections of small pieces of work to reduce the

chance of finding more than five bugs in any one inspection. This leads to

inefficient and time-wasting inspections. It’s a kind of gamesmanship, doing

the minimum to claim you have had your work inspected but not properly

exploiting the technique.

Reviews and Team Culture 19

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 19

These potential problems underscore the risks posed to an inspection pro-

gram by using inspection data to evaluate individuals. Such evaluation criminal-

izes the mistakes we all make and pits team members against each other. It

motivates participants to manipulate the process to avoid being hurt by it. If I

were a developer in this situation, I would encourage management to have the

organization’s peer review coordinator (see Chapter 10) summarize defects col-

lected from multiple inspections so the defect counts aren’t linked to specific

authors. If management insisted on using defect counts for performance

appraisal, I would refuse to participate in inspections. Managers may legitimately

expect developers to submit their work for review and to review deliverables that

others create. However, a good manager doesn’t need defect counts to know who

the top contributors are and who is struggling.

When inspection metrics were introduced into one organization, a manager

happily exclaimed, “This data will help me measure the performance of my engi-

neers!” After the inspection champion explained the philosophy of software

measurement to him, the manager agreed not to see the data from individual in-

spections. He publicly described the inspection process as a tool to help engineers

produce better products. He told the engineers he would not view the individual

inspection measures because he was interested in the big picture, the overall effi-

ciency of the software engineering process. This manager’s thoughtful comments

helped defuse resistance to inspection measurement in his organization.

Why People Don’t Do Reviews

If peer reviews are so great, why isn’t everybody already doing them? Factors that

contribute to the underuse of reviews include lack of knowledge about reviews,

cultural issues, and simple resistance to change, often masquerading as excuses. If

reviews aren’t a part of your organization’s standard practices, understand why

so you know what must change to make them succeed.

Many people don’t understand what peer reviews are, why they are valuable,

the differences between informal reviews and inspections, or when and how to

perform reviews. Education can solve this problem. Some developers and project

managers don’t think their projects are large enough or critical enough to need

reviews. However, any body of work can benefit from an outside perspective.

The misperception that testing is always superior to manual examination

also leads some practitioners to shun reviews. Testing has long been recognized

as a critical activity in developing software. Entire departments are dedicated to

testing, with testing effort scheduled into projects and resources allocated for

20 A Little Help from Your Friends

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 20

testing. Organizations that have not yet internalized the benefits of peer reviews

lack an analogous cultural imperative and a supporting infrastructure for per-

forming them.

A fundamental cultural inhibitor to peer reviews is that developers don’t rec-

ognize how many errors they make, so they don’t see the need for methods to

catch or reduce their errors. Many organizations don’t collect, summarize, and

present to all team members even such basic quality data as the number of errors

found in testing or by customers. Authors who submit their work for scrutiny

might feel that their privacy is being invaded, that they’re being forced to air the

internals of their work for all to see. This is threatening to some people, which

is why the culture must emphasize the value of reviews as a collaborative, non-

judgmental tool for improved quality and productivity.

Previous unpleasant review experiences are a powerful cultural deterrent. The

fear of management retribution or public ridicule if defects are discovered can

make authors reluctant to let others examine their work. In poorly conducted

reviews, authors can feel as though they—not their work—are being criticized,

especially if personality conflicts already exist between specific individuals.

Another cultural barrier is the attitude that the author is the most qualified per-

son to examine his part of the system (“Who are you to look for errors in my

work?”). Similarly, a common reaction from new developers who are invited to

review the work of an experienced and respected colleague is, “Who am I to look

for errors in his work?”

Traditional mechanisms for adopting improved practices are having practi-

tioners observe what experienced role models do and having supervisors observe

and coach new employees. In many software groups, though, each developer’s

methods remain private, and they don’t have to change the way they work unless

they wish to (Humphrey 2001). Paradoxically, many developers are reluctant to

try a new method unless it has been proven to work, yet they don’t believe the

new approach works until they have successfully done it themselves. They don’t

want to take anyone else’s word for it.

And then there are the excuses. Resistance often appears as NAH (not applic-

able here) syndrome (Jalote 2000). People who don’t want to do reviews will

expend considerable energy trying to explain why reviews don’t fit their culture,

needs, or time constraints. One excuse is the arrogant attitude that some people’s

work does not need reviewing. Some team members can’t be bothered to look at

a colleague’s work.“I’m too busy fixing my own bugs to waste time finding some-

one else’s.”“Aren’t we all supposed to be doing our own work correctly?”“It’s not

Reviews and Team Culture 21

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 21

my problem if Jack has bugs in his code.” Other developers imagine that their

software prowess has moved them beyond needing peer reviews. “Inspections

have been around for 25 years; they’re obsolete. Our high-tech group uses only

leading-edge technologies.”

