
C H A P T E R

The Emergence of Web Applications

In the span of just a few years, the Internet has transformed the way information is
both provided and consumed throughout the world. Its hardware and software tech-
nologies have made it possible for anyone not only to be an information consumer,
but also for nearly anyone to be an information provider. Although the Internet—
specifically the World Wide Web (the Web)—has been treated seriously as a platform
for information sharing among the mass public for only a short time, many organi-
zations have managed to create useful Web applications that provide significant
value to consumers.

These Web applications allow consumers to buy books and compact discs online.
They enable businesses to use the Internet for secure data transactions. Workers use
Web applications to find jobs; employers use them to find employees; stocks are
bought and sold using online applications provided by brokerages; and travelers
book flight and hotel reservations using Web applications. The list goes on and on.
Obviously, many useful Web applications are available on the public Internet as well
as within countless corporate intranets today.

This book describes general techniques for building high-performance and
scalable enterprise Web applications. Generally speaking, this means building applica-
tions that are reasonably and consistently fast and have a strong, gradual tolerance for
rising user and request demands. Although we will spend a lot of time considering this
topic in general, the core of our discussion will be phrased in terms of a solution built
around the Java 2 Enterprise Edition (J2EE) specification. Now, before we dive into the
details of building these kinds of applications, it is important to identify and under-
stand the overall problem. More specifically, it is important to define Web applications
and scalability.

1

Scalable and High-Performance
Web Applications

11

2 Scalable and High-Performance Web Applications

Basic Definitions
In this book, Web application has a very general definition—client/server software
that is connected by Internet technologies to route the data it processes. By “Internet
technologies,” I mean the collection of hardware and software that comprises the
network infrastructure between consumers and providers of information. Web appli-
cations can be made accessible by specific client software or by one or more related
Web pages that are logically grouped for a specific productive purpose. That purpose
can be one of any number of things, for example, to buy books, to process stock
orders, or to simply exist as content to be read by the consumer.

Notice that our discussion is about Web applications, not just “Web sites.” In
truth, the difference between the two is essential to understanding one of the key
themes of this book. Most nonengineers do not make a distinction between a Web
site and a Web application. Regardless of the term, it’s the thing that allows them to
buy their books online, to make plane reservations, to purchase tickets, and so forth.

If you’re an engineer, however, there is a difference. For you, it’s likely that when
someone talks about, say, the performance of a Web site, you start thinking of back-
end details. And so do I. Your mind begins to consider if it’s running an Apache or IIS
and whether it works using Java servlets, PHP, or CGI-bin Perl scripts. This difference
in thinking between engineers and nonengineers could be confusing. Engineers, by
habit, tend to associate “Web site” with the server side. However, as we all know,
there is more to a Web application than just the server side; there’s the network and
the client. So, based on just that, a Web site (server) is not the same thing as a Web
application (the client, network, and server).

While this book emphasizes server-side solutions, it is also concerned with client-
side and networking topics because they have a fundamental impact on how end users
perceive Web applications. That is, we will be concerned with the end-to-end inter-
action with a Web site, which simply means from client to server and back to client.
This is a reasonable focus. After all, most people who use the Web are concerned with
its end-to-end behavior. If it takes them a while to buy concert tickets online, it doesn’t
matter if the problem is caused by a slow modem, an overtaxed server, or network con-
gestion. Whatever the reason(s), the effect is the same—a slow application that’s eating
up time. As engineers, we are concerned not only that such applications might be slow
for one user, but also that the system becomes slower as more users access it.

Now that we have a better fix on the scope of a Web application, let us review its
core components. These are the major pieces of any online application and each rep-
resents an opportunity—a problem or a challenge, depending on how you look at it.
Although you’re probably familiar with the components, it doesn’t hurt to make sure
everyone is on the same page, especially since these terms appear throughout the
book. Let’s start with the client side.

The Emergence of Web Applications 3

We will say that Web applications are used by consumers via client software (i.e.,
Web browsers or applications that use the Web to retrieve or process data) running
on client hardware (i.e., PCs, PDAs). Application data is provided and processing is
handled by producers via server software (i.e., Web server, server-side component soft-
ware, database) running on server hardware (i.e., high-end multiprocessor systems,
clusters, etc.). Connecting the client to the server (from the modem or network port on
the client device to the networking equipment on the server side) is the networking
infrastructure. Figure 1–1 shows the client/server relationship graphically. Notice that
the server side is bigger; in general, we assume that the server side has more resources
at its disposal.

At this point, it is important to distinguish one piece of server software, the Web
server, because it nearly always plays a central role in brokering communication
(HTTP traffic) between client and server. In this book, when I refer to the “server
side,” I am nearly always including the Web server. When it is necessary to distin-
guish it from the rest of the software on the server side, I will do so explicitly.

The Nature of the Web and Its Challenges
Although Web applications have rapidly made the Internet a productive medium, the
nature of the Internet poses many engineering puzzles. Even the most basic of
challenges—engineering how a provider can quickly and reliably deliver information
to all who want it—is neither simple nor well understood. Like other challenges,
this problem’s complexity has to do with the nature of the medium. The Internet is

Figure 1–1
Client, network, and server

Server Hardware

Client Hardware

Client
Software

Server
Software

Network

4 Scalable and High-Performance Web Applications

different from the information-sharing paradigms of radio, television, and newspa-
pers for several reasons. Perhaps two of the most important reasons are its incredibly
wide audience (unpredictable number of customers) and the potential at any time
for that wide audience to request information from any given provider (unpre-
dictable work demands).

