
13

2
Components

he CLR has its own set of concepts and techniques for packaging,
deploying, and discovering component code. These concepts and

techniques are fundamentally different from those used by technologies
such as COM, Java, or Win32. The difference is best understood by looking
closely at the CLR loader, but first one must look at how code and metadata
are actually packaged.

Modules Defined

Programs written for the CLR reside in modules. A CLR module is a byte
stream, typically stored as a file in the local file system or on a Web server.

As shown in Figure 2.1, a CLR module uses an extended version of the
PE/COFF executable file format used by Windows NT. By extending
the PE/COFF format rather than starting from scratch, CLR modules are
also valid Win32 modules that can be loaded using the LoadLibrary sys-
tem call. However, a CLR module uses very little PE/COFF functionality.
Rather, the majority of a CLR module’s contents are stored as opaque data
in the .text section of the PE/COFF file.

CLR modules contain code, metadata, and resources. The code is typi-
cally stored in common intermediate language (CIL) format, although it
may also be stored as processor-specific machine instructions. The mod-
ule’s metadata describes the types defined in the module, including
names, inheritance relationships, method signatures, and dependency

T

Box_Ch02.qxd 9/25/02 10:23 AM Page 13 { Kirby Mountain Composition & Graphics }

information. The module’s resources consist of static read-only data such
as strings, bitmaps, and other aspects of the program that are not stored
as executable code.

The file format used by CLR modules is fairly well documented; how-
ever, few developers will ever encounter the format in the raw. Even devel-
opers who need to generate programs on-the-fly will typically use one of
the two facilities provided by the CLR for programmatically generating
modules. The IMetaDataEmit interface is a low-level COM interface that
can be used to generate module metadata programmatically from classic
C++. The System.Reflection.Emit namespace is a higher-level library
that can be used to generate metadata and CIL programmatically from any
CLR-friendly language (e.g., C#, VB.NET). The CodeDOM works at an
even higher layer of abstraction, removing the need to know or understand
CIL. However, for the vast majority of developers, who simply need to gen-
erate code during development and not at runtime, a CLR-friendly com-
piler will suffice.

The C# compiler (CSC.EXE), the VB.NET compiler (VBC.EXE), and the
C++ compiler (CL.EXE) all translate source code into CLR modules. Each
of the compilers uses command-line switches to control which kind of
module to produce. As shown in Table 2.1, there are four possible options.
In C# and VB.NET, one uses the /target command-line switch (or its

ESSENTIAL .NET VOLUME 14

PE Header

COFF Header

IMAGE_COR20_HEADER

Code

(CIL and/or native machine code)

Resource Data

String/BLOB Pools

Metadata Tables

P
E

/C
O

F
F

H
ea

de
r

P
E

/C
O

F
F

.te
xt

 S
ec

tio
n

Figure 2.1: CLR Module Format

Box_Ch02.qxd 9/25/02 10:23 AM Page 14 { Kirby Mountain Composition & Graphics }

shortcut, /t) to select which option to use. The C++ compiler uses a com-
bination of several switches; however, one always uses the /CLR switch to
force the C++ compiler to generate CLR-compliant modules. The remain-
der of this discussion will refer to the C# and VB.NET switches, given their
somewhat simpler format.

The /t:module option produces a “raw” module that by default will
use the .netmodule file extension. Modules in this format cannot be
deployed by themselves as stand-alone code, nor can the CLR load them
directly. Rather, developers must associate raw modules with a full-
fledged component (called an assembly) prior to deployment. In contrast,
compiling with the /t:library option produces a module that contains
additional metadata that allows developers to deploy it as stand-alone
code. A module produced by compiling with /t:librarywill have a .DLL
file extension by default.

Modules compiled with /t:library can be loaded directly by the CLR
but cannot be launched as an executable program from a command shell or
the Windows Explorer. To produce this kind of module, you must compile
using either the /t:exe or the /t:winexe option. Both options produce a
file whose extension is .EXE. The only difference between these two
options is that the former assumes the use of the console UI subsystem; the
latter option assumes the GUI subsystem. If no /t option is specified, the
default is /t:exe.

MODULES DEFINED 15

Directly Runnable Access to

C#/VB.NET C++ Loadable? from Shell? Console?

/t:exe /CLR Yes Yes Always

/t:winexe /CLR /link Yes Yes Never

/subsystem:windows

/t:library /CLR /LD Yes No Host-

dependent

/t:module /CLR:NOASSEMBLY No No Host-

/LD dependent

Table 2.1 Module Output Options

Box_Ch02.qxd 9/25/02 10:23 AM Page 15 { Kirby Mountain Composition & Graphics }

Modules produced using either the /t:exe or the /t:winexe option
must have an initial entry point defined. The initial entry point is the
method that the CLR will execute automatically when the program is
launched. Programmers must declare this method static, and, in C# or
VB.NET, they must name it Main. Programmers can declare the entry point
method to return no value or to return an int as its exit code. They can also
declare it to accept no parameters or to accept an array of strings, which
will contain the parsed command-line arguments from the shell. The fol-
lowing are four legal implementations for the Main method in C#:

static void Main() { }

static void Main(string[] argv) { }

static int Main() { return 0; }

static int Main(string[] argv) { return 0; }

These correspond to the following in VB.NET:

shared sub Main() : end sub

shared sub Main(argv as string()) : end sub

shared function Main() : return 0 : end function

shared function Main(argv as string())

return 0

end function

Note that these methods do not need to be declared public. Programmers
must, however, declare the Main method inside a type definition, although
the name of the type is immaterial.

The following is a minimal C# program that does nothing but print the
string Hello, World to the console:

class myapp {

static void Main() {

System.Console.WriteLine("Hello, World");

}

}

In this example, there is exactly one class that has a static method called
Main. It would be ambiguous (and therefore an error) to present the C# or
VB.NET compiler with source files containing more than one type having

ESSENTIAL .NET VOLUME 16

Box_Ch02.qxd 9/25/02 10:23 AM Page 16 { Kirby Mountain Composition & Graphics }

a static method called Main. To resolve this ambiguity, programmers can
use the /main command-line switch to tell the C# or VB.NET compiler
which type to use for the program’s initial entry point.

Assemblies Defined

In order to deploy a CLR module, developers must first affiliate it with an
assembly. An assembly is a logical collection of one or more modules. As
just described, modules are physical constructs that exist as byte streams,
typically in the file system. Assemblies are logical constructs and are refer-
enced by location-independent names that must be translated to physical
paths either in the file system or on the Internet. Those physical paths ulti-
mately point to one or more modules that contain the type definitions,
code, and resources that make up the assembly.

The CLR allows developers to compose assemblies from more than one
module primarily to support deferred loading of infrequently accessed
code without forming separate encapsulation boundaries. This feature is
especially useful when developers are using code download because they
can download the initial module first and download secondary modules
only on an as-needed basis. The ability to build multimodule assemblies
also enables mixed-language assemblies. This allows developers to work
in a high-productivity language (e.g., Logo.NET) for the majority of their
work but to write low-level grunge code in a more flexible language (e.g.,
C++). By conjoining the two modules into a single assembly, developers
reference, deploy, and version the C++ and Logo.NET code as an atomic
unit.

ASSEMBLIES DEFINED 17

Parenthetically, though an assembly may consist of more than one module,

a module is generally affiliated with only one assembly. As a point of inter-

est, if two assemblies happen to reference a common module, the CLR will

treat this as if there are two distinct modules, something that results in two

distinct copies of every type in the common module. For that reason, the

remainder of this chapter assumes that a module is affiliated with exactly

one assembly.