Protesting that the inspection process is too rigid for a go-with-the-flow

development approach signals resistance to a practice that is perceived to add

bureaucratic overhead. Indeed, the mere existence of a go-with-the-flow devel-

opment process implies that long-term quality isn’t a priority for the organiza-

tion. Such a culture might have difficulty adopting formal peer reviews, although

informal reviews might be palatable.

Overcoming Resistance to Reviews

To establish a successful review program, you must address existing barriers in

the categories of knowledge, culture, and resistance to change. Lack of knowledge

is easy to correct if people are willing to learn. My colleague Corinne found that

the most vehement protesters in her organization were already doing informal

reviews. They just didn’t realize that a peer deskcheck is one type of peer review

(see Chapter 3). Corinne discussed the benefits of formalizing some of these

informal reviews and trying some inspections. A one-day class that includes a

practice inspection gives team members a common understanding about peer

reviews. Managers who also attend the class send powerful signals about their

commitment to reviews. Management attendance says to the team, “This is

important enough for me to spend time on it, so it should be important to you,

too” and “I want to understand reviews so I can help make this effort succeed.”

Dealing with cultural issues requires you to understand your team’s culture

and how best to steer the team members toward improved software engineering

practices (Bouldin 1989; Caputo 1998; Weinberg 1997; Wiegers 1996a). What

values do they hold in common? Do they share an understanding of—and a

commitment to—quality? What previous change initiatives have succeeded and

why? Which have struggled and why? Who are the opinion leaders in the group

and what are their attitudes toward reviews?

Larry Constantine described four cultural paradigms found in software orga-

nizations: closed, open, synchronous, and random (Constantine 1993). A closed

culture has a traditional hierarchy of authority. You can introduce peer reviews in

a closed culture through a management-driven process improvement program,

perhaps based on one of the Software Engineering Institute’s capability maturity

22 A Little Help from Your Friends

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 22

models. A management decree that projects will conduct reviews might succeed

in a closed culture, but not in other types of organizations.

Innovation, collaboration, and consensus decision-making characterize an

open culture. Members of an open culture want to debate the merits of peer

reviews and participate in deciding when and how to implement them. Respected

leaders who have had positive results with reviews in the past can influence the

group’s willingness to adopt them. Such cultures might prefer review meetings

that include discussions of proposed solutions rather than inspections, which

emphasize finding—not fixing—defects during meetings.

Members of a synchronous group are well aligned and comfortable with the

status quo. Because they recognize the value of coordinating their efforts, they

are probably already performing at least informal reviews. A comfort level with

informal reviews eases implementation of an inspection program.

Entrepreneurial, fast-growing, and leading-edge companies often develop a

random culture populated by autonomous individuals who like to go their own

ways. In random organizations, individuals who have performed peer reviews in

the past might continue to hold them. The other team members might not have

the patience for reviews, although they could change their minds if quality prob-

lems from chaotic projects burn them badly enough.

However you describe your culture, people will want to know what benefits a

new process will provide to them personally. A better way to react to a proposed

process change is to ask, “What’s in it for us?” Sometimes when you’re asked to

change the way you work, your immediate personal reward is small, although the

team as a whole might benefit in a big way. I might not get three hours of benefit

from spending three hours reviewing someone else’s code. However, the other

developer might avoid ten hours of debugging effort later in the project, and we

might ship the product sooner than we would have otherwise.

Table 2–1 identifies some benefits various project team members might reap

from reviewing major life-cycle deliverables. Of course, the customers also come

out ahead. They receive a timely product that is more robust and reliable, better

meets their needs, and increases their productivity. Higher customer satisfaction

leads to business rewards all around.

Arrogant developers who believe reviews are beneath them might enjoy

getting praise and respect from coworkers as they display their superior work

during reviews. If influential resisters come to appreciate the value of peer

reviews, they might persuade other team members to try them, too. A quality

Reviews and Team Culture 23

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 23

24 A Little Help from Your Friends

Table 2–1. Benefits from Peer Reviews for Project Roles

Project Role Possible Benefits from Peer Reviews

Developer • Less time spent performing rework
• Increased programming productivity
• Confidence that the right requirements are being imple-

mented
• Better techniques learned from other developers
• Reduced unit testing and debugging time
• Less debugging during integration and system testing
• Exchanging of information about components and the

overall system with other team members
Development • Shortened product development cycle time
Manager • Reduced field service and customer support costs

• Reduced lifetime maintenance costs, freeing resources
for new development projects

• Improved teamwork, collaboration, and development
effectiveness

• Better and earlier insight into project risks and quality
issues

Maintainer • Fewer production support demands, leading to a
reduced maintenance backlog