Unlike in other media, Internet information providers simply do not have the abil-
ity to know their audience in advance. Newspapers, for example, know their circulation
before they print each edition. They also have the advantage of being able to control
their growth, making sure they have enough employees to deliver the paper daily, and
have the resources and time to go from deadline on the previous night to delivery on
the next morning. Furthermore, newspapers do not have to deal with sudden jumps in
circulation. Compared to the Internet, the growth of big newspapers in metropolitan
areas seems far more gradual. For example, when the Washington Post was founded in
1877, it had a circulation of 10,000. By 1998, that circulation had reached nearly
800,000 for its daily edition and more than that for its Sunday edition.* That’s an aver-
age growth rate of just over 6,500 subscribers per year, or 17 per day.

Deployers of Web applications have a love/hate relationship with their growth
rates. In one sense, they would love the gradual growth of 17 new users per day. How
nice life would be if you had to worry about scaling at that rate! You could finally go
home at 5 P.M., not 9:30 P.M. At the same time, such growth rates are the reason that
people are so excited about Web applications—because you can potentially reach the
whole world in a matter of seconds. Your growth rate out of the gate could be hun-
dreds of thousands of users. Although this bodes well for the business side of the
things, it creates a tremendous challenge in terms of dealing with such demands.

On the Internet, circulation is akin to page hits, that is, the number of requests
for a given document. Page hits can jump wildly overnight. A favorite example in the
Web-caching community is the popularity of the online distribution of the Starr
report. As most Americans know, this report was put together by the Office of the
Independent Counsel during the Clinton administration. Let us just say that, while it
was not flattering by any means, it was eagerly awaited by both the American public
and the international press corps.

When the Starr report was released online in the summer of 1998 at government
Web sites, tens of thousands of people tried to download it. A representative for
Sprint, Inc., one of the Internet’s backbone providers, reported a surge in bandwidth
demand that ranged between 10 and 20 percent above normal; a representative of
AOL reported an “immediate 30 percent spike”; and NetRatings, a Nielsen-like
Internet content popularity company, estimated that at one point, more than

*Source: http://www.thewashingtonpost.com.

Performance and Scalability 5

one in five Web users was requesting the report or news about it. CNET.COM ran a
number of stories about the event and its ramifications for Internet scalability in
the Fall of 1998.*

The conclusion among network administrators and engineers was universal.
There were simply too many requests to be handled at once, and the distribution
mechanisms were unable to scale to demand. It was a real test of the scalability of the
Internet itself. Not only were the Web servers that provided this information over-
loaded, but the networking infrastructure connecting consumers to providers
became heavily congested and severely inefficient. The effect was much like that of a
traffic jam on a freeway.

This phenomenon was unique because it demonstrated the effects of sudden
popularity as well as the short-lived nature of that popularity. For example, it is
unlikely that you or anyone else remembers the URL(s) where the report was first
available. And it is unlikely that you have it bookmarked. Thus, even had those sites
been able to accommodate the demands of the time by buying bigger and faster
machines, it would likely have been money wasted because the need for those
resources dropped dramatically after the public lost interest in the report.

Other media, such as radio and television, are broadcast and do not need to
worry about the size of their audience affecting their ability to deliver information.
Consider television or radio programs, such as the national and local news. Their
programmers know in advance when they are scheduled to broadcast. They have the
luxury of being able to prepare ahead of time. Even when live radio or television
beckons, the fact that both media are broadcast means that there is only one audi-
ence to address. Cable companies and good old TV antennae are already in place to
facilitate the transport of that information. If we all watch or listen to the same chan-
nel, we all see or hear the same program. This is not the case with Internet audiences,
where it is usually impossible to prepare for every request, where every consumer of
information requires a unique response, and where there is a continual need for new
virtual links (HTTP connections) between consumer and provider to be both created
and then destroyed.

Performance and Scalability

Have you ever gone to a Web site, clicked on a link, and really waited for a response?
Of course you have; we all have. It’s annoying and frustrating. Worst are those
content-laden sites that are meant to be read like newspapers. You want to jump from
link to link, but every time you click, you have to wait seconds (not milliseconds) for

*Source: http://news.cnet.com/news/0-1005-204-332427.html.

the page and the ads and the embedded applets to download. You almost begin to
hate clicking on a link because you know you will have to wait. You’ve learned to
classify this kind of site as slow.

Then there are sites that are suspiciously slow. In these cases, you have reason to
believe that bazillions of people are trying to connect, and this mass, not the tech-
nology, is responsible for the slowness. Say you’re ordering a book at a site that has
just announced a 50%-off sale. Or suppose tickets for a really hot concert have just
gone on sale. When you’re able to connect, the site seems unresponsive. When it
does respond, it crawls. You guess that the site is buckling under the demand caused
by the event. You’ve learned to classify this kind of site as not scalable.

