
Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 301

Chapter 17

Metaprograms

Metaprogramming consists of “programming a program.” In other words, we lay out code that the
programming system executes to generate new code that implements the functionality we really want.
Usually the term metaprogramming implies a reflexive attribute: The metaprogramming component
is part of the program for which it generates a bit of code/program.

Why would metaprogramming be desirable? As with most other programming techniques, the
goal is to achieve more functionality with less effort, where effort can be measured as code size,
maintenance cost, and so forth. What characterizes metaprogramming is that some user-defined
computation happens at translation time. The underlying motivation is often performance (things
computed at translation time can frequently be optimized away) or interface simplicity (a metapro-
gram is generally shorter than what it expands to) or both.

Metaprogramming often relies on the concepts of traits and type functions as developed in Chap-
ter 15. We therefore recommend getting familiar with that chapter prior to delving into this one.

17.1 A First Example of a Metaprogram
In 1994 during a meeting of the C++ standardization committee, Erwin Unruh discovered that tem-
plates can be used to compute something at compile time. He wrote a program that produced prime
numbers. The intriguing part of this exercise, however, was that the production of the prime numbers
was performed by the compiler during the compilation process and not at run time. Specifically, the
compiler produced a sequence of error messages with all prime numbers from two up to a certain con-
figurable value. Although this program wasn’t strictly portable (error messages aren’t standardized),
the program did show that the template instantiation mechanism is a primitive recursive language
that can perform nontrivial computations at compile time. This sort of compile-time computation
that occurs through template instantiation is commonly called template metaprogramming.

As an introduction to the details of metaprogramming we start with a simple exercise (we will
show Erwin’s prime number program later on page 318). The following program shows how to
compute at compile time the power of three for a given value:

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 302

302 Chapter 17: Metaprograms

�� �������$
	
��

2������ "IW8;�""

2������ "IW8;�""

// primary template to compute 8 to the �th

���+�
�-��
 �.

�+�		 "�'8 /

�*�+��%

��*� / ��	*+
 � 8 � "�'8-�9�.%%��	*+
 1�

1�

// full specialization to end the recursion

���+�
�-.

�+�		 "�'8-�. /

�*�+��%

��*� / ��	*+
 � � 1�

1�

2����� // POW3�HPP

The driving force behind template metaprogramming is recursive template instantiation.1 In our
program to compute L� , recursive template instantiation is driven by the following two rules:

1. L� � L � L���

2. L� � .

The first template implements the general recursive rule:

���+�
�-��
 �.

�+�		 "�'8 /

�*�+��%

��*� / ��	*+
 � 8 � "�'8-�9�.%%��	*+
 1�

1�

When instantiated over a positive integer >, the template �� L&� needs to compute the value for its
enumeration value ��
���. This value is simply twice the corresponding value in the same template
instantiated over >�..

The second template is a specialization that ends the recursion. It establishes the ��
��� of
�� L&:�:

1 We saw an example of a recursive template in Section 12.4 on page 200. It could be considered a simple case
of metaprogramming.

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 303

17.2 Enumeration Values versus Static Constants 303

���+�
�-.

�+�		 "�'8-�. /

�*�+��%

��*� / ��	*+
 � � 1�

1�

Let’s study the details of what happens when we use this template to compute L� by instantiating
�� L&2�:

�� �������$
	���

2���+*�� -��	
����.

2���+*�� 4��'8(���4

��
 �����

/

	
�%%��*
 -- 4"�'8-7.%%��	*+
 � 4 -- "�'8-7.%%��	*+

-- =Q�=�

1

First, the compiler instantiates �� L&2�. Its ��
��� is

8 � "�'8-:.%%��	*+

Thus, this requires the instantiation of the same template for @. Similarly, the result of �� L&@�
instantiates �� L&<�, �� L&1�, and so forth. The recursion stops when �� L&� is instantiated over
zero which yields one as its ��
���.