Box_Ch02.qxd 9/25/02 10:23 AM Page 17 { Kirby Mountain Composition & Graphics }

Assemblies are the “atom” of deployment in the CLR and are used
to package, load, distribute, and version CLR modules. Although an
assembly may consist of multiple modules and auxiliary files, the assem-
bly is named and versioned as an atomic unit. If one of the modules in an
assembly must be versioned, then the entire assembly must be redeployed
because the version number is part of the assembly name and not the
underlying module name.

Modules typically rely on types from other assemblies. At the very least,
every module relies on the types defined in the mscorlib assembly, which
is where types such as System.Object and System.String are defined.
Every CLR module contains a list of assembly names that identifies which
assemblies are used by this module. These external assembly references
use the logical name of the assembly, which contains no remnants of the
underlying module names or locations. It is the job of the CLR to convert
these logical assembly names into module pathnames at runtime, as is dis-
cussed later in this chapter.

To assist the CLR in finding the various pieces of an assembly, every
assembly has exactly one module whose metadata contains the assembly
manifest. The assembly manifest is an additional chunk of CLR metadata
that acts as a directory of adjunct files that contain additional type defini-
tions and code. The CLR can directly load modules that contain an assem-
bly manifest. For modules that lack an assembly manifest, the CLR can
load them only indirectly, by first loading a module whose assembly man-
ifest refers to the manifest-less module. Figure 2.2 shows two modules: one
with an assembly manifest and one without one. Note that of the four /t
compiler options, only /t:module produces a module with no assembly
manifest.

Figure 2.3 shows an application that uses a multimodule assembly,
and Listing 2.1 shows the MAKEFILE that would produce it. In this
example, code.netmodule is a module that does not contain an assembly
manifest. To make it useful, one needs a second module (in this case,
component.dll) that provides an assembly manifest that references
code.netmodule as a subordinate module. One achieves this using the
/addmodule switch when compiling the containing assembly. After this
assembly is produced, all the types defined in component.dll and

ESSENTIAL .NET VOLUME 18

Box_Ch02.qxd 9/25/02 10:23 AM Page 18 { Kirby Mountain Composition & Graphics }

ASSEMBLIES DEFINED 19

.module pete.netmodule

.assembly extern mscorlib

.assembly extern paul

.class public PP {
 .field [paul]Bassist m
}

Metadata

.module pete.dll

.assembly extern mscorlib

.assembly extern paul

.class public PP {
 .field [paul]Bassist m
}

.assembly pete

Metadata

Manifest

/t:module

/t:library

Figure 2.2: Modules and Assemblies

csc.exe /t:module

 csc.exe /t:library
/addmodule:code.netmodule

csc /r:component.dll

Component Assembly

Application Assembly

component.cs

code.cs code.netmodule

application.exeapplication.cs

component.dll

Figure 2.3: Multimodule Assemblies Using CSC.EXE

Box_Ch02.qxd 9/25/02 10:23 AM Page 19 { Kirby Mountain Composition & Graphics }

code.netmodule are scoped by the name of the assembly (component).
Programs such as application.exe use the /r compiler switch to
reference the module containing the assembly manifest. This makes the
types in both modules available to the referencing program.

Listing 2.1: Multimodule Assemblies Using CSC.EXE an1d NMAKE

code.netmodule cannot be loaded as is until an assembly

is created

code.netmodule : code.cs

csc /t:module code.cs

types in component.cs can see internal and public members

and types defined in code.cs

component.dll : component.cs code.netmodule

csc /t:library /addmodule:code.netmodule component.cs

types in application.cs cannot see internal members and

types defined in code.cs (or component.cs)

application.exe : application.cs component.dll

csc /t:exe /r:component.dll application.cs

The assembly manifest resides in exactly one module and contains all of
the information needed to locate types and resources defined as part of the
assembly. Figure 2.4 shows a set of modules composed into a single assem-
bly, as well as the CSC.EXE switches required to build them. Notice that in
this example, the assembly manifest contains a list of file references to the
subordinate modules pete.netmodule and george.netmodule. In addi-
tion to these file references, each of the public types in these subordinate
modules is listed using the .class extern directive, which allows the
complete list of public types to be discovered without traversing the meta-
data for each of the modules in the assembly. Each entry in this list speci-
fies both the file name that contains the type as well as the numeric
metadata token that uniquely identifies the type within its module. Finally,
the module containing the assembly manifest will contain the master list of
externally referenced assemblies. This list consists of the dependencies of
every module in the assembly, not just the dependencies of the current
module. This allows all of the assembly’s dependencies to be discovered by
loading a single file.

ESSENTIAL .NET VOLUME 20

Box_Ch02.qxd 9/25/02 10:23 AM Page 20 { Kirby Mountain Composition & Graphics }

Finally, the module containing the assembly manifest will contain the
master list of externally referenced assemblies. This list consists of the
dependencies of every module in the assembly not only the dependencies
of the current module. This allows all of the assembly’s dependencies to be
discovered by loading a single file.

Assemblies form an encapsulation boundary to protect internal imple-
mentation details from interassembly access. Programmers can apply this
protection to members of a type (e.g., fields, methods, constructors) or to a
type as a whole. Marking a member or type as internal causes it to be
available only to modules that are part of the same assembly. Marking a
type or member as public causes it to be available to all code (both inside
and outside the current assembly). Individual members of a type (e.g.,
methods, fields, constructors) can also be marked as private, which
restricts access to only methods and constructors of the declaring type. This
supports classic C++-style programming, in which intracomponent encap-

ASSEMBLIES DEFINED 21

.module pete.netmodule

.assembly extern mscorlib

.assembly extern paul

.class public PP {
 .field [paul]Bassist m
}

.module band.dll

.assembly extern mscorlib

.assembly extern paul

.assembly extern john

.class public Manager {
}

.assembly band

.file pete.netmodule

.file george.netmodule

.class extern public GP
{.file george.netmodule
 .class nnnn }
.class extern public PP
{.file pete.netmodule
 .class nnnn }

M
an

ife
st

/t:module

.module george.netmodule

.assembly extern mscorlib

.assembly extern john

.class public GP {
 .field [john]Singer m
}

/t:module

/t:library /addmodule:pete.netmodule,george.netmodule

Figure 2.4: A Multimodule Assembly

Box_Ch02.qxd 9/25/02 10:23 AM Page 21 { Kirby Mountain Composition & Graphics }

sulation is desired. In a similar vein, programmers can mark members of a
type as protected, which broadens the access allowed by private to
include methods and constructors of derived types. The protected and
internal access modifiers can be combined, something that provides
access to types that are either derived from the current type or are in the
same assembly as the current type. Table 2.2 shows the language-specific
modifiers as they apply both to types and to individual members. Note that
members marked protected internal in C# require only that the acces-
sor be in the same assembly or in a derived type. The CLR also supports an
access modifier that requires the accessor to be both in the same assembly
and in a derived type (marked famandassem in the metadata). However,
VB.NET and C# do not allow programmers to specify this access modifier.

Assemblies scope the type definitions of a component. CLR types are
uniquely identified by their assembly name/type name pair. This allows
two definitions of the type Customer to coexist inside the runtime without
ambiguity, provided that each one is affiliated with a different assembly.
Although it is possible for multiple assemblies to define the type Customer
without confusing the runtime, it does not help the programmer who

ESSENTIAL .NET VOLUME 22

C# VB.NET Meaning

Type
public Public Type is visible everywhere.

internal Friend Type is visible only inside assembly.

public Public* Member is visible everywhere.

internal Friend Member is visible only inside assembly.