As users, we have learned what poor performance and scalability are because we
have experienced them. As engineers, we would like to understand these faults better
so that our own users don’t experience them. Because that is the focus of this book,
let’s start our discussion of performance and scalability by defining our terms.

Performance
Performance can be described simply as the raw speed of your application in terms of
a single user. How long does a single application-level operation take? How long does
it take to search for a book? How long does it take to confirm an online registration
once we click Confirm? How long does it take to check out and pay at an online
store? Notice that some of these examples describe atomic operations and some
don’t. When describing performance, we have to be clear if we are talking about one
application operation or an entire session.

Consider the user interaction required to buy an airline ticket in Figure 1–2: In
this session, there are three application operations, each consisting of a roundtrip
between client and server. The operations are listed in Table 1–1 with their code names.

When we are talking about the performance of an operation, such as selection, we
are interested in the end-to-end time required to complete that operation. In other
words, the clock starts ticking when the user clicks the button and stops ticking when
the user sees the information delivered. Why all this focus on end-to-end performance?

Table 1–1: Application Operations

Code Name User Action Server Action

Search Criteria specified Search based on criteria
Selection Flight chosen Confirmation for that flight generated
Confirmation Flight confirmed Confirmation processed

6 Scalable and High-Performance Web Applications

Performance and Scalability 7

We could, of course, judge performance by measuring the speed of the Web server’s
response, of the network, of our database retrievals, and so on. But we know that all of
these performance marks are irrelevant when compared to the overall time for a logi-
cal operation. Although unit performance numbers make us happy or proud (espe-
cially if we designed that piece of the application!), end-to-end performance is the one
that really counts—this is the metric that either scares users off or wins their loyalty.
And thus, this is the one that can spell life or death for your application.

Addressing end-to-end performance means making operations faster for the user.
To do that, we can improve the unit performance of some of the components involved
in the operation(s). For example, we can improve the performance of the Web server,
the database, or the application servers. The exact solution (e.g., better algorithms,
more efficient queries, etc.) depends on the unit being tuned. The point is that meas-
uring performance should be a top-down process: Start with the user, move to the
components, and then to parts in the components. Look for trends and ask if a single
instance of poor performance can be traced to a larger, general problem.

Scalability
Informally, engineers describe the challenge of dealing with large audiences and
high demand as a problem of scalability. More specifically, we say that a Web applica-
tion can scale if it continues to be available and functional at consistent speeds as the
number of users and requests continues to grow, even to very high numbers. A

Figure 1–2
Application
operations
associated
with buying
an airline
ticket

User requests search.

Flight is chosen.

Confirmation is given.

Search results are returned.

Confirmation is generated.

Ticket is purchased.

provider’s inability to deliver a document, such as the Starr report, because of server
overload was thus a problem of scalability. Note that this definition has nothing to do
with performance. As long as a slow application continues to provide consistent per-
formance in the wake of rising demand, it is classified as scalable!

Now, although scalability is commonly defined strictly as a measurement of
resiliency under ever-increasing user load, nobody expects a single instance of an appli-
cation server on a single machine to accommodate millions of users. Often people
consider how well an application can “scale up” by describing how effective it is to add
resources, such as more CPUs, more memory, or more disks. An application is consid-
ered to scale up well if it requires additional resources at a low rate. For example, if we
need to add 300MB RAM per 10 concurrent users on our system, we are in trouble. As
I discuss later, this scale-up attribute is often represented as a cost, for example, a cost
per concurrent transaction.

Generally, three techniques can be employed to improve scalability:

■ Increase the resources (bigger machines, more disk, more memory).
■ Improve the software.
■ Increase the resources and improve the software.

Although the long-term answer is the third technique, our bias is toward the
second. Good design at the beginning of a project is the most cost-effective way to
improve scalability. No doubt you will need greater resources to deal with higher
demands, but this is never the whole story. Although it can take the purchaser part
of the distance, throwing money at the problem cannot ensure scalability. I don’t
deny the need to spend money at certain points in the process. Rather, I suggest
strategic places to spend and strategic opportunities during the design that can give
application designers the biggest bang for their buck, thereby reducing their need
to purchase more resources than necessary.

The Internet Medium

Six attributes of the Internet as a medium compound the challenge of delivering per-
formance and scalability. The better we understand and appreciate these attributes,
the more strategic we can be in meeting the challenge to build Web applications that
perform and scale well.

First, as mentioned earlier, there is potentially a wide audience for Web application
providers to manage—wider than in any other medium. Second, the Web is an inter-
active medium: Consumers not only receive information, they also submit it. Third,

8 Scalable and High-Performance Web Applications

The Internet Medium 9

the Internet is dynamic in the sense that a given user request does not always result in
the same server-side response. Fourth, the Internet as a utility is always on and
providers have no guarantees about when and how often their information will be
accessed. Fifth, providing information over the Internet is an integrated process that
often depends on the coordination of multiple provider subsystems to deliver informa-
tion. And sixth, providers lack complete control in terms of the delivery of information
to consumers: There are many networking elements that exist between provider and
consumer, most of which are not controlled by the provider.

Some of these attributes may seem obvious; some may not. In either case, think-
ing about the details and their implications will prepare you for the solutions part of
this book.