• More robust designs that tolerate change
• Conformance of work products to team standards
• More maintainable and better documented work prod-

ucts that are easy to understand and modify
• Better understanding of the product from having partici-

pated in design and code reviews during development
Project • Increased likelihood that product will ship on schedule
Manager • Earlier visibility of quality issues

• Reduced impact from staff turnover through cross-
training of team members

Quality • Ability to judge the testability of product features under
Assurance development
Manager • Shortened system-testing cycles and less retesting

• Ability to use review data when making release decisions
• Education of quality engineers about the product
• Ability to anticipate quality assurance effort needed

continued

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 24

manager once encountered a developer named Judy who was opposed to “time-

sapping” inspections. After participating under protest, Judy quickly saw the

power of the technique and became the group’s leading convert. Because Judy

had some influence with her peers, she helped turn developer resistance toward

inspections into acceptance. Judy’s project team ultimately asked the quality

manager to help them hold even more inspections. Engaging developers in an

effective inspection program helped motivate them to try some other software

quality practices, too.

In another case, a newly hired system architect who had experienced the

benefits of inspections in his previous organization was able to overcome

resistance from members of his new team. The data this group collected from

their inspections backed up the architect’s conviction that they were well worth

doing.

Reviews and Team Culture 25

Project Role Possible Benefits from Peer Reviews

Requirements • Earlier correction of missing or erroneous
Analyst requirements

• Fewer infeasible and untestable requirements because of
developer and test engineer input during reviews

Test Engineer • Ability to focus on finding subtle defects because prod-
uct is of higher initial quality

• Fewer defects that block continued testing
• Improved test design and test cases that smooth out the

testing process

Table 2–1. Benefits from Peer Reviews for Project Roles (cont.)

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 25

Peer Review Sophistication Scale

Figure 2–2 depicts a scale of an organization’s sophistication in its practice of

software peer reviews (for a similar scale, see Grady 1997). The value added to the

organization is greater at the higher stages. Use this scale to calibrate your organi-

zation’s current review performance and see what it would take to enhance it.

In the worst case (stage 0), no one in the organization performs reviews.

Stage 1 is a small advance, with team members holding impromptu “over-the-

shoulder” reviews. Perhaps the team members haven’t heard about peer reviews

or don’t think they have time to do them. They might have rejected reviews as

inappropriate for their project for some reason.

At stage 2, team members periodically hold unstructured reviews. The par-

ticipants might not realize there are different types of peer reviews. They have

not adopted a common review vocabulary or process. They might hold a walk-

through or other informal review and call it an inspection, even though it did not

conform to an actual inspection process. The team’s review objectives include

both finding defects and exchanging knowledge.

By stage 3, the project team holds reviews routinely. They are built into the

project schedule and the team understands how to perform structured, formal

reviews such as inspections. The organization has adopted a peer review process

that incorporates multiple review methods, using standard forms and defect

26 A Little Help from Your Friends

Value
An inspection program is defined and managed;
inspectors are trained; inspections are recognized
as critical to project success; inspection data is
analyzed for process improvement

Inspections are planned and held;
a peer review process is adopted

Informal reviews are performed

Ad hoc reviews are performed

Reviews are not performed0

1

2

3

4

Figure 2–2. Peer review sophistication scale

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 26

checklists. You don’t need to start at the bottom of the scale, so aim to begin at

least at stage 3, incorporating inspections into routine practice. This will keep

you from getting stuck at a lower level and missing out on the full benefits of for-

mal peer reviews.

The most successful organizations reach stage 4, which represents a paradigm

shift to a new way for the organization to create software products. Stage 4 organi-

zations have established an official inspection program, staffed with a peer review

coordinator and managed by a peer review process owner (see Chapter 10). They

have identified the various kinds of work products that will be inspected. All par-

ticipants and managers are trained in inspection. The review coordinator verifies

that inspections are conducted as scheduled and collects data from them. These

data are analyzed for product quality assessment, process improvement, and

defect prevention. Inspections are recognized as critical contributors to project

success, and the team members would not be comfortable working in an environ-

ment where peer review was not a standard practice.

Planning for Reviews

If you don’t plan reviews as project tasks and allocate resources to them, they can

appear to slow the project down, as does any unanticipated work. Your team can

hold informal, ad hoc reviews whenever someone desires constructive input from

coworkers. However, frequent unplanned reviews will drain time from the review-

ers, who might be less likely to request or participate in these informal reviews.

Incorporate formal reviews into the project’s schedule or work breakdown

structure. A well-defined software development life cycle itemizes specific exit

criteria for key phase deliverables, including passing an appropriate peer review.