Member
protected Protected Member is visible only inside declaring type and

its subtypes.

protected Protected Member is visible only inside declaring type and

internal Friend its subtypes or other types inside assembly.

private Private* Member is visible only inside declaring type.

Table 2.2 Access Modifiers

* VB.NET defaults to Public for methods and Private for fields declared using the Dim
keyword.

Box_Ch02.qxd 9/25/02 10:23 AM Page 22 { Kirby Mountain Composition & Graphics }

wants to use two or more definitions of the same type name in a single pro-
gram because the symbolic type name is always Customer no matter
which assembly defines it. To address this limitation of most programming
languages, CLR type names can have a namespace prefix. This prefix is a
string that typically begins with either the organization name of the devel-
oper (e.g., Microsoft, AcmeCorp) or System if the type is part of the .NET
framework. An emerging convention is to name the assembly based on the
namespace prefix. For example, the .NET XML stack is deployed in the
System.Xml assembly, and all of the contained types use the System.Xml
namespace prefix. This is simply a convention and not a rule. For example,
the type System.Object resides in an assembly called mscorlib and not
in the assembly called System, even though there actually is an assembly
called System.

Assembly Names

Each assembly has a four-part name that uniquely identifies it. This four-
part name consists of the friendly name, culture, developer, and version of
the component. These names are stored in the assembly manifest of the
assembly itself as well as all assemblies that reference it. The CLR uses the
four-part assembly name to find the correct component at load time.
The CLR provides programmatic access to assembly names via the
System.Reflection.AssemblyName type, which is easily accessed via
the System.Reflection.Assembly.GetName method.

The Name property of the assembly name typically corresponds to the
underlying file name of the assembly manifest sans any file extension that
may be in use. This is the only part of the assembly name that is not
optional. In simple scenarios, the Name property is all that the CLR needs
to locate the correct component at load time. When one builds an assembly,
this part of the name is automatically selected by your compiler based on
the target file name.

All assembly names have a four-part version number (Version) of the
form Major.Minor.Build.Revision. If you do not set this version num-
ber explicitly, its default value will be 0.0.0.0. The version number is set at
build time, typically using a custom attribute in the source code. The Sys-
tem.Reflection.AssemblyVersion attribute accepts a variety of string

ASSEMBLY NAMES 23

Box_Ch02.qxd 9/25/02 10:23 AM Page 23 { Kirby Mountain Composition & Graphics }

formats, as shown in Table 2.3. When you specify the version number, the
Major version number is mandatory. Any missing parts are assumed to be
zero. At build time, the Revision can be specified as * (asterisk), and that
causes the compiler to use the wall clock to produce a monotonically
increasing revision number for each compilation. If an * is specified for the
Build number, the number emitted into the assembly manifest is based on
the number of days that have elapsed since February 1, 2000, ensuring that
each day has its own unique build number but that a given build number
will be applied only for a given 24-hour period. You cannot specify an * for
the Major or Minor part of the version number. Later, this chapter dis-
cusses how the assembly loader and resolver use the Version of the
assembly.

Assembly names can contain a CultureInfo attribute that identifies
the spoken language and country code that the component has been devel-
oped for. Developers specify CultureInfo using the System.Reflec-
tion.AssemblyCulture attribute, which accepts a two-part string as
specified by Internet Engineering Task Force (IETF) Request for Comments
(RFC) 1766. The first part of the string identifies the spoken language using

ESSENTIAL .NET VOLUME 24

Attribute Actual

Parameter Value

1 1.0.0.0

1.2 1.2.0.0

1.2.3 1.2.3.0

1.2.3.4 1.2.3.4

1.2.* 1.2.d.s

1.2.3.* 1.2.3.s

<absent> 0.0.0.0

Table 2.3 Inside the AssemblyVersion Attribute

* Where d is the number of days since Feb. 1,
2000, and s is the number of seconds since
midnight /2

Box_Ch02.qxd 9/25/02 10:23 AM Page 24 { Kirby Mountain Composition & Graphics }

a two-character lowercase code. The (optional) second part of the string
identifies the geographic region using a two-character uppercase code. The
string "en-US" identifies U.S. English. Assemblies that contain a Culture-
Info cannot contain code; rather, they must be resource-only assemblies
(also known as satellite assemblies) that can contain only localized strings
and other user-interface elements. Satellite assemblies allow a single DLL
containing code to selectively load (and download) localized resources
based on where they are deployed. Assemblies containing code (that is, the
vast majority of assemblies) are said to be culture-neutral and have no cul-
ture identifier.

Finally, an assembly name can contain a public key that identifies the
developer of the component. An assembly reference can use either the full
128-byte public key or the 8-byte public key token. The public key (token)
is used to resolve file name collisions between organizations, allowing
multiple utilities.dll components to coexist in memory and on disk
provided that each one originates from a different organization, each of
which is guaranteed to have a unique public key. The next section discusses
public key management in detail.

Because assembly references occasionally must be entered by hand (for
example, for use in configuration files), the CLR defines a standard format
for writing four-part assembly names as strings. This format is known as
the display name of the assembly. The display name of the assembly
always begins with the simple Name of the assembly and is followed by an
optional list of comma-delimited properties that correspond to the other
three properties of the assembly name. If all four parts of the name are
specified, the corresponding assembly reference is called a fully qualified
reference. If one or more of the properties is missing, the reference is called
a partially qualified reference.

Figure 2.5 shows a display name and the corresponding CLR attributes
used to control each property. Note that if an assembly with no culture is
desired, the display name must indicate this using Culture=neutral.
Also, if an assembly with no public key is desired, the display name must
indicate this using PublicKeyToken=null. Both of these are substantially
different from a display name with no Culture or PublicKeyToken
property. Simply omitting these properties from the display name results

ASSEMBLY NAMES 25

Box_Ch02.qxd 9/25/02 10:23 AM Page 25 { Kirby Mountain Composition & Graphics }

in a partially specified name that allows any Culture or PublicKeyToken
to be matched.

In general, you should avoid using partially specified assembly names;
otherwise, various parts of the CLR will work in unexpected (and unpleas-
ant) ways. However, to deal with code that does not heed this warning, the
CLR allows partial assembly names to be fully qualified in configuration
files. For example, consider the following application configuration file:

<configuration>

<runtime>

<asm:assemblyBinding

xmlns:asm="urn:schemas-microsoft-com:asm.v1"

>

<asm:qualifyAssembly partialName="AcmeCorp.Code"

fullName="AcmeCorp.Code,version=1.0.0.0,

publicKeyToken=a1690a5ea44bab32,culture=neutral"

/>

</asm:assemblyBinding>

</runtime>

</configuration>

This configuration allows the following call to Assembly.Load:

Assembly assm = Assembly.Load(“AcmeCorp.Code”);

The preceding call behaves identically to a call such as this one:

Assembly assm = Assembly.Load("AcmeCorp.Code,"+

"version=1.0.0.0,publicKeyToken=a1690a5ea44bab32,"+

"culture=neutral");

ESSENTIAL .NET VOLUME 26

using System.Reflection;
[assembly: AssemblyVersion("1.2.3.4")]
[assembly: AssemblyCulture("en-US")] // resource-only assm
[assembly: AssemblyKeyFile("acmecorp.snk")]

yourcode, Version=1.2.3.4, Culture=en-US, PublicKeyToken=1234123412341234

Display Name of Assembly Reference

C# Code
or Neutral or Null

Figure 2.5: Fully Specified Assembly Names

Box_Ch02.qxd 9/25/02 10:23 AM Page 26 { Kirby Mountain Composition & Graphics }

The partialName attribute must match the parameter to Assembly.
Load completely; that is, each property specified in the call to Assem-
bly.Load must also be present in the partialName attribute in the con-
figuration file. Also, each property specified in the partialName attribute
must be present in the call to Assembly.Load. Later, this chapter discusses
how configuration files are located.