Wide Audience
I’m not going to beat you over the head with the fact that millions of people use the
Internet every day. That is obvious and the increasing numbers are the primary rea-
son that application architects worry about things like scalability in the first place.
However, I will inform you of a few things that you may not know—or just may not
appreciate, yet.

One is that there is another Internet “audience” to consider, one that is not often
addressed. This quieter, hidden, but rapidly growing group of Web clients are better
known as “bots.” If you are familiar with search engine technology, you already know
that search engines use automated softbots to “spider” (recursively traverse) the Web
and update search engine indices. This process has been going on since search engines
were first deployed; bots are a simple example of one type of information agent.

Today’s bots are just the tip of the iceberg. More sophisticated information
agents are just around the corner that will allow users to monitor multiple sites
continuously and automatically. For example, instead of using the Web interac-
tively to watch and participate in online auctions (like those at eBay and Yahoo),
users will configure information agents to watch continuously and bid automat-
ically. This is an inevitable and obvious future direction for the Web: People want
to do more than sit around watching their monitors all day, manually hunting
for information.

Bots and information agents are particularly fond of things like data feeds,
which are information sources that continually change and require monitoring.
When the Internet was first being commercialized, it was popular to connect
real-time data feeds (such as the newswire services) and build access methods to
them via Web applications. This trend shows no sign of slowing; in fact, it threat-
ens to become much greater as Web applications gradually become data feeds in
themselves.

I’ve avoided boring, albeit frightening, statistics about the growing number of
human Internet users. Instead, I’ve reminded you that there are and will be new
types of application clients, not just those with two eyes. An increasing number of
information agents will automate Web querying and a growing trend will be to treat
Web applications like data feeds. In short, the Web’s audience is definitely growing,
not to mention changing, and so are its demands. What’s more, this newer audience
is persistent and regular, and does not mind testing the 24x7 feature of the Web and
its applications!

Interactive
On the Internet, consumers query providers for information. Unlike in other media,
information is not distributed at the whim of the provider. Instead, consumers
request information via queries, which consist of a series of interactions between the
client and server.

In addition to querying, consumer requests can contain submitted information
that must be processed. This submission mechanism can be explicit or implicit.
Explicit submission is the user’s deliberate transmission of information to the
provider, such as a completed HTML form. In contrast, implicit submission is the
provision of data through the user’s Web session. Cookies are a good example of this,
in that they consist of data that is chosen by either the provider (e.g., for page track-
ing) or the consumer (e.g., for personalization).

Regardless of how the information is submitted, the application’s processing
must often be based on this information. Thus, the Internet is not simply a library
where clients request items that exist on shelves; rather, requests involve calculations
or processing, sometimes leading to a unique result. Furthermore, the interactive
nature of the Web means that a request cannot be fulfilled in advance—instead, the
application must respond at the time the request is made, even though substantial
processing may be associated with that request.

Dynamic
Web applications present information that depends on data associated with the
user or session. As far as the user goes, countless demographic and historical
session attributes can make a difference in how an application responds. The
response may also depend on things unrelated to the user, such as a temporal
variable (e.g., the season or the day or the week) or some other external real-time
data (e.g., the current number of houses for sale). In any case, the data being
generated by a Web application is often dynamic and a function based on user
and/or session information.

10 Scalable and High-Performance Web Applications

The Internet Medium 11

The main problem that a dynamic Web application creates for the designer is the
inability to use the results of prior work. For example, if you use a Web application to
search for a house online, searching with the same criteria one week from the date of
the first search may very well return different results. Of course, this is not always
the case. If you conduct the same house search 10 minutes after the first one, you
will very likely get the same results both times. Obviously, the designer must know
when it is safe to reuse results and when it is not.

There is a subtle relationship between interactive and dynamic application
behavior. To avoid confusion, keep the following in mind: Interactivity has to do
with the Web application executing in response to a user, whereas dynamism has to
do with the response being a product of the user, her response, or some temporal or
external variable. Thus, dynamic behavior is the more general notion: An applica-
tion response is the product of a set of variables, some user-specified, some not.
Interactivity is simply one means to achieve a dynamic response. Put another way,
interactivity describes a cause; dynamism describes an effect.

Always On
This Internet is never supposed to sleep. Banks advertise Web banking 24 hours a
day, 7 days a week. This 24x7 mentality is part of what makes the Internet so entic-
ing for users. People naturally assume that, at any time, it exists as an available
resource. However nice this feature is for users, it is equally daunting for Web appli-
cation designers. A good example of what can happen when an application is not
available 24x7 is the trouble users had with eBay, the online auctioneer, in late 1999
and 2000.

During various system or software upgrades over that time, eBay suffered inter-
mittent problems that made it unavailable to users. In June of 1999, it was unavail-
able for 22 hours. Since the purpose of eBay’s service is to manage millions of
time-limited auctions, its core business was directly affected. Instead of selling to the
highest bidder, some sellers were forced to sell to the “only bidder.” Users com-
plained, demanding a reduction in fees. The problems made the news, and the com-
pany was forced to issue apologies in addition to refunding some fees. This is not to
say that eBay is not a scalable service or that the system is always unstable; indeed,
eBay is one of the most trafficked sites on the Internet, and except in rare instances,
has done a tremendous amount of successful 24x7 processing.