The �� L&� template (including its specialization) is called a template metaprogram. It describes
a bit of computation that is evaluated at translation time as part of the template instantiation process.
It is relatively simple and may not look very useful at first, but there are situations when such a tool
comes in very handy.

17.2 Enumeration Values versus Static Constants
In old C++ compilers, enumeration values were the only available possibility to have “true constants”
(so-called constant-expressions) inside class declarations. However, this has changed during the
standardization of C++, which introduced the concept of in-class static constant initializers. A brief
example illustrates the construct:

	
�*�
 #�*����	
��
	 /

��*� / #���� � 8 1�

	
�
�� ��
 ���	
 B�*� � 5�

1�

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 304

304 Chapter 17: Metaprograms

In this example, I��� is a “true constant”—just as is)����.
With this, our �� L metaprogram may also look as follows:

�� �������$
�	
��

2������ "IW8;�""

2������ "IW8;�""

// primary template to compute 8 to the �th

���+�
�-��
 �.

�+�		 "�'8 /

�*�+��%

	
�
�� ��
 ���	
 ��	*+
 � 8 � "�'8-�9�.%%��	*+
�

1�

// full specialization to end the recursion

���+�
�-.

�+�		 "�'8-�. /

�*�+��%

	
�
�� ��
 ���	
 ��	*+
 � ��

1�

2����� // POW3�HPP

The only difference is the use of static constant members instead of enumeration values. However,
there is a drawback with this version: Static constant members are lvalues. So, if you have a decla-
ration such as

���� ������
 ���	
�
�

and you pass it the result of a metaprogram

����"�'8-7.%%��	*+

�

a compiler must pass the address of �� L&2�����
���, which forces the compiler to instantiate and
allocate the definition for the static member. As a result, the computation is no longer limited to a
pure “compile-time” effect.

Enumeration values aren’t lvalues (that is, they don’t have an address). So, when you pass them
“by reference,” no static memory is used. It’s almost exactly as if you passed the computed value as
a literal. These considerations motivate us to use enumeration values in all metaprograms throughout
this book.

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 305

17.3 A Second Example: Computing the Square Root 305

17.3 A Second Example: Computing the Square Root
Lets look at a slightly more complicated example: a metaprogram that computes the square root of a
given value � . The metaprogram looks as follows (explanation of the technique follows):

�� ������%���	
��

2������ !V #;�""

2������ !V #;�""

// primary template to compute 	G�
��

���+�
� -��
 �$ ��
 CI��$ ��
 �A��.

�+�		 !G�
 /

�*�+��%

// compute the midpoint, rounded up
��*� / ��� � �CIK�AK�
&6 1�

// search a not too large value in a halved interval
��*� / ��	*+
 � ��-�������
 0 !G�
-�CI���9�.%%��	*+

% !G�
-�$���$�A.%%��	*+
 1�

1�

// partial specialization for the case when CI equals �A

���+�
�-��
 �$ ��
 H.

�+�		 !G�
-�HH. /

�*�+��%

��*� / ��	*+
 � H 1�

1�

2����� // SQRT�HPP

The first template is the general recursive computation that is invoked with the template parameter
> (the value for which to compute the square root) and two other optional parameters. The latter
represent the minimum and maximum values the result can have. If the template is called with only
one argument, we know that the square root is at least one and at most the value itself.

Our recursion then proceeds using a binary search technique (often called method of bisection in
this context). Inside the template, we compute whether ��
��� is in the first or the second half of
the range between A* and �4. This case differentiation is done using the conditional operator Q�. If

��� is greater than >, we continue the search in the first half. If
��� is less than or equal to >, we
use the same template for the second half again.

The specialization that ends the recursive process is invoked when A* and �4 have the same value
6, which is our final ��
���.

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 306

306 Chapter 17: Metaprograms

Again, let’s look at the details of a simple program that uses this metaprogram:

�� ������%���	���

2���+*�� -��	
����.