Public Keys and Assemblies

The CLR uses public key technology both to uniquely identify the devel-
oper of a component and to protect the component from being tampered
with once it is out of the original developer’s hands. Each assembly can
have a public key embedded in its manifest that identifies the developer.
Assemblies with public keys also have a digital signature that is generated
before the assembly is first shipped that provides a secure hash of the
assembly manifest, which itself contains hashes of all subordinate mod-
ules. This ensures that once the assembly ships, no one can modify the code
or other resources contained in the assembly. This digital signature can be
verified using only the public key; however, the signature can be generated
only with the corresponding private key, which organizations must guard
more closely than their source code. The current builds of the CLR use RSA
public/private keys and Secure Hash Algorithm (SHA) hashing to produce
the digital signature. Although the private key used to sign the assembly is
a unique fingerprint for each organization, it does not provide the same
level of nonrepudiation that digital certificates provide. For example, there
is no way to look up the developer’s identity based solely on an assembly’s
public key. The CLR does provide support for embedding digital certifi-
cates into assemblies, but that is outside the scope of this chapter (for more
information, see Chapter 9).

The .NET SDK ships with a tool (SN.EXE) that simplifies working with
public and private keys during development and deployment. Running
SN.EXE with the -k option creates a new file that contains a newly gener-
ated public/private key pair. This file contains your private key, so it is
critical that you practice safe computing and do not leave this file in an
unsecured location. Because the private key is so critical, most organizations

PUBLIC KEYS AND ASSEMBLIES 27

Box_Ch02.qxd 9/25/02 10:23 AM Page 27 { Kirby Mountain Composition & Graphics }

postpone the actual signing of the assembly until just before shipping, a
practice called delay signing. To allow all developers in an organization to
access the public key without having access to the private key, SN.EXE sup-
ports removing the private key portion using the -p option. This option cre-
ates a new file that contains only the public key. The conventional file
extension for both public/private and public-only key files is .SNK.

The public key produced by SN.EXE is a 128-byte opaque algorithm-
specific structure with an additional 32 bytes of header information. To
keep the size of assembly references (and their display names) compact, an
assembly reference can use a public key token, which is an 8-byte hash of
the full public key. The assembly references emitted by most compilers use
this token in lieu of the full public key to keep the overall size of the mani-
fest small. You can calculate the token for a public key by using SN.EXE’s
-t or -T options. The former calculates the token based on an .SNK file con-
taining only a public key. The latter calculates the token based on a public
key stored in an assembly’s manifest. Figure 2.6 shows the SN.EXE tool in
action.

Development tools that support the CLR must provide some mecha-
nism for developers to sign their assemblies, either via custom attributes or

ESSENTIAL .NET VOLUME 28

sn.exe -k publicprivate.snk

sn.exe -p publicprivate.snk public.snk

Public Key
(128 bytes + 32-

byte header)

Private Key
(436 bytes)

sn.exe -t public.snk

publicprivate.snk

public.snk

Public key token is 883dd0182e81d815

Public Key
(128 bytes + 32-

byte header)

Figure 2.6: Managing Public/Private Keys Using SN.EXE

Box_Ch02.qxd 9/25/02 10:23 AM Page 28 { Kirby Mountain Composition & Graphics }

command-line switches. The System.Reflection.AssemblyKeyFile
attribute tells the compiler where to find the .SNK file that contains the
developer’s public key. This attribute will work with either the public/pri-
vate key pair or the public-only key, something that allows developers to
build, test, and debug their components without access to the organiza-
tion’s private key. In order to build an assembly using only a public key,
you must also use the System.Reflection.AssemblyDelaySign attrib-
ute to inform the compiler that no private key is present and that no mean-
ingful digital signature can be produced. When delay signing is used,
space is reserved for the digital signature so that a trusted member of the
organization can re-sign the assembly without having to replicate the orig-
inal developer’s build environment. In general, assemblies that have a
public key but do not have a valid signature cannot be loaded or executed.
To allow delay-signed assemblies to be used during development, this pol-
icy can be disabled for a particular assembly or public key using the -Vr
option to SN.EXE. Figure 2.7 shows the AssemblyKeyFile attribute used
from C#. This figure also shows the resultant assembly as well as another
assembly that references it. Note that the 128-byte public key is stored in

PUBLIC KEYS AND ASSEMBLIES 29

csc /t:library mylib.cs

Public Key
(128 bytes + 32-

byte header)
Signature

using System.Reflection;
[assembly: AssemblyKeyFile("publicprivate.snk")]
[assembly: AssemblyDelaySign(false)]

mylib.cs

Public Key
(128 bytes + 32-

byte header)

Private Key
(436 bytes)

publicprivate.snk

mylib.dll

CLR Metadata Code
PE/COFF
Header

myapp.exe

CLR Metadata

mylib

Public Key Token (8 bytes)

Assembly Reference

Code
PE/COFF
Header

Figure 2.7: Strong Assembly References

Box_Ch02.qxd 9/25/02 10:23 AM Page 29 { Kirby Mountain Composition & Graphics }

the target’s assembly manifest along with a digital signature to protect the
assembly from tampering. Also note that the second assembly, which ref-
erences the target, contains only the 8-byte public key token. Because the
target assembly was built with delay signing turned off, the assembly can
now be deployed and loaded in secured environments. In contrast, the tar-
get assembly produced by the C# compiler shown in Figure 2.8 is not suit-
able for deployment because it is built with delay signing turned on.
However, after a trusted individual signs the assembly with the private
key, the assembly is ready to be deployed. Note that in this example, the
SN.EXE tool is used with the -R option, which overwrites the digital signa-
ture in the target assembly with one based on the public/private key pro-
vided on the command line. To manually verify that an assembly has been
signed, you can use SN.EXE with the -v or -vf option. The latter overrides
any configured settings that might disable signature verification.

ESSENTIAL .NET VOLUME 30

csc /t:library mylib.cs

sn -R mylib.dll publicprivate.snk

Public Key
(128 bytes + 32-

byte header)

Space for
Signature

using System.Reflection;
[assembly: AssemblyKeyFile("publicprivate.snk")]
[assembly: AssemblyDelaySign(true)]

mylib.cs

Public Key
(128 bytes + 32-

byte header)

public.snk

Public Key
(128 bytes + 32-

byte header)

Private Key
(436 bytes)

publicprivate.snk

mylib.dll

CLR Metadata Code
PE/COFF
Header

Public Key
(128 bytes + 32-

byte header)
Signature

mylib.dll

CLR Metadata Code
PE/COFF
Header

Figure 2.8: Delay Signing an Assembly

Box_Ch02.qxd 9/25/02 10:23 AM Page 30 { Kirby Mountain Composition & Graphics }

The CLR Loader

The CLR loader is responsible for loading and initializing assemblies,
modules, resources, and types. The CLR loader loads and initializes as little
as it can get away with. Unlike the Win32 loader, the CLR loader does not
resolve and automatically load the subordinate modules (or assemblies).
Rather, the subordinate pieces are loaded on demand only if they are actu-
ally needed (as with Visual C++ 6.0’s delay-load feature). This not only
speeds up program initialization time but also reduces the amount of
resources consumed by a running program.