However, this simple example does underscore the importance of 24x7 when it
comes to Web applications. Nobody will write news stories about how well you perform
24x7 service, but they will definitely take you to task for glitches when you don’t.
These problems can affect your whole company, especially if part of its revenue comes
via the Web.

Observant readers might argue that failure to provide 24x7 service is not a
question of scalability but of reliability. True, the inability to provide service
because of a system failure is a question of reliability and robustness. From the
practical standpoint of the user, however, it does not matter. Whether the applica-
tion is unavailable because of a power problem with the site’s Internet service
provider (as was the case in one of eBay’s outages) or because the system can’t
handle a million simultaneous users, the result is the same: The application is
unavailable.

Integrated
When consumers request information, providers often refer to multiple local and
remote sources to integrate several pieces of information in their responses. For
example, if you use the Internet to make an airline reservation, it is common for
multiple systems (some of which are not directly connected to the Internet) to be
indirectly involved in the processing of your reservation. The “confirmation code”
you receive when the reservation is made comes only after all steps of the transaction
have been completed successfully.

Integration on the server side is common for most Web applications. To some
extent, this is a medium-term problem. The Web is a young technology and most
of its important processing still involves some legacy or intermediate proprietary
systems. These systems have proved reliable and have seemed scalable. Certainly,
they are still part of the loop because organizations believe in their ability to han-
dle workloads, but the question is whether these systems are ready for Internet-
level scale.

Consider an airline that migrates its ticketing to the Web. To do so, server-side
processing is required to connect to a remote, proprietary invoice database for each
request. In the past, hundreds of phone-based human agents had no trouble using
such a system to do processing. But it may be the case that, for example, there are
some hard limits to the number of concurrent connections to this database. When
there were never more than a few hundred agents, these limits were never exposed.
However, putting such a system in the server-side mix may turn out to be the bottle-
neck in a Web application.

Lack of Complete Control
To a provider of information, one of the most frustrating aspects about the Web is the
fact that, no matter how much money is thrown at improving application scalability,
it does not mean that the application will become scalable. The culprit here is the
Internet itself. While its topology of interconnected networks enables information to
be delivered from anywhere to anywhere, it delivers very few quality of service (QoS)

12 Scalable and High-Performance Web Applications

Measuring Performance and Scalability 13

guarantees. No matter how much time you spend tuning the client and server sides
of a Web application, no authority is going to ensure that data will travel from your
server to your clients at quality or priority any better than that of a student down-
loading MP3 files all night. And despite your best efforts, an important client that
relies on a sketchy ISP with intermittent outages may deem your application slow or
unreliable, though no fault of your own.

In short, the problem is decentralization. For critical Web applications, design-
ers want complete control of the problem, but the reality is that they can almost
never have it unless they circumvent the Web. This is another reminder that the solu-
tion to scalable Web applications consists of more than writing speedy server-side
code. Sure, that can help, but it is by no means the whole picture.

When we talk about the lack of control over the network, we are more precisely
referring to the inability to reserve bandwidth and the lack of knowledge or control
over the networking elements that make up the path from client to server. Without
being able to reserve bandwidth between a server and all its clients, we cannot sched-
ule a big event that will bring in many HTTP requests and be guaranteed that they
can get through. Although we can do much to widen the path in certain areas (from
the server side to the ISP), we cannot widen it everywhere.

In terms of lack of knowledge about networking elements, we have to consider
how clients reach servers. On the Internet, the mechanism for reaching a server
from a client involves querying a series of routing tables. Without access or control
over those tables, there is no way that designers can ensure high quality of service.

Techniques like Web caching and content distribution allow us to influence QoS
somewhat, but they don’t provide guarantees. As it turns out, the lack of control over
the underlying network represents the biggest question mark in terms of consistent
application performance. We simply cannot understand or address the inefficiencies
of every path by which a client connects to our application. The best we can do is
design and deploy for efficiency and limit our use of the network, and thus limit per-
formance variability, when possible.

Measuring Performance and Scalability

Thus far, I have defined the problem of performance and scalability in the context of
Web applications, but I have not said much about their measurement. The measure-
ment of performance and scalability is a weighty subject, and is different from the
focus of this book. However, as you apply the various techniques that we cover here
to your systems, you will want some simple measurements of the success of your
efforts. In this section, we’ll cover a few metrics that will tell you if your application
is fast and scalable.

Measuring Performance
It’s fairly easy to measure performance. We can use the application being tested or we
can design an automatic benchmark and observe the original speed of the applica-
tion against it. Then we can make changes to the software or hardware and deter-
mine if the execution time has improved. This is a very simple approach, but by far
the most common metric we will use in our study.

It is important that, when measuring performance in this way, we identify the
complete path of particular application operation. That is, we have to decompose it
into its parts and assign values to each. Let us return to an earlier example, that of
buying airline tickets online, and imagine that we’re analyzing the performance of
the “confirmation” process, which takes 2.8 seconds. Table 1–2 shows one possible
set of results.