2���+*�� 4	G�
�(���4

��
 �����

/

	
�%%��*
 -- 4!G�
-�:.%%��	*+
 � 4 -- !G�
-�:.%%��	*+

-- =Q�=�

	
�%%��*
 -- 4!G�
-6M.%%��	*+
 � 4 -- !G�
-6M.%%��	*+

-- =Q�=�

	
�%%��*
 -- 4!G�
-56.%%��	*+
 � 4 -- !G�
-56.%%��	*+

-- =Q�=�

	
�%%��*
 -- 4!G�
-�.%%��	*+
 � 4 -- !G�
-�.%%��	*+

-- =Q�=�

1

The expression

!G�
-�:.%%��	*+

is expanded to

!G�
-�:$�$�:.%%��	*+

Inside the template, the metaprogram computes �5��&.@3.3.@�����
��� as follows:

��� � ��K�:K�
&6

� T

��	*+
 � ��:-T�T
 0 !G�
-�:$�$<.%%��	*+

% !G�
-�:T�:.%%��	*+

� ��:-<�
 0 !G�
-�:$�$<.%%��	*+

% !G�
-�:T�:.%%��	*+

� !G�
-�:$�$<.%%��	*+

Thus, the result is computed as �5��&.@3.3R�����
���, which is expanded as follows:

��� � ��K<K�
&6

� M

��	*+
 � ��:-M�M
 0 !G�
-�:$�$5.%%��	*+

% !G�
-�:M<.%%��	*+

� ��:-6M
 0 !G�
-�:$�$5.%%��	*+

% !G�
-�:M<.%%��	*+

� !G�
-�:$�$5.%%��	*+

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 307

17.3 A Second Example: Computing the Square Root 307

And similarly �5��&.@3.31�����
��� is decomposed as follows:

��� � ��K5K�
&6

� 8

��	*+
 � ��:-8�8
 0 !G�
-�:$�$6.%%��	*+

% !G�
-�:$8$5.%%��	*+

� ��:-T
 0 !G�
-�:$�$6.%%��	*+

% !G�
-�:$8$5.%%��	*+

� !G�
-�:$8$5.%%��	*+

Finally, �5��&.@3L31�����
��� results in the following:

��� � �8K5K�
&6

� 5

��	*+
 � ��:-5�5
 0 !G�
-�:$8$8.%%��	*+

% !G�
-�:$5$5.%%��	*+

� ��:-�:
 0 !G�
-�:$8$8.%%��	*+

% !G�
-�:$5$5.%%��	*+

� !G�
-�:$5$5.%%��	*+

and �5��&.@3131�����
��� ends the recursive process because it matches the explicit specializa-
tion that catches equal high and low bounds. The final result is therefore as follows:

��	*+
 � 5

Tracking All Instantiations

In the preceding example, we followed the significant instantiations that compute the square root of
16. However, when a compiler evaluates the expression

��:-�<�<
 0 !G�
-�:$�$<.%%��	*+

% !G�
-�:T�:.%%��	*+

it not only instantiates the templates in the positive branch, but also those in the negative branch
(�5��&.@3S3.@�). Furthermore, because the code attempts to access a member of the resulting class
type using the �� operator, all the members inside that class type are also instantiated. This means
that the full instantiation of �5��&.@3S3.@� results in the full instantiation of �5��&.@3S3./� and
�5��&.@3.L3.@�. When the whole process is examined in detail, we find that dozens of instantia-
tions end up being generated. The total number is almost twice the value of >.

This is unfortunate because template instantiation is a fairly expensive process for most compil-
ers, particularly with respect to memory consumption. Fortunately, there are techniques to reduce
this explosion in the number of instantiations. We use specializations to select the result of computa-
tion instead of using the condition operator Q�. To illustrate this, we rewrite our �5�� metaprogram
as follows:

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 308

308 Chapter 17: Metaprograms

�� ������%���	
��

2���+*�� 4��
����+	�(���4

// primary template for main recursive step

���+�
�-��
 �$ ��
 CI��$ ��
 �A��.