In the CLR, loading typically is triggered by the just in time (JIT) com-
piler based on types. When the JIT compiler tries to convert a method body
from CIL to machine code, it needs access to the type definition of the
declaring type as well as the type definitions for the type’s fields. More-
over, the JIT compiler also needs access to the type definitions used by any
local variables or parameters of the method being JIT-compiled. Loading a
type implies loading both the assembly and the module that contain the
type definition.

This policy of loading types (and assemblies and modules) on demand
means that parts of a program that are not used are never brought into
memory. It also means that a running application will often see new assem-
blies and modules loaded over time as the types contained in those files are
needed during execution. If this is not the behavior you want, you have
two options. One is to simply declare hidden static fields of the types you
want to guarantee are loaded when your type is loaded. The other is to
interact with the loader explicitly.

The loader typically does its work implicitly on your behalf. Develop-
ers can interact with the loader explicitly via the assembly loader. The
assembly loader is exposed to developers via the LoadFrom static method
on the System.Reflection.Assembly class. This method accepts a
CODEBASE string, which can be either a file system path or a uniform
resource locator (URL) that identifies the module containing the assembly
manifest. If the specified file cannot be found, the loader will throw a Sys-
tem.FileNotFoundException exception. If the specified file can be found
but is not a CLR module containing an assembly manifest, the loader will
throw a System.BadImageFormatException exception. Finally, if the

THE CLR LOADER 31

Box_Ch02.qxd 9/25/02 10:23 AM Page 31 { Kirby Mountain Composition & Graphics }

CODEBASE is a URL that uses a scheme other than file:, the caller must
have WebPermission access rights or else a System.SecurityException
exception is thrown. Additionally, assemblies at URLs with protocols other
than file: are first downloaded to the download cache prior to being
loaded.

Listing 2.2 shows a simple C# program that loads an assembly located
at file://C:/usr/bin/xyzzy.dll and then creates an instance of the
contained type named AcmeCorp.LOB.Customer. In this example, all that
is provided by the caller is the physical location of the assembly. When a
program uses the assembly loader in this fashion, the CLR ignores the four-
part name of the assembly, including its version number.

Listing 2.2: Loading an Assembly with an Explicit CODEBASE

using System;

using System.Reflection;

public class Utilities {

public static Object LoadCustomerType() {

Assembly a = Assembly.LoadFrom(

"file://C:/usr/bin/xyzzy.dll");

return a.CreateInstance("AcmeCorp.LOB.Customer");

}

}

Although loading assemblies by location is somewhat interesting, most
assemblies are loaded by name using the assembly resolver. The assembly
resolver uses the four-part assembly name to determine which underlying
file to load into memory using the assembly loader. As shown in Figure 2.9,
this name-to-location resolution process takes into account a variety of fac-
tors, including the directory the application is hosted in, versioning poli-
cies, and other configuration details (all of which are discussed later in this
chapter).

The assembly resolver is exposed to developers via the Load method of
the System.Reflection.Assembly class. As shown in Listing 2.3, this
method accepts a four-part assembly name (either as a string or as an
AssemblyName reference) and superficially appears to be similar to the
LoadFrom method exposed by the assembly loader. The similarity is only
skin deep because the Load method first uses the assembly resolver to find

ESSENTIAL .NET VOLUME 32

Box_Ch02.qxd 9/25/02 10:23 AM Page 32 { Kirby Mountain Composition & Graphics }

a suitable file using a fairly complex series of operations. The first of these
operations is to apply a version policy to determine exactly which version
of the desired assembly should be loaded.

Listing 2.3: Loading an Assembly Using the Assembly Resolver

using System;

using System.Reflection;

public class Utilities {

public static Object LoadCustomerType() {

Assembly a = Assembly.Load(

"xyzzy, Version=1.2.3.4, " +

"Culture=neutral, PublicKeyToken=9a33f27632997fcc");

return a.CreateInstance("AcmeCorp.LOB.Customer");

}

}

The assembly resolver begins its work by applying any version policies
that may be in effect. Version policies are used to redirect the assembly
resolver to load an alternate version of the requested assembly. A version
policy can map one or more versions of a given assembly to a different

THE CLR LOADER 33

Assembly.Load(name,culture,version,token)

Loaded Assembly

CODEBASE

VERSION POLICY

APPBASE

PRIVATE_BINPATH

Assembly
Resolver

Assembly
Loader

<bindingRedirect>

<codeBase>

AppDomain.BaseDirectory

<probing>

Figure 2.9: Assembly Resolution and Loading

Box_Ch02.qxd 9/25/02 10:23 AM Page 33 { Kirby Mountain Composition & Graphics }

version; however, a version policy cannot redirect the resolver to an assem-
bly whose name differs by any facet other than version number (i.e., an
assembly named Acme.HealthCare cannot be redirected to an assembly
named Acme.Mortuary). It is critical to note that version policies are
applied only to assemblies that are fully specified by their four-part assem-
bly name. If the assembly name is only partially specified (e.g., the public
key token, version, or culture is missing), then no version policy will be
applied. Also, no version policies are applied if the assembly resolver is
bypassed by a direct call to Assembly.LoadFrom because you are specify-
ing only a physical path and not an assembly name.

Version policies are specified via configuration files. These include a
machine-wide configuration file and an application-specific configuration
file. The machine-wide configuration file is always named machine.con-
fig and is located in the %SystemRoot%\Microsoft.Net\Framework\
V1.0.nnnn\CONFIG directory. The application-specific configuration file
is always located at the APPBASE for the application. For CLR-based .EXE
programs, the APPBASE is the base URI (or directory) for the location the
main executable was loaded from. For ASP.NET applications, the APP-
BASE is the root of the Web application’s virtual directory. The name of the
configuration file for CLR-based .EXE programs is the same as the exe-
cutable name with an additional ".config" suffix. For example, if the
launching CLR program is in C:\myapp\app.exe, the corresponding con-
figuration file would be C:\myapp\app.exe.config. For ASP.NET appli-
cations, the configuration file is always named web.config.

Configuration files are based on the Extensible Markup Language
(XML) and always have a root element named configuration. Configu-
ration files are used by the assembly resolver, the remoting infrastructure,
and by ASP.NET. Figure 2.10 shows the basic schema for the elements used
to configure the assembly resolver. All relevant elements are under the
assemblyBinding element in the urn:schemas-microsoft-com:asm.
v1 namespace. There are application-wide settings to control probe paths
and publisher version policy mode (both of which are described later in
this chapter). Additionally, the dependentAssembly elements are used to
specify version and location settings for each dependent assembly.