The way to read this table is to consider that completing the operation in the first
(far left) column occurs at some point in time offset by the user’s click (shown in the
second column) and thus some percentage of time (shown in the third column) of the
end-to-end execution. Some of this requires interpretation. For example, “Web server
gets request” does not mean that the single act of getting of the request is respon-
sible for over 6 percent of the execution time. It means that 6 percent of the exe-
cution time is spent between the initial user’s click and the Web server’s getting
the request; thus, 6 percent was essentially required for one-way network com-
munication. Building these kinds of tables is useful because it allows you to focus
your efforts on the bottlenecks that count. For example, in Table 1–2, we can
clearly see that the database query is the bottleneck.

To build accurate tables requires two important features. One is that your system
be instrumented as much as possible; that is, all components should have logging

Table 1–2: Confirmation Process

Unit Action Elapsed Time of Action (ms) End-to-End Time (%)

User clicks 0 N/A
Web server gets request 170 6.07
Servlet gets request 178 0.29
EJB server gets request 1.68
Database query starts 440 7.68
Database query ends 2250 64.64
EJB server replies 2280 1.07
Servlet replies 2360 2.86
User gets information 2800 15.71

14 Scalable and High-Performance Web Applications

Measuring Performance and Scalability 15

features that allow them to be debugged or benchmarked. Web servers, become
familiar with how these systems allow logging to be turned on and off. Make sure
that you turn on logging for benchmark testing but turn it off when resuming
deployment; if it’s on, logging will slow down your application. Also, your code is
actually the least likely place to be instrumented. Thus, it can be good to place some
well-chosen logging statements in your code. For example, if an application server
makes three queries (as part of a single transaction) before replying, it would be use-
ful to put logging statements before each query.

The second important requirement is clock synchronization. The components
being measured may be on different machines and without synchronizing your
clocks, you can mistakenly assess too little or too much blame to an action that is
actually much faster than you thought. Exact synchronization of clocks is a bit
unrealistic, but as long as you know the clocks’ relative drifts, you should be able to
compensate in your calculations. Don’t overdo synchronization or calibration—for
example, being off by less than a hundred milliseconds for an entire operation is not
a big deal because it won’t be perceptible.

Beyond Benchmarking
In addition to benchmarking, there are other types of performance measurements
that are well-suited to certain classes of problems. For example, suppose your Web
applications are very CPU bound. To improve performance, you can add multiple
processors to your system or process the problem over a cluster of workstations. Both
approaches assume that it is possible to either automatically parallelize your compu-
tations or leverage explicit parallelization (i.e., thread use) and allocate parallel blocks
of instructions to different CPUs/workstations. Whichever solution you choose, you
will need to measure its net effect. If you don’t, then you’re shooting in the dark.

When trying to assess improvement in pure computational performance, we can
measure the speedup associated with that computation. Speedup is generally defined as:

Speedup = Told/Tnew

where Told is the execution time under the previous computational scenario and Tnew

is the execution time under the new scenario.
The term scenario is general because there are two general ways to investigate

speedup: at the software level and at the hardware level. At the software level, this
means changing the program code: If a program takes 10 seconds to run with the old
code and 5 seconds to run with the new code, the speedup is obviously 2. At the hard-
ware level, this means adding processors or cluster nodes. Correspondingly, for multi-
processor or cluster-based systems, the speedup metric is commonly redefined as:

Speedup = T1/Tp

where T1 is the execution time with one processor and Tp is the execution time when
the program is run on p processors.

Ideally, speedup increases linearly, as processors are added to a system. In reality,
however, this is never the case. All sorts of issues—processor-to-processor commu-
nication cost, program data hazards, and the like—contribute to an overall overhead
of computing something on p processors instead of one.

Measuring Scalability
Scalability is almost as easy to measure as performance is. We know that scalabil-
ity refers to an application’s ability to accommodate rising resource demand grace-
fully, without a noticeable loss in QoS. To measure scalability, it would seem that
we need to calculate how well increasing demand is handled. But how exactly do
we do this?

Let’s consider a simple example. Suppose that we deploy an online banking
application. One type of request that clients can make is to view recent bank transac-
tions. Suppose that when a single client connects to the system, it takes a speedy
10 ms of server-side time to process this request. Note that network latency and
other client or network issues affecting the delivery of the response will increase the
end-to-end response time; for example, maybe end-to-end response time will be
1,000 ms for a single client. But, to keep our example simple, let’s consider just
server-side time.

Next, suppose that 50 users simultaneously want to view their recent trans-
actions, and that it takes an average of 500 ms of server-side time to process each of
these 50 concurrent requests. Obviously, our server-side response time has slowed
because of the concurrency of demands. That is to be expected.

Our next question might be: How well does our application scale? To answer
this, we need some scalability metrics, such as the following:

■ Throughput—the rate at which transactions are processed by the system
■ Resource usage—the usage levels for the various resources involved (CPU,

memory, disk, bandwidth)
■ Cost—the price per transaction

A more detailed discussion of these and other metrics can be found in Scaling for
E-Business: Technologies, Models, Performance, and Capacity Planning (Menasce
and Almeida, 2000). Measuring resource use is fairly easy; measuring throughput
and cost requires a bit more explanation.