�+�		 !G�
 /

�*�+��%

// compute the midpoint, rounded up
��*� / ��� � �CIK�AK�
&6 1�

// search a not too large value in a halved interval

������
������� A�#���?+	�-��-�������
$

!G�
-�CI���9�.$

!G�
-�$���$�A. .%% �	*+
#

!*�#�

��*� / ��	*+
 � !*�#%%��	*+
 1�

1�

// partial specialization for end of recursion criterion

���+�
�-��
 �$ ��
 !.

�+�		 !G�
-�$!$!. /

�*�+��%

��*� / ��	*+
 � ! 1�

1�

The key change here is the use of the 4�)��	9�
� template, which was introduced in Section 15.2.4
on page 272:

�� ��������
������	
��

2������ AB#�?�?C!?;�""

2������ AB#�?�?C!?;�""

// primary template: yield second or third argument depending on first argument

���+�
�-���+ �$
������� #�$
������� #�.

�+�		 A�#���?+	��

// partial specialization:
�*� yields second argument

���+�
�-
������� #�$
������� #�.

�+�		 A�#���?+	�-
�*�$ #�$ #�. /

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 309

17.4 Using Induction Variables 309

�*�+��%

������ #� �	*+
#�

1�

// partial specialization: ��+	� yields third argument

���+�
�-
������� #�$
������� #�.

�+�		 A�#���?+	�-��+	�$ #�$ #�. /

�*�+��%

������ #� �	*+
#�

1�

2����� // IFTHENELSE�HPP

Remember, the 4�)��	9�
� template is a device that selects between two types based on a given
Boolean constant. If the constant is true, the first type is �������ed to $�
���); otherwise, $�
���)
stands for the second type. At this point it is important to remember that defining a typedef for a class
template instance does not cause a C++ compiler to instantiate the body of that instance. Therefore,
when we write

������
������� A�#���?+	�-��-�������
$

!G�
-�CI���9�.$

!G�
-�$���$�A. .%% �	*+
#

!*�#�

neither �5��&>3A*3
���.� nor �5��&>3
��3�4� is fully instantiated. Whichever of these two
types ends up being a synonym for ��") is fully instantiated when looking up ��")����
���. In
contrast to our first approach, this strategy leads to a number of instantiations that is proportional to
�����>�: a very significant reduction in the cost of metaprogramming when > gets moderately large.

17.4 Using Induction Variables
You may argue that the way the metaprogram is written in the previous example looks rather com-
plicated. And you may wonder whether you have learned something you can use whenever you have
a problem to solve by a metaprogram. So, let’s look for a more “naive” and maybe “more iterative”
implementation of a metaprogram that computes the square root.

A “naive iterative algorithm” can be formulated as follows: To compute the square root of a given
value >, we write a loop in which a variable 4 iterates from one to > until its square is equal to or
greater than >. This value 4 is our square root of >. If we formulate this problem in ordinary C++, it
looks as follows:

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 310

310 Chapter 17: Metaprograms

��
 A�

��� �A��� A�A-�� KKA
 /

�

1

// A now contains the square root of �

However, as a metaprogram we have to formulate this loop in a recursive way, and we need an end
criterion to end the recursion. As a result, an implementation of this loop as a metaprogram looks as
follows:

�� ������%��
	
��

2������ !V #;�""

2������ !V #;�""

// primary template to compute 	G�
��
 via iteration

���+�
� -��
 �$ ��
 A��.

�+�		 !G�
 /

�*�+��%

��*� / ��	*+
 � �A�A-�
 0 !G�
-�$AK�.%%��	*+

% A 1�

1�

// partial specialization to end the iteration

���+�
�-��
 �.

�+�		 !G�
-�$�. /

�*�+��%

��*� / ��	*+
 � � 1�

1�

2����� // SQRT�HPP

We loop by “iterating” 4 over �5��&>34�. As long as 4#4&> yields ����, we use the result of the
next iteration �5��&>34�.�����
��� as result. Otherwise 4 is our result.