ESSENTIAL .NET VOLUME 34

Box_Ch02.qxd 9/25/02 10:23 AM Page 34 { Kirby Mountain Composition & Graphics }

THE CLR LOADER 35

qualifiedAssembly

publisherPolicy

probing

codeBase

assemblyIdentity

dependentAssembly

assemblyBinding

runtime

configuration

bindingRedirect

publisherPolicy

apply

partialName

fullName

privatePath

name

publicKeyToken

culture

version

href

oldVersion

newVersion

apply

0..1

0..1

0..N

0..N

0..N

0..1

0..1

0..1

0..N

0..1

Element (xmlns="")

Element (xmlns="urn:schemas-microsoft.com:asm.v1)

Attribute

Figure 2.10: Assembly Resolver Configuration File Format

Box_Ch02.qxd 9/25/02 10:23 AM Page 35 { Kirby Mountain Composition & Graphics }

Listing 2.4 shows a simple configuration file containing two version
policies for one assembly. The first policy redirects version 1.2.3.4 of the
specified assembly (Acme.HealthCare) to version 1.3.0.0. The second pol-
icy redirects versions 1.0.0.0 through 1.2.3.399 of that assembly to version
1.2.3.7.

Listing 2.4: Setting the Version Policy

<?xml version="1.0" ?>

<configuration

xmlns:asm="urn:schemas-microsoft-com:asm.v1"

>

<runtime>

<asm:assemblyBinding>

<!-- one dependentAssembly per unique assembly name -->

<asm:dependentAssembly>

<asm:assemblyIdentity

name="Acme.HealthCare"

publicKeyToken="38218fe715288aac" />

<!-- one bindingRedirect per redirection -->

<asm:bindingRedirect oldVersion="1.2.3.4"

newVersion="1.3.0.0" />

<asm:bindingRedirect oldVersion="1-1.2.3.399"

newVersion="1.2.3.7" />

</asm:dependentAssembly>

</asm:assemblyBinding>

</runtime>

</configuration>

Version policy can be specified at three levels: per application, per com-
ponent, and per machine. Each of these levels gets an opportunity to
process the version number, with the results of one level acting as input to

ESSENTIAL .NET VOLUME 36

Version Policy

Application
Policy

Publisher
Policy

(if enabled)

Machine
Policy

V V' V'' V'''

Figure 2.11: Version Policy

Box_Ch02.qxd 9/25/02 10:23 AM Page 36 { Kirby Mountain Composition & Graphics }

the level below it. This is illustrated in Figure 2.11. Note that if both the
application’s and the machine’s configuration files have a version policy
for a given assembly, the application’s policy is run first, and the resultant
version number is then run through the machine-wide policy to get the
actual version number used to locate the assembly. In this example, if
the machine-wide configuration file redirected version 1.3.0.0 of Acme.
HealthCare to version 2.0.0.0, the assembly resolver would use version
2.0.0.0 when version 1.2.3.4 was requested because the application’s ver-
sion policy maps version 1.2.3.4 to 1.3.0.0.

In addition to application-specific and machine-wide configuration set-
tings, a given assembly can also have a publisher policy. A publisher pol-
icy is a statement from the component developer indicating which versions
of a given component are compatible with one another.

Publisher policies are stored as configuration files in the machine-wide
global assembly cache. The structure of these files is identical to that of the
application and machine configuration files. However, to be installed on
the user’s machine, the publisher policy configuration file must be
wrapped in a surrounding assembly DLL as a custom resource. Assuming
that the file foo.config contains the publisher’s configuration policy, the
following command line would invoke the assembly linker (AL.EXE) and
create a suitable publisher policy assembly for AcmeCorp.Code version 2.0:

al.exe /link:foo.config

/out:policy.2.0.AcmeCorp.Code.dll

/keyf:pubpriv.snk

/v:2.0.0.0

The name of the publisher policy file follows the form policy.
major.minor.assmname.dll. Because of this naming convention, a given
assembly can have only one publisher policy file per major.minor version.
In this example, all requests for AcmeCorp.Code whose major.minor ver-
sion is 2.0 will be routed through the policy file linked with pol-
icy.2.0.AcmeCorp.Code.DLL. If no such assembly exists in the global
assembly cache (GAC), then there is no publisher policy. As shown in
Figure 2.11, publisher policies are applied after the application-specific

THE CLR LOADER 37

Box_Ch02.qxd 9/25/02 10:23 AM Page 37 { Kirby Mountain Composition & Graphics }

version policy but before the machine-wide version policy stored in
machine.config.

Given the fragility inherent in versioning component software, the
CLR allows programmers to turn off publisher version policies on an
application-wide basis. To do this, programmers use the publisher-
Policy element in the application’s configuration file. Listing 2.5 shows
this element in a simple configuration file. When this element has the
attribute apply="no", the publisher policies will be ignored for this appli-
cation. When this attribute is set to apply="yes" (or is not specified at all),
the publisher policies will be used as just described. As shown in Figure
2.10, the publisherPolicy element can enable or disable publisher policy
on an application-wide or an assembly-by-assembly basis.

Listing 2.5: Setting the Application to Safe Mode

<?xml version="1.0" ?>

<configuration xmlns:rt="urn:schemas-microsoft-com:asm.v1">

<runtime>

<rt:assemblyBinding>

<rt:publisherPolicy apply="no" />

</rt:assemblyBinding>

</runtime>

</configuration>

Resolving Names to Locations

After the assembly resolver decides which version of the assembly to load,
it must locate a suitable file to pass to the underlying assembly loader. The
CLR looks first in the directory specified by the DEVPATH operating system
(OS) environment variable. This environment variable is typically not set
on the deployment machine. Rather, it is intended for developer use only
and exists to allow delay-signed assemblies to be loaded from a shared
file-system directory. Moreover, the DEVPATH environment variable is con-
sidered only if the following XML configuration file element is present in
the machine.config file:

ESSENTIAL .NET VOLUME 38

Box_Ch02.qxd 9/25/02 10:23 AM Page 38 { Kirby Mountain Composition & Graphics }

RESOLVING NAMES TO LOCATIONS 39

<configuration>

<runtime>

<developmentMode developerInstallation="true" />

</runtime>

</configuration>

Because the DEVPATH environment variable is not intended for deploy-
ment, the remainder of the chapter will ignore its existence.

Name has
public key?

Match in
global cache?

<codeBase>
hint provided?

Is file found
via probing?

Does file match
reference?

Does file match
reference?

Apply version policy

Assembly.Load(name)

Use file found in global cache

Use file found
at CODEBASE

Assembly.Load fails

Use file found
from probing

N

N

Y

N

N N

N

YY

Y

Y Y

Figure 2.12: Assembly Resolution

Box_Ch02.qxd 9/25/02 10:23 AM Page 39 { Kirby Mountain Composition & Graphics }

Figure 2.12 shows the entire process the assembly resolver goes through
in order to find an appropriate assembly file. In normal deployment sce-
narios, the first location that the assembly resolver uses to find an assem-
bly is the global assembly cache (GAC). The GAC is a machine-wide code
cache that contains assemblies that have been installed for machine-wide
use. The GAC allows administrators to install assemblies once per machine
for all applications to use. To avoid system corruption, the GAC accepts
only assemblies that have valid digital signatures and public keys. Addi-
tionally, entries in the GAC can be deleted only by administrators, some-
thing that prevents non-admin users from deleting or moving critical
system-level components.

To avoid ambiguity, the assembly resolver will look in the GAC only if
the requested assembly name contains a public key. This prevents requests
for generic names such as utilities from being satisfied by the wrong
implementation. The public key can be provided either explicitly as part of
an assembly reference or parameter to Assembly.Load or implicitly via
the qualifyAssembly configuration file element.