What is the throughput in both of the cases described, with one user and with 50
users? To calculate this, we can take advantage of something called Little’s law, a sim-
ple but very useful measure that can be applied very broadly. Consider the simple

16 Scalable and High-Performance Web Applications

Measuring Performance and Scalability 17

black box shown in Figure 1–3. Little’s law says that if this box contains an average of
N users, and the average user spends R seconds in that box, then the throughput X of
that box is roughly

X = N/R.

Little’s law can be applied to almost any device: a server, a disk, a system, or a Web
application. Indeed, any system that employs a notion of input and output and that
can be considered a black box is a candidate for this kind of analysis.

Armed with this knowledge, we can now apply it to our example. Specifically, we can
calculate application throughput for different numbers of concurrent users. Our N will
be transactions, and since R is in seconds, we will measure throughput in terms of trans-
actions per second (tps). At the same time, let’s add some data to our banking example.
Table 1–3 summarizes what we might observe, along with throughputs calculated using
Little’s law. Again, keep in mind that this is just an example; I pulled these response times
from thin air. Even so, they are not unreasonable.

Based on these numbers, how well does our application scale? It’s still hard to say.
We can quote numbers, but do they mean anything? Not really. The problem here is
that we need a comparison—something to hold up against our mythical application so
we can judge how well or how poorly our example scales.

Table 1–3: Sample Application Response and Throughput Times

Average Response
Concurrent Users Time (ms) Throughput (tps)

1 10 100
50 500 100
100 1200 83.333
150 2200 68.182
200 4000 50

Figure 1–3
Little’s law

Throughput = X = N/R.

N

X
R

One good comparison is against a “linearly scalable” version of our application,
by which I mean an application that continues to do exactly the same amount of
work per second no matter how many clients use it. This is not to say the average
response time will remain constant—no way. In fact, it will increase, but in a per-
fectly predictable manner. However, our throughput will remain constant. Linearly
scalable applications are perfectly scalable in that their performance degrades at a
constant rate directly proportional to their demands.

If our application is indeed linearly scalable, we’ll see the numbers shown in
Table 1–4. Notice that our performance degrades in a constant manner: The average
response time is ten times the number of concurrent users. However, our throughput
is constant at 100 tps.

To understand this data better, and how we can use it in a comparison with our
original mythical application results, let’s view their trends in graph form. Figure 1–4
illustrates average response time as a function of the number of concurrent users;
Figure 1–5 shows throughput as a function of the number of users. These graphs also
compare our results with results for an idealized system whose response time
increases linearly with the number of concurrent users.

Figure 1–4 shows that our application starts to deviate from linear scalability
after about 50 concurrent users. With a higher number of concurrent sessions, the
line migrates toward an exponential trend. Notice that I’m drawing attention to the
nature of the line, not the numbers to which the line corresponds. As we discussed
earlier, scalability analysis is not the same as performance analysis; (that is, a slow
application is not necessarily unable to scale). While we are interested in the average
time per request from a performance standpoint, we are more interested in perform-
ance trends with higher concurrent demand, or how well an application deals with
increased load, when it comes to scalability.

Figure 1–5 shows that a theoretical application should maintain a constant num-
ber of transactions per second. This makes sense: Even though our average response

Table 1–4: Linearly Scalable Application Response and Throughput Times

Average Response
Concurrent Users Time (ms) Throughput (tps)

1 10 100
50 500 100

100 1000 100
150 1500 100
200 2000 100

18 Scalable and High-Performance Web Applications

Measuring Performance and Scalability 19

time may increase, the amount of work done per unit time remains the same. (Think
of a kitchen faucet: It is reasonable that even though it takes longer to wash 100
dishes than to wash one, the number of dishes per second should remain constant.)
Notice that our mythical application becomes less productive after 50 concurrent

Figure 1–5
Scalability from
the server’s
point of view

1,200

1,000

800

600

400

200

0

Tr
an

sa
ct

io
n

s
pe

r
Se

co
n

d

0 100 200 300

Number of Users

Sample application

Theoretical

Figure 1–4
Scalability from
the client’s point
of view

4,500

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0A
ve

ra
ge

 R
es

po
n

se
 T

im
e

(m
s)

0 100 200 300

Number of Users

Sample application

Theoretical

users. In this sense, it would be better to replicate our application and limit the num-
ber of concurrent users to 50 if we want to achieve maximum throughput.

Analyzing response time and throughput trends, as we have done here, is impor-
tant for gauging the scalability of your system. Figures 1–4 and 1–5 show how to
compare an application and its theoretical potential. Figure 1–4 illustrates the effi-
ciency from the client’s point of view, where the focus is on latency; Figure 1–5
shows application efficiency from the server’s point of view, where the focus is on
productivity (work done per time unit).

Throughput and Price/Performance
In measuring throughput, we have ignored the cost of the systems we are analyz-
ing. If a system costing $100 can handle 1,000 transactions per second and a system
costing $500,000 can handle 1,200 transactions per second, the latter obviously
has better throughput—but it’s gained at a much higher cost. The idea of measuring
throughput and its relationship to price is something that has been popularized
by the Transaction Processing Council (TPC), which has created database bench-
marks, better known as the TPC-style benchmarks.