For example, if we evaluate �5��&.@� this gets expanded to �5��&.@3.�. Thus, we start an
iteration with one as a value of the so-called induction variable 4. Now, as long as 4� (that is 4#4)
is less than >, we use the next iteration value by computing �5��&>34�.�����
���. When 4� is
equal to or greater than > we know that 4 is the ��
���.

You may wonder why we need a template specialization to end the recursion because the first
template always, sooner or later, finds 4 as the result, which seems to end the recursion. Again, this
is the effect of the instantiation of both branches of operator Q�, which was discussed in the previous
section. Thus, the compiler computes the result of �5��&1� by instantiating as follows:

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 311

17.4 Using Induction Variables 311

� Step 1:
��	*+
 � ����-5
 0 !G�
-5$6.%%��	*+

% �

� Step 2:
��	*+
 � ����-5
 0 �6�6-5
 0 !G�
-5$8.%%��	*+

% 6

% �

� Step 3:
��	*+
 � ����-5
 0 �6�6-5
 0 �8�8-5
 0 !G�
-5$5.%%��	*+

% 8

% 6

% �

� Step 4:
��	*+
 � ����-5
 0 �6�6-5
 0 �8�8-5
 0 5

% 8

% 6

% �

Although we find the result in step 2, the compiler instantiates until we find a step that ends the
recursion with a specialization. Without the specialization, the compiler would continue to instantiate
until internal compiler limits are reached.

Again, the application of the 4�)��	9�
� template solves the problem:

�� ������%���	
��

2������ !V #;�""

2������ !V #;�""

2���+*�� 4��
����+	�(���4

// template to yield template argument as result

���+�
�-��
 �.

�+�		 L�+*� /

�*�+��%

��*� / ��	*+
 � � 1�

1�

// template to compute 	G�
��
 via iteration

���+�
� -��
 �$ ��
 A��.

�+�		 !G�
 /

�*�+��%

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 312

312 Chapter 17: Metaprograms

// instantiate next step or result type as branch

������
������� A�#���?+	�-�A�A-�
$

!G�
-�$AK�.$

L�+*�-A.

.%% �	*+
#

!*�#�

// use the result of branch type
��*� / ��	*+
 � !*�#%%��	*+
 1�

1�

2����� // SQRT�HPP

Instead of the end criterion we use a ;����&� template that returns the value of the template argument
as ��
���.

Again, using 4�)��	9�
�&� leads to a number of instantiations that is proportional to �����>�
instead of >. This is a very significant reduction in the cost of metaprogramming. And for compilers
with template instantiation limits, this means that you can evaluate the square root of much larger
values. If your compiler supports up to 64 nested instantiations, for example, you can process the
square root of up to 4096 (instead of up to 64).

The output of the “iterative” �5�� templates is as follows:

!G�
-�:.%%��	*+
 � 5

!G�
-6M.%%��	*+
 � M

!G�
-56.%%��	*+
 � 7

!G�
-�.%%��	*+
 � �

Note that this implementation produces the integer square root rounded up for simplicity (the square
root of 42 is produced as 7 instead of 6).

17.5 Computational Completeness
The �� L&� and �5��&� examples show that a template metaprogram can contain:

� State variables: the template parameters
� Loop constructs: through recursion
� Path selection: by using conditional expressions or specializations
� Integer arithmetic

If there are no limits to the amount of recursive instantiations and the amount of state variables
that are allowed, it can be shown that this is sufficient to compute anything that is computable.
However, it may not be convenient to do so using templates. Furthermore, template instantiation
typically requires substantial compiler resources, and extensive recursive instantiation quickly slows

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 313

17.6 Recursive Instantiation versus Recursive Template Arguments 313

down a compiler or even exhausts the resources available. The C++ standard recommends but does
not mandate that 17 levels of recursive instantiations be allowed as a minimum. Intensive template
metaprogramming easily exhausts such a limit.

Hence, in practice, template metaprograms should be used sparingly. The are a few situations,
however, when they are irreplaceable as a tool to implement convenient templates. In particular, they
can sometimes be hidden in the innards of more conventional templates to squeeze more performance
out of critical algorithm implementations.