The GAC is controlled by a system-level component (FUSION.DLL)
that keeps a cache of DLLs under the %WINNT%\Assembly directory.
FUSION.DLL manages this directory hierarchy for you and provides access
to the stored files based on the four-part assembly name, as shown in
Table 2.4. Although one can traverse the underlying directories, the scheme
used by FUSION to store cached DLLs is an implementation detail that is
guaranteed to change as the CLR evolves. Instead, you must interact with
the GAC via the GACUTIL.EXE tool or some other facade over the FUSION

ESSENTIAL .NET VOLUME 40

Name Version Culture Public Key Token Mangled Path

yourcode 1.0.1.3 de 89abcde... t3s\e4\yourcode.dll

yourcode 1.0.1.3 en 89abcde... a1x\bb\yourcode.dll

yourcode 1.0.1.8 en 89abcde... vv\a0\yourcode.dll

libzero 1.1.0.0 en 89abcde... ig\u\libzero.dll

Table 2.4 Global Assembly Cache

Box_Ch02.qxd 9/25/02 10:23 AM Page 40 { Kirby Mountain Composition & Graphics }

application programming interface (API). One such facade is SHFUSION.
DLL, a Windows Explorer shell extension that provides a user-friendly
interface to the GAC.

If the assembly resolver cannot find the requested assembly in the
GAC, the assembly resolver then tries to use a CODEBASE hint to access
the assembly. A CODEBASE hint simply maps an assembly name to a file
name or URL where the module containing the assembly manifest is
located. Like version policies, CODEBASE hints are located in both
application- and machine-wide configuration files. Listing 2.6 shows an
example configuration file that contains two CODEBASE hints. The first
hint maps version 1.2.3.4 of the Acme.HealthCare assembly to the file
C:\acmestuff\Acme.HealthCare.DLL. The second hint maps version
1.3.0.0 of the same assembly to the file located at http://www.acme.com/
bin/Acme.HealthCare.DLL.

Assuming that a CODEBASE hint is provided, the assembly resolver
can simply load the corresponding assembly file, and the loading of the
assembly proceeds as if the assembly were loaded by an explicit CODE-
BASE a la Assembly.LoadFrom. However, if no CODEBASE hint is pro-
vided, the assembly resolver must begin a potentially expensive procedure
for finding an assembly file that matches the request.

Listing 2.6: Specifying the CODEBASE Using Configuration Files

<?xml version="1.0" ?>

<configuration

xmlns:asm="urn:schemas-microsoft-com:asm.v1"

>

<runtime>

<asm:assemblyBinding>

<!-- one dependentAssembly per unique assembly name -->

<asm:dependentAssembly>

<asm:assemblyIdentity

name="Acme.HealthCare"

publicKeyToken="38218fe715288aac" />

<!-- one codeBase per version -->

<asm:codeBase

version="1.2.3.4"

href="file://C:/acmestuff/Acme.HealthCare.DLL"/>

<asm:codeBase

version="1.3.0.0"

RESOLVING NAMES TO LOCATIONS 41

Box_Ch02.qxd 9/25/02 10:23 AM Page 41 { Kirby Mountain Composition & Graphics }

href="http://www.acme.com/Acme.HealthCare.DLL"/>

</asm:dependentAssembly>

</asm:assemblyBinding>

</runtime>

</configuration>

If the assembly resolver cannot locate the assembly using the GAC or
a CODEBASE hint, it performs a search through a series of directories
relative to the root directory of the application. This search is known as
probing. Probing will search only in directories that are at or below the
APPBASE directory (recall that the APPBASE directory is the directory that
contains the application’s configuration file). For example, given the direc-
tory hierarchy shown in Figure 2.13, only directories m, common, shared,
and q are eligible for probing. That stated, the assembly resolver will probe
only into subdirectories that are explicitly listed in the application’s con-
figuration file. Listing 2.7 shows a sample configuration file that sets the
relative search path to the directories shared and common. All subdirecto-
ries of APPBASE that are not listed in the configuration file will be pruned
from the search.

ESSENTIAL .NET VOLUME 42

C:\

n
common q

shared

m
(APPBASE)

Main.EXE

Eligible
Directories

Ineligible
Directories

C:\m

C:\m\common

C:\m\common\q

C:\m\shared

C:\

C:\n

Figure 2.13: APPBASE and the Relative Search Path

Box_Ch02.qxd 9/25/02 10:23 AM Page 42 { Kirby Mountain Composition & Graphics }

Listing 2.7: Setting the Relative Search Path

<?xml version="1.0" ?>

<configuration

xmlns:asm="urn:schemas-microsoft-com:asm.v1"

>

<runtime>

<asm:assemblyBinding>

<asm:probing privatePath="shared;common" />

</asm:assemblyBinding>

</runtime>

</configuration>

When probing for an assembly, the assembly resolver constructs
CODEBASE URLs based on the simple name of the assembly, the relative
search path just described, and the requested culture of the assembly (if
present in the assembly reference). Figure 2.14 shows an example of the
CODEBASE URLs that will be used to resolve an assembly reference with
no culture specified. In this example, the simple name of the assembly is
yourcode and the relative search path is the shared and common directo-
ries. The assembly resolver first looks for a file named yourcode.dll in
the APPBASE directory. If there is no such file, the resolver then assumes
that the assembly is in a directory with the same name and looks for a file
with that name under the yourcode directory. If the file is still not found,
this process is repeated for each of the entries in the relative search path
until a file named yourcode.dll is found. If the file is found, then prob-
ing stops. Otherwise, the probe process is repeated, this time looking for
the file named yourcode.exe in the same locations as before. Assuming
that a file is found, the assembly resolver verifies that the file matches all
properties of the assembly name specified in the assembly reference and
then loads the assembly. If one of the properties of the file’s assembly
name does not match all of the (post-version policy) assembly reference’s
properties, the Assembly.Load call fails. Otherwise, the assembly is
loaded and ready for use.

Probing is somewhat more complex when the assembly reference con-
tains a culture identifier. As shown in Figure 2.15, the preceding algorithm
is augmented by looking in subdirectories whose names match the

RESOLVING NAMES TO LOCATIONS 43

Box_Ch02.qxd 9/25/02 10:23 AM Page 43 { Kirby Mountain Composition & Graphics }

requested culture. In general, applications should keep relative search
paths small to avoid excessive load-time delays.

Versioning Hazards

The preceding discussion of how the assembly resolver determines which
version of an assembly to load focuses primarily on the mechanism used by
the CLR. What was not discussed is what policies a developer should use to
determine when, how, and why to version an assembly. Given that the plat-
form being described has not actually shipped at the time of this writing, it

ESSENTIAL .NET VOLUME 44

file://C:/myapp/yourcode.dll
file://C:/myapp/yourcode/yourcode.dll
file://C:/myapp/shared/yourcode.dll
file://C:/myapp/shared/yourcode/yourcode.dll
file://C:/myapp/common/yourcode.dll
file://C:/myapp/common/yourcode/yourcode.dll

file://C:/myapp/yourcode.exe
file://C:/myapp/yourcode/yourcode.exe
file://C:/myapp/shared/yourcode.exe
file://C:/myapp/shared/yourcode/yourcode.exe
file://C:/myapp/common/yourcode.exe
file://C:/myapp/common/yourcode/yourcode.exe

Potential CODEBASEs (in order)

yourcode, Culture=neutral,...