There are three TPC benchmarks: TPC-A, TPC-B, and TPC-C. The most recently
developed (as of this writing) is the TPC-C. It measures database transaction processing
in terms of how efficiently it supports a mythical ordering system. Specifically, it meas-
ures how many “new order” transactions can be handled while the system is busy han-
dling four other types of order-related transactions (payment, status, etc.). While the
TPC specification is meant to measure database throughput, you can use the same
principle with your systems. After all, Web application transactions are at their core a
set of database transactions.

Although it is unlikely that you will benchmark your system against another, you
can measure how well your system is improving or lagging over its own evolution. For
example, if release 1 of your application requires $100,000 worth of hardware and soft-
ware and nets 10,000 transaction per second, you can calculate a price/performance
index by dividing the price by the performance:

100,000/10,000 = $10 per transaction.

This doesn’t mean that it costs $10 to execute a transaction on your system. It is sim-
ply a measure of throughput as it relates to the overall cost of the system. Suppose
that a year later, release 2 of your application requires $150,000 worth of hardware
and handles 40,000 transactions per second. The release 2 price/performance index
would be:

150,000/40,000 = $3.75 per transaction.

20 Scalable and High-Performance Web Applications

Scalability and Performance Hints 21

Obviously, release 2 is more efficient than release 1 by evidence of its lower price/
performance figure.

My interest in price/performance in this section is a reminder of the more gen-
eral bias throughout this book: Favor architectural strategies over resources when
developing your application. Once the application is deployed, you can always buy
more resources to meet demand. On the other hand, rewriting code, changing
designs, or re-architecting your application after deployment comes at a much
higher cost. The best solution is obviously good design at the outset for scalability
and performance. Not only does this eliminate the need for massive design changes
after deployment, but it also typically leads to more cost-efficient resource acquisi-
tions. CPUs, memory, disk, and other resources are purchased less frequently for
applications that are inherently fast and scalable. In short, well-designed systems
adapt and evolve much better than poorly designed ones do.

Scalability and Performance Hints

Nearly all of the chapters in this book include a section on hints for scalability and
performance. The idea is to provide some conclusions or suggestions that have to do
with the material presented in the chapter. Since we’ve just started our journey,
there is nothing terribly complicated to conclude. However, we can remind ourselves
of a few useful things covered earlier.

Think End-to-End
If nothing else, this chapter should have made clear that scalability and performance
are end-to-end challenges. Don’t just focus on the server; consider client and network
issues as well. Spending all your time optimizing your server and database is not going
to help if one part of your solution doesn’t scale. You will always be hampered by your
weakest link, so spend more time thinking about all of the parts involved in an applica-
tion session, not just the ones you suspect or the ones you read articles about. Keep an
open mind: While many applications face similar dilemmas, not all have the same
clients, the same growth rate, or the same 24x7 demands.

Scalability Doesn’t Equal Performance
Another thing you should have gotten out of this chapter is that scalability is not the
same as performance. The two have different metrics and measure distinct things.

Performance has to do with the raw speed of the application, perhaps in a vacuum
where only one user is using it. When we talk about performance, we mean response
time—it’s as simple as that. Optimizing performance has to do with improving the per-
formance for that one user. If we measure average response time of 100 concurrent

users, our performance challenge is to improve the average response time of the same
100 concurrent users.

Scalability, on the other hand, has to do with the ability to accommodate
increasing demand. A primary metric for scalability is throughput, which measures
transactions or users per second. There is no such thing as infinite scalability—the
ability to handle arbitrary demand. Every application has its limits. In fact, for many
deployments it is satisfying to achieve just linear scalability, although the optimizer
in all of us wants to achieve much better than that. Not unexpectedly, the most suc-
cessful examples of scalability are those that simply minimize the rate at which new
resources are required.

Measure Scalability by Comparison
Scalability is difficult to ensure because its metrics don’t allow you to compare it eas-
ily to an average (nonlinearly scalable) baseline and make some conclusions. One
thing you can do, however, is measure how the scalability of your application evolves.
First, define what kind of throughput is reasonable: Create (or buy) an automated
stress-testing system that identifies whether your current system achieves that goal
for a reasonable number of users. Then, as the application evolves, periodically retest
and determine if it’s improving relative to past scalability—this is without a doubt
something that even your end users will notice.

Another strategy is to measure throughput as the number of users increases and
identify important trends. For example, measure the throughput of your applications
with 100 concurrent transactions, then with 1,000, and then with 10,000 transactions.
Look at how your throughput changes and see how it compares with linear scalability.
This comparison will likely give you a better sense for whether your application archi-
tecture is inherently scalable.

Summary

In this first chapter, we focused on defining Web applications and the nature of their
deployment on the Internet. We also defined and discussed performance and scala-
bility—two important concepts that will remain our focus throughout this book—
and described their related metrics.

One very important subtheme of this chapter was the focus on the entire appli-
cation, not just its parts. Although it may be academically interesting to optimize
our bandwidth or CPU use, the end user does not care about such things. Instead, he
or she thinks only in terms of time, that is, whether the application is fast. And he or
she wants that same response time regardless of how many other users are on the
system at the same time. Now that we are focused on the goal of end-to-end per-
formance and scalability, let’s move on to talk in more detail about application archi-
tectures and the specific challenges that lie ahead.

22 Scalable and High-Performance Web Applications