Figure 1–1 illustrated the major project checkpoints at which you should sched-

ule reviews. Some teams use planning checklists of the tasks required for com-

mon project activities, such as implementing a module or an object class. Include

reviews on such checklists. Also conduct interim reviews of major deliverables

prior to completion to ensure they are meeting their quality goals. Informal

reviews can let you judge whether a deliverable is ready for inspection and can

serve as quick quality filters from an outside viewpoint.

The effort you devote to peer reviews might seem like extra overhead, but it

is not really additional time in your project schedule. Think of it as a reallocation

of effort you would otherwise spend on testing and the pervasive rework of

debugging, patching in missed requirements, and so on. Keeping records of

Planning for Reviews 27

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 27

reviews and their benefits will help you judge the appropriate level of investment

needed to meet your project’s quality goals.

Project planners sometimes treat reviews as milestones, as shown in Figure

2–3. However, in project-planning terms, a milestone is a state, not an activity.

Milestones have a duration of zero time and consume no resources, so treating

reviews as tasks in your plan, as Figure 2–4 illustrates, is more accurate. The mile-

stone is reached when you deem that the deliverable has passed the review. If you

treat reviews as milestones, the project schedule can appear to slip when you per-

form reviews, because the effort they require was not anticipated. Depending on

the kind of reviews you hold, review tasks will include effort for individual

preparation, review meetings, or both. You should also plan to perform rework

after every quality control activity, but your team will spend less time on rework

as its development practices improve.

How can you estimate how much time to plan for preparation, review meet-

ings, and rework? If you keep even simple records of the time your team mem-

bers actually spend on these activities, you can make better estimates for future

28 A Little Help from Your Friends

Task x

Task y

Review as
milestone

Task x

Task y

Review Rework

Baselined work product
as milestone

Figure 2–3. WRONG: Review treated as a milestone

Figure 2–4. RIGHT: Review and rework treated as tasks

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:19 PM Page 28

reviews. Data on the most effective rates of coverage of material during prepara-

tion and in review meetings will help you judge the time needed for these review

stages (see Chapter 5). Without such data, you are never estimating—you’re

guessing.

Guiding Principles for Reviews

All peer reviews should follow several basic principles to make them powerful

contributors to product quality and team culture (Wiegers 1996a). First, check

your egos at the door. There are two aspects to being egoless. As an author, keep

an open mind and be receptive to suggestions for improvements. Avoid the

temptation to argue every point raised, defend your decisions to the death, or

explain away errors. As a reviewer, remember that you’re not trying to show how

much smarter you are than the author.

Another useful guideline is to keep the review team small, generally between

three and seven participants. Larger teams make the review more expensive with-

out adding proportionate value. They slow the rate at which the group can cover

material in a review meeting. Large groups are prone to distracting side conversa-

tions and can easily go off on time-wasting tangents. Chapter 12 suggests what to

do if a lot of people wish to participate in a review.

The prime objective of a peer review is defect detection, so strive to find

problems during reviews, but don’t try to solve them. Technical people like to

tackle challenging problems; that’s why we’re in the software business. However,

the author should fix the identified problems after the review meeting, working

with selected reviewers on specific issues to reap the benefits of another’s experi-

ence. Formal reviews, such as inspections, include a moderator or review leader

role. As described in Chapter 5, the inspection moderator is responsible for keep-

ing the meeting focused on finding defects and for limiting problem-solving dis-

cussions to just a minute or two. If you don’t use a moderator, the participants

will have to monitor themselves so the meeting doesn’t derail into an extended

brainstorming session on the first bug found.

Another guiding principle is to limit review meetings to about two hours. My

friend Matt once pointed out to me that “the mind cannot absorb what the body

cannot endure.” When you are distracted by physical discomfort or exhaustion,

you’re no longer an effective reviewer. Take a short break halfway through a long

review meeting, and come back tomorrow to finish if you didn’t properly cover all

the material in the first meeting. Scope the work into logical chunks that the team

Guiding Principles for Reviews 29

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:20 PM Page 29

can examine in one to two hours, based on your organization’s historical rates for

reviewing or inspecting different types of work products (see Chapter 5).

To use the team’s time as efficiently as possible, require advance preparation

for formal reviews. During informal review meetings, participants come in cold

and listen to the author describe his work. Serious defect-hunting efforts, such as

inspection, demand that the meeting participants have already examined the

product on their own to understand it and find issues to raise during the meet-

ing. The participants need to receive the review materials several days prior to the

meeting to give them time to prepare for the inspection meeting.

Being sensitive to the human and cultural issues of peer reviews and follow-

ing these basic guidelines will maximize the contribution reviews make to your

development and maintenance projects.

30 A Little Help from Your Friends

28435 01 WIEGERS 1-184 r11ss.ps 10/1/01 2:20 PM Page 30