Assembly Reference

file://C:/myapp/myapp.exe

APPBASE

<configuration xmlns:asm="...">
 <runtime>
 <asm:assemblyBinding>
 <asm:probing
 privatePath="shared;common"/>
 </asm:assemblyBinding>
 </runtime>
</configuration>

Application Configuration File

Figure 2.14: Culture-Neutral Probing

Box_Ch02.qxd 9/25/02 10:23 AM Page 44 { Kirby Mountain Composition & Graphics }

is somewhat difficult to list a set of “best practices” that are known to be
valid based on hard-won experiences. However, it is reasonable to look at
the known state of the CLR and extrapolate a set of guidelines.

It is important to note that assemblies are versioned as a unit. Trying to
replace a subset of the files in an assembly without changing the version
number will certainly lead to unpredictability. To that end, the remainder
of this section looks at versioning with respect to an assembly as a whole
rather than versioning individual files in an assembly.

The question of when to change version numbers is an interesting one.
Obviously, if the public contract of a type changes, the type’s assembly

VERSIONING HAZARDS 45

yourcode, Culture=en-US,...

Assembly Reference

file://C:/myapp/myapp.exe

APPBASE

<configuration xmlns:asm="...">
 <runtime>
 <asm:assemblyBinding>
 <asm:probing
 privatePath="shared;common"/>
 </asm:assemblyBinding>
 </runtime>
</configuration>

Application Configuration File

file://C:/myapp/en-US/yourcode.dll
file://C:/myapp/en-US/yourcode/yourcode.dll
file://C:/myapp/shared/en-US/yourcode.dll
file://C:/myapp/shared/en-US/yourcode/yourcode.dll
file://C:/myapp/common/en-US/yourcode.dll
file://C:/myapp/common/en-US/yourcode/yourcode.dll

file://C:/myapp/en-US/yourcode.exe
file://C:/myapp/en-US/yourcode/yourcode.exe
file://C:/myapp/shared/en-US/yourcode.exe
file://C:/myapp/shared/en-US/yourcode/yourcode.exe
file://C:/myapp/common/en-US/yourcode.exe
file://C:/myapp/common/en-US/yourcode/yourcode.exe

Potential CODEBASEs (in order)

Figure 2.15: Culture-Dependent Probing

Box_Ch02.qxd 9/25/02 10:23 AM Page 45 { Kirby Mountain Composition & Graphics }

must be given a new version number. Otherwise, programs that depend on
one version of the type signature will get runtime errors when a type with
a different signature is loaded. This means that if you add or remove a pub-
lic or protected member of a public type, you must change the version
number of the type’s assembly. If you change the signature of a public or
protected member of a public type (e.g., adding a method parameter,
changing a field’s type), you also need a new assembly version number.
These are absolute rules. Violating them will result in unpredictability.

The more difficult question to answer relates to modifications that do not
impact the public signature of the assembly’s types. For example, changes
to a member that is marked as private or internal are considered non-
breaking changes, at least as far as signature matching is concerned.
Because no code outside of your assembly can rely upon private or
internal members, having signature mismatches occur at runtime is a
nonissue because it doesn’t happen. Unfortunately, signature mismatches
are only the tip of the iceberg.

There is a reasonable argument to be made for changing the version
number for every build of an assembly, even if no publicly visible signa-
tures have changed. This approach is supported by the fact that even a
seemingly innocuous change to a single method body may have a subtle
but very real rippling effect on the behavior of programs that use the
assembly. If the developer gives each build of an assembly a unique version
number, code that is tested against a particular build won’t be surprised at
deployment time.

The argument against giving each build of an assembly a unique ver-
sion number is that “safe” fixes to the code won’t be picked up by pro-
grams that are not rebuilt against the new version. This argument doesn’t
hold water in the face of publisher policy files. Developers who use unique
version numbers for every build are expected to provide publisher policy
files that state which versions of their assembly are backward-compatible.
By default, this gives consumers of the down-level version an automatic
upgrade to the newer (and hopefully faster or less buggy) assembly. For
times when the assembly’s developer guesses wrong, each application can
use the publisherPolicy element in its configuration file to disable the
automatic upgrade, in essence running the application in “safe mode.”

ESSENTIAL .NET VOLUME 46

Box_Ch02.qxd 9/25/02 10:23 AM Page 46 { Kirby Mountain Composition & Graphics }

As discussed earlier, the CLR assembly resolver supports side-by-side
installation of multiple versions of an assembly via CODEBASE hints, pri-
vate probe paths, and the GAC. This allows several versions of a given
assembly to peacefully coexist in the file system. However, things become
somewhat unpredictable if more than one of these assemblies is actually
loaded into memory at any one time, either by independent programs or by
a single program. Side-by-side execution is much harder to deal with than
side-by-side installation.

The primary problem with supporting multiple versions in memory at
once is that, to the runtime, the types contained in those assemblies are dis-
tinct. That is, if an assembly contains a type called Customer, then when
two different versions of the assembly are loaded, there are two distinct
types in memory, each with its own unique identity. This has several serious
downsides. For one, each type has its own copy of any static fields. If the
type needed to keep track of some shared state is independent of how many
versions of the type had been loaded, it could not use the obvious solution
of using a static field. Rather, developers would need to rewrite the code
with versioning in mind and store the shared state in a location that is not
version-sensitive. One approach would be to store the shared state in some
runtime-provided place such as the ASP.NET application object. Another
approach would be to define a separate type that contained only the shared
state as static fields. Developers could deploy this type in a separate assem-
bly that would never be versioned, thus ensuring that only one copy of the
static fields would be in memory for a given application.

Another problem related to side-by-side execution arises when ver-
sioned types are passed as method parameters. If the caller and callee of a
method have differing views on which version of an assembly will be
loaded, the caller will pass a parameter whose type is unknown to the
callee. Developers can avoid this problem by always defining parameter
types using version-invariant types for all public (cross-assembly) meth-
ods. More importantly, these shared types need to be deployed in a sepa-
rate assembly that itself will not be versioned.

VERSIONING HAZARDS 47

Box_Ch02.qxd 9/25/02 10:23 AM Page 47 { Kirby Mountain Composition & Graphics }

Where Are We?

Modules and assemblies are the component building blocks of the CLR.
Each CLR type resides in exactly one physical file (called a module), which
contains the code and metadata that make that type real. To be deployed, a
module must be associated with a logical assembly that gives the module’s
types a fully qualified name. The CLR loader works primarily in terms of
assemblies, with modules (and types) being loaded only as they are
needed. The CLR loader typically works in terms of location-independent
assembly names that are resolved to physical file paths or URLs prior to
loading. This not only allows more flexible deployment and versioning,
but it also ensures that the component’s origin cannot be spoofed through
the use of public keys and digital signatures.

ESSENTIAL .NET VOLUME 48

The metadata for an assembly has three distinguished attributes that

allows the developer to specify whether multiple versions of the assembly

can be loaded at the same time. If none of these attributes is present, the

assembly is assumed safe for side-by-side execution in all scenarios. The

nonsidebysideappdomain attribute indicates that only one version of

the assembly can be loaded per AppDomain. The nonsidebyside-

process attribute indicates that only one version of the assembly can be

loaded per process. Finally, the nonsidebysidemachine attribute indi-

cates that only one version of the assembly can be loaded at a time for the

entire machine. At the time of this writing, these metadata bits are ignored

by the assembly resolver and loader. However, they do serve as a hint that

hopefully will be enforced in future versions of the CLR.

Box_Ch02.qxd 9/25/02 10:23 AM Page 48 { Kirby Mountain Composition & Graphics }