17.6 Recursive Instantiation versus Recursive
Template Arguments

Consider the following recursive template:

���+�
�-
������� #$
������� D.

	
�*�
 >�*�+��� /1�

���+�
�-��
 �.

	
�*�
 #��*�+� /

������ >�*�+���-
������� #��*�+�-�9�.%%C��3#���$

������� #��*�+�-�9�.%%C��3#���. C��3#����

1�

���+�
�-.

	
�*�
 #��*�+�-�. /

������ ��*�+� C��3#����

1�

#��*�+�-��.%%C��3#��� �*���

The use of)���"��&.:���A�	�)��� not only triggers the recursive instantiation of)���"��&S�,
)���"��&R�, ...,)���"��&:�, but it also instantiates H��"���� over increasingly complex types.
Indeed, Table 17.1 illustrates how quickly it grows.

As can be seen from Table 17.1, the complexity of the type description of the expression
)���"��&>���A�	�)��� grows exponentially with >. In general, such a situation stresses a C++
compiler even more than recursive instantiations that do not involve recursive template arguments.
One of the problems here is that a compiler keeps a representation of the mangled name for the type.
This mangled name encodes the exact template specialization in some way, and early C++ imple-
mentations used an encoding that is roughly proportional to the length of the template-id. These
compilers then used well over 10,000 characters for)���"��&.:���A�	�)���.

Newer C++ implementations take into account the fact that nested template-ids are fairly common
in modern C++ programs and use clever compression techniques to reduce considerably the growth

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 314

314 Chapter 17: Metaprograms

Typedef Name Underlying Type
)���"��&:���A�	�)��� ���"��

)���"��&.���A�	�)��� H��"����&���"��3���"���

)���"��&/���A�	�)��� H��"����&H��"����&���"��3���"���3

H��"����&���"��3���"��� �

)���"��&L���A�	�)��� H��"����&H��"����&H��"����&���"��3���"���3

H��"����&���"��3���"��� �3

&H��"����&���"��3���"���3

H��"����&���"��3���"��� � �

Table 17.1. Growth of ($�)���+���	$�
(���

in name encoding (for example, a few hundred characters for)���"��&.:���A�	�)���). Still, all
other things being equal, it is probably preferable to organize recursive instantiation in such a way
that template arguments need not also be nested recursively.

17.7 Using Metaprograms to Unroll Loops
One of the first practical applications of metaprogramming was the unrolling of loops for numeric
computations, which is shown here as a complete example.

Numeric applications often have to process n-dimensional arrays or mathematical vectors. One
typical operation is the computation of the so-called dot product. The dot product of two mathe-
matical vectors � and " is the sum of all products of corresponding elements in both vectors. For
example, if each vectors has three elements, the result is

�E�F��E�F K �E�F��E�F K �E6F��E6F

A mathematical library typically provides a function to compute such a dot product. Consider the
following straightforward implementation:

�� ����������	
��

2������ CII"�;�""

2������ CII"�;�""

���+�
� -
������� #.

��+��� # ��
;����*�
 ���
 ���$ #� �$ #� �

/

# ��	*+
 � ��

��� ���
 ���� �-���� KK�
 /

��	*+
 K� �E�F��E�F�

1

��
*�� ��	*+
�

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 315

17.7 Using Metaprograms to Unroll Loops 315

1

2����� // LOOP1�HPP

When we call this function as follows

�� ����������	���

2���+*�� -��	
����.

2���+*�� 4+����(���4

��
 �����

/

��
 �E8F � / �$ 6$ 81�

��
 �E8F � / M$:$ 71�

	
�%%��*
 -- 4��
;����*�
�8$�$�
 � 4 -- ��
;����*�
�8$�$�

-- =Q�=�

	
�%%��*
 -- 4��
;����*�
�8$�$�
 � 4 -- ��
;����*�
�8$�$�

-- =Q�=�

1

we get the following result:

��
;����*�
�8$�$�
 � 8<

��
;����*�
�8$�$�
 � �5

This is correct, but it takes too long for serious high-performance applications. Even declaring the
function inline is often not sufficient to attain optimal performance.

The problem is that compilers usually optimize loops for many iterations, which is counterpro-
ductive in this case. Simply expanding the loop to

�E�F��E�F K �E�F��E�F K �E6F��E6F

would be a lot better.
Of course, this performance doesn’t matter if we compute only some dot products from time to

time. But, if we use this library component to perform millions of dot product computations, the
differences become significant.

Of course, we could write the computation directly instead of calling ���(�������+,, or we
could provide special functions for dot product computations with only a few dimensions, but this
is tedious. Template metaprogramming solves this issue for us: We “program” to unroll the loops.
Here is the metaprogram:

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 316

316 Chapter 17: Metaprograms

�� ����������	
��

2������ CII"6;�""

2������ CII"6;�""

// primary template

���+�
� -��
 >AH$
������� #.

�+�		 >�
"���*�
 /

�*�+��%

	
�
�� # ��	*+
 �#� �$ #� �
 /

��
*�� �� � �� K >�
"���*�
->AH9�$#.%%��	*+
��K�$�K�
�

1

1�

// partial specialization as end criteria

���+�
� -
������� #.

�+�		 >�
"���*�
-�$#. /

�*�+��%

	
�
�� # ��	*+
 �#� �$ #� �
 /

��
*�� �� � ���

1

1�

// convenience function

���+�
� -��
 >AH$
������� #.

��+��� # ��
;����*�
 �#� �$ #� �

/

��
*�� >�
"���*�
->AH$#.%%��	*+
��$�
�

1

2����� // LOOP2�HPP

Now, by changing your application program only slightly, you can get the same result:

�� ����������	���

2���+*�� -��	
����.

2���+*�� 4+���6(���4

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 317

17.7 Using Metaprograms to Unroll Loops 317

��
 �����

/

��
 �E8F � / �$ 6$ 81�

��
 �E8F � / M$:$ 71�

	
�%%��*
 -- 4��
;����*�
-8.��$�
 � 4 -- ��
;����*�
-8.��$�

-- =Q�=�

	
�%%��*
 -- 4��
;����*�
-8.��$�
 � 4 -- ��
;����*�
-8.��$�

-- =Q�=�

1

Instead of writing

��
;����*�
�8$�$�

we write

��
;����*�
-8.��$�

This expression instantiates a convenience function template that translates the call into

>�
"���*�
-8$��
.%%��	*+
��$�

And this is the start of the metaprogram.
Inside the metaprogram the ��
��� is the product of the first elements of � and " plus the ��
���

of the dot product of the remaining dimensions of the vectors starting with their next elements:

���+�
� -��
 >AH$
������� #.

�+�		 >�
"���*�
 /

�*�+��%

	
�
�� # ��	*+
 �#� �$ #� �
 /

��
*�� �� � �� K >�
"���*�
->AH9�$#.%%��	*+
��K�$�K�
�

1

1�

The end criterion is the case of a one-dimensional vector:

���+�
� -
������� #.

�+�		 >�
"���*�
-�$#. /

�*�+��%

	
�
�� # ��	*+
 �#� �$ #� �
 /

��
*�� �� � ���

1

1�

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 318

318 Chapter 17: Metaprograms

Thus, for

��
;����*�
-8.��$�

the instantiation process computes the following:

>�
"���*�
-8$��
.%%��	*+
��$�

� �� � �� K >�
"���*�
-6$��
.%%��	*+
��K�$�K�

� �� � �� K ���K�
 � ���K�
 K >�
"���*�
-�$��
.%%��	*+
��K6$�K6

� �� � �� K ���K�
 � ���K�
 K ���K6
 � ���K6

Note that this way of programming requires that the number of dimensions is known at compile time,
which is often (but not always) the case.

Libraries, such as Blitz++ (see [Blitz++]), the MTL library (see [MTL]), and POOMA (see
[POOMA]), use these kinds of metaprograms to provide fast routines for numeric linear algebra.
Such metaprograms often do a better job than optimizers because they can integrate higher-level
knowledge into the computations.2 The industrial-strength implementation of such libraries involves
many more details than the template-related issues we present here. Indeed, reckless unrolling does
not always lead to optimal running times. However, these additional engineering considerations fall
outside the scope of our text.

17.8 Afternotes
As mentioned earlier, the earliest documented example of a metaprogram was by Erwin Unruh,
then representing Siemens on the C++ standardization committee. He noted the computational com-
pleteness of the template instantiation process and demonstrated his point by developing the first
metaprogram. He used the Metaware compiler and coaxed it into issuing error messages that would
contain successive prime numbers. Here is the code that was circulated at a C++ committee meeting
in 1994 (modified so that it now compiles on standard conforming compilers)3:

�� �����"��"
	���

// prime number computation by Erwin Unruh

���+�
� -��
 �$ ��
 �.

�+�		 �	;����� /

�*�+��%

��*� / ���� � ����6
 [[��\�
 �� �	;�����-��.60�%�
$�9�.%%����

1�

1�

2 In some situations metaprograms significantly outperform their Fortran counterparts, even though Fortran
optimizers are usually highly tuned for these sorts of applications.
3 Thanks to Erwin Unruh for providing the code for this book. You can find the original example at [Unruh-
PrimeOrig].

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 319

17.8 Afternotes 319

���+�
�-.

�+�		 �	;�����-�$�. /

�*�+��%

��*� /������1�

1�

���+�
�-.

�+�		 �	;�����-�$�. /

�*�+��%

��*� /������1�

1�

���+�
� -��
 �.

�+�		 > /

�*�+��%

>������
�

1�

���+�
� -��
 �.

�+�		 "����;����
 / // primary template for loop to print prime numbers
�*�+��%

"����;����
-�9�. ��

��*� / ���� � �	;�����-�$�9�.%%����

1�

���� ��
 /

>-�. � � ���� 0 � % ��

�(��
�

1

1�

���+�
�-.

�+�		 "����;����
-�. / // full specialization to end the loop
�*�+��%

��*� /������1�

���� ��
 /

>-�. � � ���� 0 � % ��

1�

1�

Vandevoorde/Josuttis: C++ Templates October 6, 2002 page 320

320 Chapter 17: Metaprograms

2������ C�!#

2������ C�!# �<

2�����

��
 �����

/

"����;����
-C�!#. ��

�(��
�

1

If you compile this program, the compiler will print error messages when in ���
�(���	����+, the
initialization of � fails. This happens when the initial value is . because there is only a constructor
for %���#, and only : has a valid conversion to %���#. For example, on one compiler we get (among
other messages) the following errors:

�� ��!����:1� �$�2� ��$� � $� &���, �$ �$�;����� ���� &<�-/�, ��������

�� ��!����:1� �$�2� ��$� � $� &���, �$ �$�;����� ���� &<�-:�, ��������

�� ��!����:1� �$�2� ��$� � $� &���, �$ �$�;����� ���� &<�--�, ��������

�� ��!����:1� �$�2� ��$� � $� &���, �$ �$�;����� ���� &<�/�, ��������

�� ��!����:1� �$�2� ��$� � $� &���, �$ �$�;����� ���� &<�.�, ��������

�� ��!����:1� �$�2� ��$� � $� &���, �$ �$�;����� ���� &<�:�, ��������

�� ��!����:1� �$�2� ��$� � $� &���, �$ �$�;����� ���� &<���, ��������

The concept of C++ template metaprogramming as a serious programming tool was first made popu-
lar (and somewhat formalized) by Todd Veldhuizen in his paperUsing C++ Template Metaprograms
(see [VeldhuizenMeta95]). Todd’s work on Blitz++ (a numeric array library for C++, see [Blitz++])
also introduced many refinements and extensions to the metaprogramming (and to expression tem-
plate techniques, introduced in the next chapter).

